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Abstract

By the use of the Poisson transformation or the method of

difference, we obtain a differential-difference equation from the

Fokker-Planck equation for the Glauber-Lachs and Periua-HcGill

formula. It is fo'.nd that a resulting equation is a same type

equation of the QCD branching processes. From solutions in these

equations, we can infer possible mechanisms for hadronization: The

randomization in stochastic theory seems to be a plausible procedure.

Some data( diffractive KNO scaling distribution and that of a single

Jet In e e~ annihilations) are analysed In our scheme.
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Introduction. For recent several years, many authors

have stressed that the Planck-Ploya-Eggenberger distribution is a

fundamental probability distribution, since it is the solution of the

gluon distribution in the QCD barnching processes and, futhermore, it

satisfies the KNO scaling observed at high energies. '' ' However

recently an availability of the PeSfina-UcGill probability distribution

(I.e., the generalized Glauber-Lachs formula: hereafter abbreviated

as the GLPU formula) for hadronic reactions have been pointed

out. ' < 7' Futhermore it is proved that the KNO scaling functions

based on the geometrical aspect are connected with the stochastic

processes of the GLPM formula. Therefore, in this paper, it is

worth while to examine physical- and stochastic connections among the

GLPU formula, Planck-Polya distribution and the QCD branching

processes. For our purpose, we have to obtain the differential-

differ ence(DD) equation of the GLPU formula, because the fundamental

equation in the QCD branching processes is given by the DD equation.

DP Equation of the GLPM Formula. The Fokker-Planck equation for

the probability density (i.e., the KNO scaling function) in the GLPU

formula is given as follows( see also ref.7)),

<Ui)=-s(i-n enU |.(i) = («/«) t ,

-2-



In order to get the DD equation of eq.(l), i.e..the master equation,

8 }
it is useful to utilize the Poisson transformation

W-/H -vrfWixTf-'1^! W , s (2)

Otherwise, we can use the well-known replacement in difference

calculas between the discrete- and continuous variables,

- f^{r.-n J (3a)

f feintH -ttkM t f fc(u-i)]
 (3b)

B y m a k i n g u s e o f e q s . ( 2 ) a n d / o r ( 3 ) , w e o b t a i n t h e f o l l o w i n g D D

e q u a t i o n f r o m e q . ( l ) ,
= 5

where J and p are, respectively, given as follows,

y - ( n ^ coherent ) > / < n i n ( incoherent)> , (4c)

p - 1/(1 + / ) - (1 - exp(-st)). (4d)

We can prove that no-singularity occurs in the Poisson transformation,

by making use of the numerical computaion of both sides in eq.(4a)

with eq.(4b) and/or the w*y of the generating function for them, in the

next paraghraph, we resolve eq.(4a) with two different boundary

conditions. Probably we can expect that the procedure might elucidate

essential difference between the GLPU formula and results from the QCD

branching processes. ' ' The physical meaning of eq.(lc) elucidated

in refs.6) and 7) Is demonstrated in Fig.l.

/ Fig. 1 /
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Generating Function's Method and Eg.(4). Here we solve eg.(4a)

by using the generating function,

<2*<*-'' - £ TtWi.-*1. (5)

h

Equation (4) is rewritten as follows.

where the following substitutions are made,

AB=S<tt> , Ai'SOiy^ + J and A*= S<«>/fc .(7)

From eq.(6), we obtain the following equation

where A and B are constants to be determined by the boundary condition.

Here we consider two cases of the boundary conditions.

I) The first case: At t - 0, the probability density is given by the

Poisson distribution, which is obtained by the following calculation.

Introducing a parameter (i , we obtain the following boundary conditions

for the generating function,

Combining eqs.(8) and (9), Qk(w,t) is expressed as follows,
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The GLPU formula is calculated by the well-known formula.

IV= o

] I ife-O/ m-f)

II) The second case. When we choose the following initial condition,

Pk(n,t-O) - $ ni0 ( or Qk(w,O) - 1), (12)

we obtain the generating function Q. (w,t) from eq.(10), putting 6 = 0 .

The following Planck-Polya probability distribution io easily derived.

An average multiplicity is expressed as follows,

<n>AV " % V

As p defined by eq.(4d) contains the time-dependent term,

varies with time. Furthermore, it should be noticed that we also

obtain the Planck-Polya distribution in the case of A. - 0 in eq.(6).

QCD Branching Processes. According to rel.2), we give the

equation of the QCD branching processes with the evolution function 1>

and the QCD proper parameter Y ̂ A^jUSj^lzt^t Were

. ij. )/?Y - [-A Tij. - B nu -A«ij] if % - «?

t •+•

-s-



The parameters A, A and B introduced in eq.(15a) denote the following

processes: A;(g-Jg + g) , A ; (q-* g + q) and B; (gjq + q). Since to

find the general solution is too difficult, we assume that n, quarks are

produced initially ( mainly at Y « 0), and they can emit gluons through

process ( A ): A n (quark) = n. A. « . Quarks produced from gluons

through process ( B ) cannot emit gluons futher. Without the loss of

generality, this case study of tbe gluon distribution in the quark jet

allows us to analyse tbe QCD branching processes.

•u-fc« X = (Me -tVdNLe), At- H$/j -.ml X. *

The parametars NciNf and E are the numbers of colors, flavors and cutoff,

respectively. Comparing eqs.(4a) and (15b), the DD equation of tbe

GLPH formula Is the same type as tbe QCD branching process for the gluon

distribution in the quark jet. Nobody noticed this similarity, in so

far as tbe authors know. With an initial condition, n » 0 and j

quarks are produced at Y • 0, we obtain the following probability

distribution

c/nTil
i-.x.

where a - J A.o/A-1 and <ng> -/\0 /( \ 2~ A-1)(exp(( A 2 -X^Yy-1).

It should be emphasized that eq.(15b) desclbes tbe mjltipHcity of toe

soft gluons.
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Secondly îf we choose the other boundary condition, i.e.,

eq.(9a), we obtain eq.(ll) with substituting time (t) by V. However,

since this initial condition seems to be unnatural for the multiplicity

of the soft gluons, , we abandon this problem here. How we have

eq.(16) for the QCD-world and eq.(lc) (i.e., the GLPM formula) and/or

the Planck-Polya distribution for the typical description of the

meson-world. Thus we must consider physically smooth connections

between them.(see Fig.2).

/ Pig-2 /

Hadronization Problem from Eq.(16). At least there are two

possiblities. I) Suppose that the Planck-Polya distribution for the

meson distribution and eq.(16) are correct, then the physical gap

between the produced meson-world (mainly pions) and the QCD-world can

easily be filled up by the following substitution,

<n ) / a — * <n(incoherent pion) > /k. (17)

It is well-known that eq.(16) with eq.(17) satisfies the KNO scaling,2'<5)

and the KNO scaling distributions with rapidity cutoffs (mainly

central region) can be explained in this scheme. ' '

II) If the physical contents in eqs.(4b) and eq.(16) are true, we have

to find another possibility of the hadronization between them. In

order to bridge eqs.(16) to (4b), a randomization method in the

9 \
stochastic theory seems to be useful, which is defined as follows

(see also the flow chart in Fig.2),

A (mi
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Contents of eq.(18) are shown in Fig. 3. At t. = 0, n = nin = 0 and

coherent dominance are certainly seen. Physical interpretations of

eq.(19), an effect of hard gluon, is demonstrated in Fig.3.c). This

physical picture is also found in ref.10).

Of course we know that eq.(19) satisfies the KNO scaling and it

does excellently explain a wide range of experimental data: ''

It should be emphasized that coherent component is necessary in those

comparisons. Moreover, we have to add some analyses.

Comparisons of Data with Eq.(lc). Here we show new comparisons of

data with eq.(lc). The diffractlve KNO scaling distributions in hadron

collisions,11>>12) distribution in a single jet and full KNO scaling

distributions in e+e~ annihilations are analysed in Fig.4. It is very

interesting that the former two data can Le explained by eq.(lc) with

the same parameters (k = 2 and /= 4.). The analyses sugget us the

coherent dominance in the fragmentation regions. In other words,

Poisson-like component is necessary in analyses of the KNO scaling

distributions. The full KNO scaling distribution in the two-jet <e+e~-^

q q ) and an addition of three-jet (e e~-f q q g) by about 10 % can be

explained by the parameters ( k « 4) with smaller value, J= 3. This

comparison means that there is a weak correlation in iwo-Jet, and in

three-jet, respectively..

This fact also suggests us that the randomization is one of plausible

and possible hadronization mechanisms. Futhermore eq.(18) might explain

the integal number of meson charges from the fractional number of the

quark charges.

/ Figs.3 and 4./



Conclusions and Discussions. By the use of the Poisson

transformation, we have obtained the DD equation of the GLPM formula.

This is essentially the same type of equation obtained in the QCD

branching branching process. This fact seems to suggest us the

similarity between QCD branching process '' ' and quantum optics. '

Comparing eq.(4) with eq.(16), we can infer possible mechanisms of

hadronization: This is the randomization. To compare our results with

those in ref. 15), we have to wait for various data.

Equation (4),i.e., DD equation and its solution are not known in

the stochastic theory, as far as we know. ' However, the GLPM formula

and its probability density have been used in electrical engineering, '' '

19) 20)
theoretical psychology, the critical phenomena as well as quantum

optics for a comparably long time.

Thus we expect that our study sheds light on these fields.
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Figure Captions

Fig.l. Physical contents of eq.(lc). <nCQ> and<n l n> denote the

coherent and incoherent average multiplicities, respectively.

It should be noticed that the Poisson distribution •vith

high energy mesons at an initial stage is observed in refs.

6) and 7).

Fig.2. Flow chart of badronization from the resulting Plar.ck-Polya

distribution in the QCD branching processes.

Fig.3. Contents of eq.(18). It should be noticed that at t = 0,

<n > = < n , y * 0 and coherence is dominant; this

corresponds to contents in Fig.l.

Fig.4. Comparison of eq.(lc) with KNO scaling distributions.

a) The diffractive KNO scaling . The dasned curve is given

by Barshay12' b) Distribution in the single jet by TASSO

collaboration*35 c) Full KNO scaling distribution in

e+e" annihilations.135
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