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Blackness Coefficients, Effective Diffusion
Parameters, and Control Rod Worths

for Thermal Reactors
M. M. Bretscher

RERTR Program, Applied Physics Division
Argonne Nationali Laboratory
Argonne, Illinois 60439

ABSTRACT

Simple diffusion theory cannot be used to evaluate control
rod worths in thermal reactors because of the strongly absorbing
character of the control material. However, good results can be
obtained from a diffusion calculation by representing the absorber
slab by means of a suitable pair of internal boundary conditions.
These internal boundary conditions, or "blackness coefficients,”
are defined by the equations

J +J J, - J
r

2 2 r
O W~ , Ba——-—_—.—.—.—.
¢£ + ¢r ¢£ ¢r

where ¢ and J are the asymptotic values of the neutron flux and
current into the slab on the left-hand and right-hand surfaces.
Mesh-dependent effective diffusion parameters (D, L,) for the
control slab are obtained from the blackness coefficients.

Methods for calculating a and B in the P}, P3, and P5 approxi-
mations, with and without scattering, are presented. By appropri-
ately weighting the fine—-group blackness coefficients, broad group
values, <a> and <B>, are obtained.

The technique is applied to the calculation of control rod
worths of Cd, Ag~In-Cd, and Hf control elements. Results are
found to compare very favorably with detailed Monte Carlo
calculations.

For control elements whose geometry does not permit a thin
slab treatment, other methods are needed for determining the
effective diffusion parameters. One such method is briefly
discussed and applied to the calculation of control rod worths
in the Ford Nuclear Reactor at the University of Michigan. Calcu-
lated and measured worths are found to be in good agreement.

)
11/ |/



-,

No.

IX

X1

XII

XIII

X1v

XVI

List of Tables (Continued)

Eigenvalue Calculations for One-Dimensional Reactor Slab

Page

HOdels with Ag'Il'l'cd Blades 900000 ENTENOPOOROSINOORIENIIOOORIERTS 42

Congistency Check of Ag-In-Cd Blackness Coefficients
(Asymetl‘ic Slab Model with h"!'/2) SePeOOBEIENIGEERECTIOIONEBOLIORS

XYZ Calculations for the 10-MW Generic Reactor for Fresh
LEU U3Siz Fuel with Ag-In-Cd Control Blades seesvescccvesenese

Broad-Group Blackness Coefficients for a 0.50-cmThick
Natural Hafnium S1ab ceecescccsccscscccessseccnccccrnsnsssnnons

Natural Hafnium P5 Effective Diffusion Parameters for Mesh-
Centered Fluxes with Pine—Group-Weighted o and B .c.iveveveesss

Eigenvalues and Hafnium Worths for One-Dimensional Cell

CalculationS .ceesesscsscosesscavecentssosescossosssensosssonse

Eigenvalues and Hafnium Control Rod Worths in the JRR-3

REACLOT cesveccvocsssscssonnsossosnsessocsescscsseossessasnonnse

FNR Shim-Safety Rod Worths for 27 Fresh LEU Fuel Element

COl‘e G e B0 20N 000NN NOINNEOBEENPRIIRNOPOONRPENNIOOCUROCOOISEEOIBRIEED

vii

43

45

49

50

53

55

62



Blackness Coefficients, Effective Diffusion
Parameters, and Control Rod Worths
for Thermal Reactors

1. INTRODUCTION

In strongly absorbing media the neutron flux is a rapidly varying func-
tion of position. Under these circumstances Fick's law of diffusion is
invalid and so diffusion theory cannot be used to evaluate control rod worths
in thermal neutron reactors. However, blackness theory provides a method for
modifying diffusion parameters in strongly absorbing media so that diffusion
theory may be used in regions where it would normally be inadequate. Two
blackness coefficients, o and B, are defined by the equations

J, +J Jg = J
. i+ PR

e, -9,

where ¢ and ¢, are the asymptotic neutron fluxes on the left-hand and right-
hand surfaces of the absorber slab and the J's are the net surface currents
into the slab. These blackness coefficients form a pair of internal boundary
conditions at the surfaces of the absorber aslab and may be evaluated from one-
dimensional transport calculations. Effective diffusion parameters, 38 and

D, for the strongly absorbing control rod regions are determined as functions
of these blackness coefficients. This blackness-modified diffusion theory
permits a rather accurate calculation of control rod worths in thermal reactors
for control elements whose geometry can be represented by one or more slabs.

This paper deals with the methods used to calculate the blackness coeffi-
cients in the P;, P3, and P5 approximations taking into account the effects
of both neutron absorption and neutron scattering within the control material.
A fine-group weighting scheme is used to determine the average values of the
blackness coefficients corresponding to each of the broad groups. Equations
for the effective diffusion parameters are derived as functions of the broad-
group blackness coefficients. Finally, the method is used to evaluate control
rod worths for several different geometries and compositions, and the results
are compared with those obtained from detailed continuous energy Monte Carlo

calculations,

For control elements which cannot be described in terms of slab geometry,
quantities analogous to @ and B do not exist. For this case, however, a
different method may be used to find effective diffusion parameters for such
lumped absorbers. This technique is described at the end of this report and
is used to evaluate control rod worths in the Ford Nuclear Reactor at the
University of Michigan. Results are compared with measured values.

2. THE ASSUMPTIONS OF BLACKNESS THEORY

From the outset it is well to 1list the assumptions upon which blackness
theory rests.

l. The control slab is assumed to be uniform and of infinite lateral
extent.



and
1

T (L1, Z/L) = jf W™y (T, u)dup. (2)
mn t 8 t 0 n-

R@R and Ty, are the reflected and transmitted contributions to the outgoing
moments due to the incoming flux.

With a u0 source distribution, the ONEDANT Code? is used to solve
the monoenergetic one-dimensional Boltzmann equation for the surface fluxes
¥n(0, 1) and ¥o(T,H). These calculations are done using an angular quadra-
ture order of 24 (i.e. Sz4) and double Py quadrature constants.

With the ONEDANT values for the surface fluxes ¥,(0,u) and ¥,(T,u),
Eqs. (1) and (2) are numerically integrated by Gauss-Legendre quadrature
methods3 to obtain Run and Tgne By using the double Py quadrature constants
in the ONEDANT calculations, the angular fluxes are evaluated at the required
Gaussian abscissas uj so that the Gauss-Legendre quadrature method gives

N/2
m
R = (1) 2 b ¥(0,u), u0
mn i=] {1 n i 1
N/2
T = Zu ¢(ru)w, w0
mn i=1 1

where Wi are the required Gauss-Legendre weights (see Table I) and N is the
angular quadrature order (Sy).

In general, the reflection and transmission coefficients must be obtained
numerically. However, for the speclal case of a pure absorber (E = 0) Ry is
zero and Ty, can be expressed analytically. For this case the transmitted
angular flux is the product of the incident flux and the probability of pass—
ing through the slab withcut absorption. Thus,

Yol = u" e EaTM s

=0, 0.
Thus,

1
T (L 1) = Jr um+n e-Ear/u an
mn' a 0

m+n+2(zat)

where Epq¢n+2(Z47T) is the exponential integral of order m+n+2.

A computer program has been written to evaluate the reflection and trans-—
mission coefficients using the angular flux output file from ONEDANT. To
check these numerical methods, Ry, and Ty, were calculated for Z¢T and Zg/L¢
values corresponding to tabulated values of Ry, and Tp, given by Maynard.
Results are compared in Table II., It is seen that the agreement i3 quite
satisfactory. For the pure absorption case, the numerical results agree with
the tabulated values of the exponential integralS to within 0.001Z.



Table I. Gauss-Legendre Abscissas and Weights

(5 = Sy,)
Absciassas, uj Weights, Wy
+0.93078 0.023588
0.95206 0.053470
10.88495 0.080039
*0.79366 0.10158
10.68392 0.11675
30.56262 "0.12457
*0.43738 0.12457
10.31608 0.11675
10.20634 0.10158
10.11505 0.080039
£0.047941 0.053470
10,0092197 0.023588



Source

Maynard
ONEDANT,

Maynard
ONEDANT,

Maynard
ONEDANT,

Maynard
~ONEDANT,

Maynard
ONEDANT,

Eptn+2(1.

etc.

etc,

etc.

etc.

etc.
50)*

Table IT.

Comparison with Maynard Values*

for Ryy and Tpp.
Et‘t - 2-50,

Rin R3n
0.053552 0.023810
0.053539 0.023811
0.033099 0.014947
0.033100 0.014946
0.023810 0.010830
0.023810 0.010829
0.018553 0.0084735
0.018554 0.0084733

It = 1.50,
0.0 0.0
0.0 0.0

Lg/Iy = 0.40

Tin
0.026897
0.026901

0.021450
0.021462

0.017915
0.017930

0.015403
0.015415

25/2 b 0-0

0.056751
0.056739
0.056739

*From tables of the exponential integral given in Ref. 5.

T3n

0.,017915
0.017930

0.014765
0.014775

0.012676
0.012681

0.011145
0.011148

0.038527
0.038530
0.038530



4, MATCHING BOUNDARY CONDITIONS

Before obtaining expressions for the blackness coefficients & and B, it is
necessary to consider matching conditions imposed at the surfaces of the abscrber
slab. Consider the three-region slab configuration shown below in which the
central region extends over the interval 0 € x < 71,

I ‘ il l III

Three—-Region Slab Configuration

The angular fluxes incident on Region II from Regions I and III must be continuous
at the boundaries.

wn(o,u) = WI(O,B-'-), )
‘PH(r,u) = wIH(T,u), u<0

The moments of the distributions leaving Region II (¥11(0,u), u<0 and ¥yp(T,u),
u>0) are determined from the incident distributions by means of the reflection

and transmission coefficients.

Suppose the boundary fluxes in Regiong I and III are expanded into a power
series over the full range of u(-1 to 1).

L
¥ (0,m) = 3 A u” 3)
n=0
X 5w @
v (t,u) = Bp M 4
111 L B

This expansion is equivalent to the Py, approximation.

If Region II is a source-free medium which scatters neutrons isotropically,
Maynard1 has shown 'that the matching conditions become

L (~1)n ) n
2 mtn+l Rm“) Ap = (-1)" Tgp Bp| =0 (5
n=0

and‘
3 r'__—!.'_-"_(":I.)“R By~ T Anf= 07 . (6)
5;% m+n+l mn § °n mn n )




It turns out that either the even or the odd moments can be matched. The odd
moments are usually chosen. Thus, only odd values of m need be considered in

Eqs. (5) and (6) with myzx = L.

An important special case is obtained by taking the center line of
Region II as an axis of symmetry. For this case

Ag = (-1)"B,
and Eqs. (3) and (4) reduce to
L 1
> w——— = (~D" (Ryn + Ton)| Bn = 0 (7)
=0 m+ n+ 1

at either boundary, As discussed earlier, for the no scattering case Ry, = O
and Typ = Eptn+2 and one can show that Eq. (7) leads to the boundary condi-

tions considered by Royston,

5. EVALUATION Of THE BLACKNESS COEFFICIENTS

The blackness coefficients a and B were first introduced by Goldsmith,
et al.? and are defined by the equations

Jg + Jp
e (8)

Jg = Jp
o - oOr %

where Jy and Jp are the net asymptotic neutron currents into the slab from
the left and right sides respectively and ¢g and ¢, the asymptotic rluxes

at the lefr and right boundaries of the slab. Note that B is indeterminate
if the center of the plate is a plane of symmetry. For this case a is the
surface current-to-flux ratio and corresponds to the internal boundary condi-

tion in the DIF3D code.8

To obtain expressions for a and B the angular fluxes to the left and
right of the absorber plate are expanded in a Legendre series, wlich in the

PL approximation becomes

Wox ) = 2 (20+1) ¥p(x) Pylw). a0

n=0

Before continuing with the evaluation of the blackness coefficients, we
must first determine the spherical harmonic moments, Y,(x), corresponding to
the one-dimensional monoenergetic Boltzmann transport equation,



5.1 Evaluation of the Spherical Harmonic Moments of the Aﬁgglar
Flux Distribution

In the medium outside the control blade the monoenergetic, one-~dimensional,
time-independent transport equation for plane geometry, in the absence of
sources, 1is

"2 1 1! vE
b— W(x,B) + I W(x,u) =~ [[Eg(ug) + —=] w(x,u")du’ ()
3x t 2 3 kaff
where
x is the position coordinate,
p is the cosine of the angle between the direction

of the neutron velocity and the x axis,
¥(x,u)dp 1is the flux between u and p + du,

b is the cosine of the angle between the incident and
scattered neutron velocities,

Et,zs,Zf the macroscopic total, scattering, and fission
cross sections, respectively,

v is the average number of neutrons per fission,
keff is the effective multiplication factor. This is
. needed to make the Boltzmann equation time-independent.

Now the flux and the differential scattering cross section are expanded
in spherical harmonics.

¥ =3 D (2n+ Di(e)Ea(w)
n=0

Es(uﬁ) .% Z (2“ + l)zsnPn(UO)
n=0 -

where Py(n) is the nth order Lengendre polynomial. In these last equations

1
¥a(x) = { ¥(x, u)Pp(u)du

1

Zgn = { Eg(u0)Pa(uo)dug

The quantities V,(%) are called the spherical harmonic moments of the angular
flux distribution ¥(x,d). The first two moments, Vgp(x) and ¥;(x), are identi-
cal to the flux ¢(x) and the current j(x), respectively.



Using the above expansions, Eq. (11) is multiplied by (2n + 1)P,(u) and
integrated over all y. This results in a coupled set of linear differential
equations for the spherical hamnic moments "n(")' Using the recurrence
formula

(n + 1)Ppyy(u) + nPpp(u) = (20 + DuPp(u),

it follows that

A(ot] e (x) + Angp-1(x) + (2n + 1) [b, - P fz Sonl¥n(x) =0  (12)
n'O, l, 2, *sey @

where A = 1/I, is the total mean free path in the medium and where

Ly = Ign I¢ -

Ig
bn= zt ,bo'T'Ea/Zt.

1f the scattering is isotropic, Egp = 0 for n > O and 80 by = 1 for n > 0. The
primes in Eq. (12) denote differentiation with respect to x. In general, the
scattering cross section may be written in terms of a frequency function £(ug).

Eglug) = Egflug),

where f£(yg)dyy 1s the fraction of all scattering collisions which result in
scattering angles whose cosines lie between uj and yg + dug. In the linear
anisotropic scatteriug approximation, .

1 -
£(ug) = 3(1 + 3 ugup)

and so )
1
= [ 25(ug)Pplugldyy = Es f ‘(l + 3 Ugug)Pnlugldug
-1

=Lg forn=20

= WLg for n = 1
=0forn>1.
For this case,
bo zt.- z80 /
= = 1a/L
zt a’dLt

b It - Wolis Za *+ Zg(l ~ g)
1* 75, = T Ler/Ee

by, =1 fora> 1l
where %,, is the macroscopic transport cross section.

9



Equation (12) represents an infinite set of coupled differential equations.
Though rigorous, they are not very useful unless approximations are made. 1In
the P;, approximation, the series expansion for y(u,x) is truncated with the

Lep term:
. L
Wx, W) F2 (20 + Dyp(x)Pa(n)

n=0

where Y (x) = 0 for n > L. Thus, in the P; approximation Eq. (12) becomes

AP1(x) + To(x) = 0
(13)

An + Dype1(x) + Anjpoy + (20 + Dbyyp(x) = 0, 'n.- 1, 2, ses, L =1
ALY~ 1(x) + (2L + )by $(x) = 0
where

Vig _ Iy - (g + VIg/kegg) | Za = Vg/keff
keffle Ly Z¢

For reasons not discussed here (see Ref. 9), odd values of L lead to more
accurate results than those obtained with the next Py;) approximation.

T E by -

We seek solutions to Eq. (13) of the form

Yp(x) = gn(y)eVX/A. (14)

Substituting this into Eq. (13) leads to the recurrence relation for the gn(v)'s.

VI
v[(n +1)gn+1+ngn_1] + [(2n + 1)b, =~ ﬁ:}ff;éOﬂ]gn =0 (15)

where, by definition, g (v) = 1, Equation (15) shows that g;(v) = - @/v. It
foilows from Eq. (15) that g (=v) = (-1)ngn(v). In the Py, approximation,
¥p+1(x) = 0 which requires that g1+1(v) = 0. This last equation determines

the allowed values of Vv in Eq. (l4). Equation (15) is compatible only if the
determinant of the coefficients vanishes. This condition provides an alternate
method for finding the roots vy. Thus, the v4's are the positive roots of the

determinental equation

10



@ v 0 0 0 0 N 0 0
v 3b; 2v 0 0 0 . 0 0

0 2v 5b,  3v 0 0 . e e 0 0

0 0 3v 7b3 4v 0 .. e 0 0 =0 (16)
0 0 0 4v 9b,  5v .. 0 0

0 0. o0 0 5v  1lbg ... 0 0

0 0 0 0 0 0 e v (L-1)v ¢

0 0 0 0 0 0 « oo (2L-1)bp.; Lv

0 0 0 0 0 ... Lv  (2L+Dby,

such that 0 € vy < Vi+1. Recall that @ = (Eg ~ V Lg/kesg)/L; and that for
linear anisotropic scattering by = I5/Z¢, by = Z¢p/Z¢ and by = 1 for n > 1.

For calculating higher order effects it is a good approximation to assume that
the control blade is surrounded by a homogenized fuel region of infinite extent.
Then, congsistent with the one-group infinite medium model,

keff = ¥» = -\-;Zf/za

and a = (S5 - Vig/kesg)/Ze = (4 = £5)/Z¢ = O.

If we take the x = 0 reference plane at the center of the absorber plate,
the general solution for the spherical harmonic moments is obtained from
Fq. (14) by summing over the permissible values of v. The result can be

written in the form

1w
Vn(x) = ¢ Sgp + 3 8 + :z: gn(vy) aievix/x, x<0 (17a)
1=2 '
and
—;— (L+1) .
¥n(x) = ¢ Sgn + J 8jp + (-1DO Z gn(vy) bie""i"“, x>0 (17b)
1=2

where n=0, 1, ..., L, and where aj and bj are arbitrary constants to be
determined from boundary conditions.

With these relations the blackness coefficients can be evaluated in
the Py, approximation for successive values of L.

11



5.2 Blackness Coefficients in the P} Approximation

In the P} app:oiimation Eqs. (3), (4), (10) and (17) ‘reduce to

' 1 3 1 3
VI(O,1) = A0 + AL K =Z VO F TV U= Ty

L7}

1 3
¥r = v111(T,u) = Bo + BiW = 5 ¢r + 5 Ir M.
Hence, ‘

1 3
rzh AT

1 ' 3
BO'?‘r' Bl =3 dpe

Note the j, and j are the neutron currents at the surfaces of the absorber
slab and, %herefore, J‘ =Jy and J. = ~J ..

For L = 1, the matching conditions (Eqs. 5 and 6) become
1 1 -
G- Riglag =~ Tyg By = (3 +Ryy)A + Ty, B =0
(l"R)B-T +(—1-+R)B-T A, =0
2 " Rio?B " Tio A * (3 HRIB - Ty A

Adding these equations, rearranging terms, and using the expressions for the A's
and B's one obtains

1 3
o T N A B I B T
Ap +Bp 1 1 :

FYRy * T 7 (9t 0)

Hence,

1
JgtJ, Jp-3, FU-2R,-2Ty]

“E¢z+_¢r'¢£+¢r' [T+3R, +371,,] ° (18)

By subtracting the two equations for the matching conditions it follows that

, 1_ 3
A FB 2Rty 7 U3
Ap-B 1 - l - '
3YRy " T TGy e
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and so

1
Iy 3 _dp*ti, U -2R, 42Tl

L7 PR TR (L+3R, -37T,)

B

Note that in the P} approximation a and B depend only on the properties
(Z¢1 and Ig/Z.) of the absorber slab (see Eqs. 1 and 2).

5.3 Blackness Coefficients in the P3 Approximation

The gsame methods are used to evaluate a and B in the P3 approximation. )
From Eqs. (3) and (10) with L = 3 and the expressions for the Legendre polynomials,

1 3 5 7
Vg = vp(0,0) =5 dg, Po+ 5 ¥ Py ¥ 5 ¥yt 5 ¥gePy

I -3 3 _ 21 15 2 , 33 3
(G¥gy ~FT Vo) ¥ G ¥y TG VUt b W T,

2 3
Agt A ut Ay Ut +HAgp

A similiar equation applies to the right side of the slab so that

Ao'ilr"’oz“%“‘zz By =3 Yor = 7 Yar
Al'%“’lz'z_zla“"sz Bl'%"lr“z'zla"“ar
Az"l%"’zz Bz'%“’zr
Aa"z"ts;““’az 33"125.""31-

It follows from Eqs. (17a) and (17b) that

Yoo = 9 * 2 Vor = ¢ P

Vg = 3yt g(vy)a B T M A
¥y = 8y(Vy)a ¥ = 8y(vy)b

V3 = 83(Vy)a ¥3p = = 83(vyb

13



where a = ai vztlzk b = bi -vzr/ZA’ vy 1is the largest positive
root of Eq. (16) with L = 3, and the g's are given by the recurrence relation,

Eq. 15. From these equations it follows that

AptBy =3 (£ +1 (at Bl -3 g, (vl

A FB =30, 730 +3 (a2 b)g(v) = T gy(vy)] (20)

N
=
N
I 3
I
~
)
H

b) sz(vz)

+

Ay ¥ By =7 (axb) 33(\:2)

If the matching conditions (Egs. 5 and 6) are evaluated ‘or L =3 with
m = 1 and added, one obtains

1 1
(A + Bly = Ry =~ Tyl ~ (A - B3+ R, +7T)]
l 1 ~r -
+ (A2 + Bz)[z -~ R, - T12] - (A3 - 33)[3 + Ryt 1131 0 (21)
Similarly for the m = 3 case, one obtains
1
(A +B)[4 o’Tao] '(Al'Bl)[§+R31+

1 .1
+ (A2 + 32)[3- = Ry, = 1'321 - (A3 - 33)1-7- + Ryq + T33] =0 (22

Now the P3 approximation for the blackness coefficient a is obtained by sub~
stituting the results for (Ag + Bg), (Ay - B)), (A2 + B2), and (A3 — B3) into
Eqs. (21) and (22) and eliminating the constant (a + b) from the two equations.
In a similar way, by subtracting the equations for the matching conditions one
obtains the P3 approximation for the blackness coefficient B. The result

for o may be written in the form

3y =3, By 3 ~ b3 4 (23)
bp ¥ 9 3 (b)) dy = by d))

aq =

wheve
dy 8, bjg=a b, +a, b, ~ay b,

byp = 3; by + 3, by, = a5 by,

w
i

O“

8
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and

e di] -2 o (v : -3 v)y-L g (v
2, 2[1 > gz( 2)l , | a =5 [g,(v,) - 5 g, 2)]
15 35
a, = <7 8,(%), 83 =~ =5 83 (V)
b =L_R -7 b, mi+R . +T
10°2 Ry~ Typ > 11 "3 Ry YT
b, =+-R., -T by, =L+ R, +T
12°% " Rip " Tp o 1375 R3 + T,
1 L[
bya =% ~Ryp = T3g » byy =5 * Ry + 1y
by =5~ Ryp " Ty by3 = 5 + Ryg * Tyye

With L = 3, Eq. (16) determines V,, the largest positive root. The gn(V,)
functions are given by the recurr%nce relation (Eq. 15). An expression %den-
tical to Eq. (23) results for the blackness coefficient B except for a change
in sign of the transmission coefficients, Tyn, in the above equaticns for

the constants b,,. Note that it is sufficient to assume linear anisotropic
scattering for the purpose of evaluating the positive ronts of Eq. (16).

For linear anisotropic scattering with @ = 0, the determinental equation
(Eq- 16) in the P3 approximaiion reduces to

0 v 0 0 l

v 3T/ 2v 0 = 0
0 2v 5 3v

0 0 3v 7

and becomes
v2 (9v2 - 35) = 0.
The roots are therefore

v, =0, 0, 373

and so Yy = (V35)/3 = 1.9720266. Equation (15) determines the values of
gn(Y2). Thus,
gl(\’z) = —;/VZ = 0
g2(v2\ - -1/2
V) = v

Equation (23) now gives the value of the blackness coefficient @ in the Pj
approximation., The same equation but with the signs of the transmission
coefficients reversed determines B, Note that for linear anisotroplc scat-
tering with @ = 0, the P3 blackness coefficients are independent of the pro-
perties of the external media,

15



5.4 Blackness Coefficients in the P5 Approximation

In the P5 approximation (L = 5) Eqs. (3) and (10) become

1 3 5.
Y = ¥p(0,1) =5 Vg + 3 Vg By H TV Byt

7

\ 9 11
3 ¥ag P3 ¥ T ¥y By + 75 ¥ Py

165

] 5 27 3 21
=GV TV tTg V) t GV T Vg T Vs ®

135

15 _ 135 2 . 35 -
O Vg T T YWt G ¥y

315

693

+——

T AR T i

5
A
n=0 M

385

29 3
g ¥5e ¥

ut .

A similar equation applies to the right side of the absorber slab so that

A =

Ay =% Ve 3 V4 0
5

o
jw N

21
Vig =% Y t

5. _135

5 27
Vor "% VYo T 16 Var

165

16 VYse °

Equations (17a) and (17b) now become

Yoe

L)

-c{b£+a2+a3 ,

I * 5 (Ve + g (%)

= sz(\’z)a2 + gz(v:’)a3

= 83(v2)32 + 83(V3)a3

= 34(v2732 + g,’(\a:’)a3

= ss(vz)a2 + 85(v3)a3

»

B
B

B,

By
By

Bg

where aj, a3, by, and by are constants, vy and v3
roots of the determinental Eq. (16), and the g,'s
From the above ejquations it follows that

16

-%wOr-%er'F%g%r
3 - et 1R s,
-LISTWZr-_l}_g-%r
-3—2'1’3r-—3-§82w5r
-3—11%"’4r

-%*Sr

= 4’1‘ + b2 + b3

=3 - gl(\:z)b2 - gl(\a3)b3
= 8,(v,)b, + g,(v;)b,

= = 83(vy)b; = g3(vy)by

= 84(\)2)])2 + 84(\’3)]’3

= = 85(v,)by - g5(vy)b,

are the two largest positive
are given by Eq. (15).



(4, £ B,) = --(¢z te)+3 (a b)) [1- 82(v y + 2L s (V)]
+ ey 20 11 -2 5,00 + F g, (v))]
(A F8) =301, F 1) +3 (8, £ b)) [8,(v) ~ T 85(v,) + 3 g5(v,)]

+ 3 (ay £ b,) [g,(vy) - 5 830vy) + 2 g5 (3]

2 =22 (a, £ b)) [8,(v,) - 5 g,(v)] + 12 (a2 b)) [g,(vp) = T 5, (v))]

+
-]

(4,

+l

(g 73 =2 (a) 2 b)) 15,09 - 2k 5,1 + 32 (o, 2 b)) Mgy(v) - L g5(vy))

(4, + B = 3:2 (ay * by)g,(v)) + =7 16 (a3 * by) g,(vy)
(A5 7 B)) = 2’1’% (a, + b)) 8(v,) + 22 (ay £ by) g (v,) .

By adding and subtracting the mztching conditions (Eqs. 5 and ) for L = 5
one obtains:

m=1

1 _ _ 1
(&g £ By) (3= Rjg ¥ Ty) = (4 F B))G+Ry) +T),)

1 _ _ 1
* (A, £B)) (7R, FTp)) - (A4 FBy) (G+R)532T)5)

+l

1 = 1
+ (A, £ B) (Z~R, FT,) = (A5 F Bg) (5 + Ryq ¥ Tyq) -0

m=3

1 - - 1
+ I - 2
(AD - BO) ‘4 R30 * T30) (Al * Bl)(S + R31 * T31)

1 ) 1
+ (4, £ B)) (g~ Ry, ¥ T3y) = (A3 7 By) (7 + Ryy £ Tyy)

' 1 - 1
A EB) G Ry FT) - A5 FBR) GHRy T L

17



m= 5

' 1 - - 1
(A, ¢ Bo) (3-- Ry ¥ Tso) - (Al ¥ Bl)(7-+ Rg, £ TSI)

0
)

i+

& 1 _ 5 - 1
+ (A £ B)) (g~ Rgy ¥ Tgy) — (A3 7 By) (§ + Ryy = Ty

+ 1 _ - 1 +
+ (4, 2 BT~ Rgy FT5) - (A F BT + Rg * Tgp) = 0

These three matching equations together with the previous equations for
pairs of conatants of the form (A, * B,) determine a (upper set of signs)
and B (lower set of signs) in the P5 approximation. Althcugh the algebra is
very tedious, the three matching equations are used to eliminate the constants
(ag + by) and (a3 + b3) and the resulting equation is solved for (jg - j;)/
(¢ + ¢), which 18 a, The blackness coefficient B is found in a similar
manner or by taking the expression for « and changing the sign of all of the

transmission coefficients, Ty,

I1f we again assume linear anisotropic scattering with @ = 0, the Ps form
of the determinental equation (Eq. 16) 1s

0 v 0 0 0 0
v 3Ly, /5, 2v 0 0 0

0 2v 5 3v 0 0 = 0
Q 0 3v 7 4v 0

0 0 -0 4v 9 5v

0 0 0 0 5v 11

which reduces to
vZ[225v% ~ 2646v% + 3465] = O.
The allowed values of vV are therefore
vy = 0, 0, £ 1.2252109, * 3.2029453
and so Vy = 1.2252109 and vg = 3,2029453. It follows from Eq. (15) that

g1(v) = - a/v =0
go(v) = - 1/2
g3(v) = 5/6v
g,(v) = 3/8 - 35/24v2
g5(v) = - 55 [9 g4(») + 4 v g3(M] .
With these constants, the methods described earlier may be used to evaluate o

and B in the Pg approximation. Like the P3 case, a and B are independent
of the properties of the external media for linear anisotroplc scattering with

0-0-
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5.5 Blackness Coefficients for a Purely Abgsorbing Slab

For the case of a purely absorbing slab (Zz ~ ) all the reflection
coefficients vanish, that is Ry, = 0. In Section 3 it was shown that for
this special case the transmission coefficients can be expressed analytically.
Thus,
1
Tmn (Za7) = fum+n e'za"/u dn = Epppgp (E,7)

0

where Epin+o (L,7) 1s the exponential integral of order mtnt+2. Using these
expresslons for the reflection and transmission coefficlents, all the previous
equations for a and B are directly applicable to the no scattering case. For
example, in the P} approximation Eqs. (18) and (19) reduce to

1 -2 E3 (Zy1) )
% * 711 + 3 B (Za0)] (24)

1+ 223 (E,1) . |
By = 211 -3 & (Ear)} _ (25)

where the subscript on o and B serves as a reminder that these equations apply
to the zero scattering case. These equations were first given by Goldsmith in
Ref. 7- 1In a similar way the previous results can be used to obtain the Pj
and P5 approximations for the zero scatter blackness coefficients.

5.6 The "Dirtvy Blackness” Approximation

For a perfectly black absorber (I, + =) Eqs. (24) and (25) reduce to
a=8=1/2, However, from the expression for the extrapolation distauce
into a vacuum from a plane surface (d = 0.7104 A..) it is easy to show that
a = 0.4692 for this perfect absorber. Although without mathematical justifica-
tion, improved values for the IZg; = 0 blackness coefficients result if
Eqs. (24) and (25) are multiplied by 0.4692/0,5, We will call these modified
values "dirty blackness™ (DB) coefficients and they are given by the equations

, - 2 E3 (Za7)]
o, (DB) = q.4692 T+ 38 (5,01 (26)
+ 2 E3 (Z51)] (27)

Bo (DB) = 004692 [l - 3 E4 (zat)].

It is interesting ;o'note that in the P5 approximation (Ig # 0) for a very
strong absorber (L,7 = 15.76) the blackness coefficients have the values

@ =8 =0,4690, Equations (26) and (27) often give a good approximation for
the blackness coefficients for those groups for which Ig << I. For the fast
groups, where the IZ; = 0 approximation is not valid, the absorption cross
sections are small enough so that normal diffusion theory can be used and
blackness theory is not needed.
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6. FINE~GROUP-WEIGHTED BLACKNESS COEFFICIENTS

The weighted values of the blackness coefficlents are defined by the
equations .

D> = <Jp + Jp> - -f;l.l a(u)[¢£(“) + ¢r(u)ldu (28)
Gy + 0> fuy [8,(0) + ¢r(u)]du

<B> -'<J9 - Jde> J&u B(u)[¢y(u) - ¢r{u)idu (29)
<¢y = ¢ JZu [4g(u) = ¢r(u)}du

where Au is the lethargy range of the broad group. Because the same surface
flux combinations appear in both the numerator and denominator in the expres—
sions for <> and <B>, highly precise values of ¢, and ¢, are probably not
necessary. In this formalism a(u) and B{u) are tlie fine group values of the
blackness coefficients and are evaluated, usually in the P5 approximation,

by the methods discussed earlier. The fine-group surface fluxes used for
weighting are determined from a one-dimensional Pj, Sg transport calcula-
tion using a code such as ONEDANT.2 Fine-group cross sections needed in the
evaluation of a(u), B(u), ¢,(u), and ¢r(u) were obtained from the EPRI-CELL
code.l® With this informaton Eqs. (28) and (29) may be numerically inte-
grated to determine <a> and <{B> for each of the broad groups of interest.
Other weighting schemes for determining <a> and <{f> have been proposed in the

literature (see Ref's. 11 and 12).

It is usually sufficient to determine <a> and {p> only for the thermal
and epithermal broad groups. For the fast groups a and f can be calculated
from the broad-group macroscopic cross sections. The standard five-group
structure used at ANL for thermal reactor czlculations and the number of fine
groups corresponding to the thermal and epithermal broad groups is shown
below

Standard Group Structure

Group Ey(eV) Number of Fine Groups
1 1.0 E+07
2 8.208 E+05
3 5.531 EH03 32
4 1.855 14
5 0.6249 21
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7. CONTROL SLAB EFFECTIVE DIFFUSiON PARAMETERS

The blackness coefficients form a pair of internal boundary conditions
applicable on the surfaces of the absorber slab, However, most diffusion
codes are not programmed to handle these internal boundary conditions.
Therefore, it is convenient to determine effective diffusion parameters
(D, I,) which preserve the current-to-flux ratios on the surfaces of the
control slab in terms of the blackness coefficients. Since these effective
diffusion parameters are to be used in a finite difference solutionm, the
effective constants will be expressed in such a way as to contain an explicit
dependence on the mesh intervalsize, h, This procedure allows one to use a
very coarse mesh in the absorber for the diffusion calculations.

Two cases will be considered. In the first case effective diffusion
parameters will be derived for use in those diffusion ~odes, such as DIF3D,
which evaluate fluxes at the center of the mesh intervals. In the second
case effective values for D and I, will be obtained for use in diffusion
codes which evaluate fluxes on the mesh interval boundaries.

.1 Case for Mesh~Centered Fluxes

qu the purpose of this derivation, it is convenient to assume that the
game material extends to regions outside the absorber slab of thickness T.
Since a and\s depend only on the properties inside the slab, this assumption
leads to no loss in generality. One first needs to find the surface flux
and current ¢g and. Jz, in terms of the mesh-centered fluxes ¢1 and ¢..)

(see figure).

LA b b Iy

att— ) =

I
I
|
l
|

Control Slab
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Assuming that the flux varies linearly from the edge to the center of the mesh
cell, it follows that

- h h
1= 9 T4 "% "2

h n
17 0 "2 4" tp Y,

where h i1s the width of the mesh interval. Thus,
1
¢ =7 (-1 + 91)

D
Jo=%h (-1 - 41)

It is convenient to consider symmetric and asymmetric solutions to the diffusion
equation separately.

Symmetric Solution

For this case J, = Jy and ¢y = ¢r 80 that

L

Jy+de I, -ZD (¢-1 - ¢1)

T ter ¢ b (¢1* 4D
where

¢1 = C cosh kx} = C cosh'% (v - h)

$-1] = C cosh kx-1 = C cosh‘% (z +h)

and where x 1s measured from the center of the slab, After some manipulation,
the expression for a becomes

a= % [sinh (kt/2) einh (kh/2)]/[cosh (k1/2) cosh (kh/2)]

Agymmetric Solution

For this case Jz = -Jp and $g = ~¢r 80 that

Jz-Jr, Iy -ZD (¢-1 ~ ¢1)

B R~ 9t % B (&1 D

where now

$) = A sinh kx; = A sinh‘% (r = h)

k
¢-1 = A sinh kx-] = A sinh 5‘(1 + h)

22



The expression for B reduces to

g = %2-[cosh (kt/2) sinh (kh/2 )]1/[sinh (k1/2) cosh (kh/2)].

Thus,

a _ tanh (kt/2)

- - 2
B coth (kt/2) tanh” (kt/2).

This equation determines k in terms of a and B. It can be put into a more
ugseful form by making use of the identity

tanh™ix = 35 ln[1 X Hence,

1 gl/2 + dt/2],
k = < In [m (30)

By adding the above equations for a and § it can be shown that

tanh kt (1
D= —-(a + B) Sinh kb [f (1 + cosh kh)] . (31)

An expression for I, can be obtained from the diffusion equation written in
the difference form and solving for I;, Thus,

- D 1¢n+1 PN $n-1
ne ¢n ¢n |
By substituting

$¢n = C cosh kx, ' !
$n+] = C cosh k(x, + h) = Clcosh kx, cosh kh + ginh kx, sinh kh]
¢n~1 = C cosh k(xp = h) = Clcosh kx, cosh kh - sinh kx, sinh kh]

into the above equation it follows that
Iy = 3121 [cosh kh ~ 1] . (32)
hE
Note that this equation is valid for both mesh—~centered and mesh-~boundary
fluxes.
Equations (30-32) determine the effective diffusion parameters in terms of
the blackness coefficients. Since these equations incorporate h explicitly, a

very coarse mesh may be used. The equations are applicable for the case where
the diffusion code determines fluxes at the center of mesh intervals.
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Diffusion parameters can be obtained to describe the behavior of an

effectively black absorber. For this limiting case o » g + 0.4692 and I
(Eq. 30) tends to infinity. It is sufficient to set kr ‘equal to an arbitarily
large, but finite, value such as kr = 10. For a black absorber Eq. (31)

reduces to

D+ ha/2 =0.2346 h .

And Eq. (32) becomes

0.4692
Za >~y e

This is equivalent to using a black internal boundary (j/¢ = 0.4692) in the
DIF3D8 code.

7.2 (Case for Mesh-Boundary Fluxes

The same general procedures may be used to derive effective diffusion
parameters for the case where fluxes are evaluated on the boundaries of the
mesh intervals, Written in finite difference form, the diffusion equation

and Fick's law become

¢n+1 - 24’n + ¢n—l
h<

-kz¢n-o

D
3™ " %0 Oy = Opt) -

Again for the purpose of the derivation, we assume that the same material
extends to regions outside the absorber slab of thickness t only now the
fluxes are specified on the mesh boundaries. It follows from the above

equations and Eq. (32) that

S | | " 1
o =5 oy ¢+ $)/(1 + 5 k2h2) = 5 (¢_; + ¢,)/cosh kh

D
Jz = jz = oh (¢_l - ¢l) .

As before, we consider separately symmetric and asymmetric solutions to the
diffusion equation.

Symmetric Solution

For this case Jy = Jr and ¢y = ¢r so that

J +J_ J (o_y = &)
--—&-———E-——&--E 1 1 kh
a % ¥ o, % R (o ¥ ¢1) cosh

where
$; = Ccosh kx, = C cosh k (7/2 - h)

¢y = C cosh kx_, = C cosh k (1/2 + h)
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Substituting these fluxes into the equation for a and simplifying one obtains

a= % sinh kh tanh kt/2 .

Asymmetric Solution

For this case Jg = -J; and ¢y = —¢, so that

L

e Ja p (it )
3, -8, %, b G *e)

cosh kh

where now

¢1 = A ginh kx1 = A sinh k (t/2 -~ h)

¢, = Asinh kx_| = A sinh k (1/2 + h)

Substituting these fluxes into the expression for B and simplifying, it
follows that

B = % sinh kh coth k1/2 .

Hence’
B - taﬂh (k!/z) .

This is the same result as that obtained in pararaph 7.1. Therefore,

) 1, [81/2 « gl/2
k . ln[-—-—————-—-ﬁll2 ~ al/Z]'

By adding the above equations for « and B8 it follows that

h tanh kt !
D=7 (a+8) S5 ih *

We see that Egqs. (30) and (32) also apply to the case where fluxes are
calculated on the mesh boundaries and that only the expression for the
diffusion coefficient [compare Eqs. (31) and (33)] changes.

For the limit of a black absorber, D + 0 and I, + 2a/h = 0.9384/h,

(23)

Setting kt = 10 in Eq. (33) will yield results essentially indistinguishable

from the limiting case.
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7.3 Verification

The effective diffusion parameters were chosen so as to preserve the
values of the blackness coefficients on the surfaces of the control slab.
To verify that this has been accomplished, fluxes from the diffusion calcu-
lation can be used to evaluate ¢g, J4, ¢p, and J; which determine a
and 8. Using procedures similar to those described in the first part of
paragraph 7.1, it is easy to show that for mesh-centered fluxes

Do, ,Di
- hy %o hj 1 - 2(¢0 = 1) (34)
/] .&’_.,.ﬁ ’ ) 2 (Eg..,.hj_')
by Ny Do Dy

where ¢, and ¢; are the fluxes just outside and just inside the left-hand
:surface of the absorber slab., D,, Dj, hy, and hy are the diffusion co-
efficients and mesh intervals on each side of the left—hand surface of the
abgorber slab. Similar equations are used to evaluate ¢, and J, on the
right-hand surface. Then,

I B and A
XN % - 9,

and these values based on the fluxes from the diffusion code should be the
same as those used to determine the effective diffusion parameters.

For diffusion codes which evaluate fluxes on the mesh interval boundaries,
¢2 and ¢, are given in the output of the problem and

(9o - ¢1)
Jg = ._hﬂ__:_j:._ (35)
% Dy
with a similar equation for J,.. As before, a and 8 may be calculated from

these surface fluxes and currents and compared with those used to calculate
the effective diffusion parameters.
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8. PROCEDURE FOR CALCULATING BLACKNESS COEFFICIENTS AND THE CORRESPONDING
EFFECTIVE DIFFUSION PARAMETERS

In the previous sections the formaligm was developed for determining « and
B8 and the corresponding values of D and I, for the control slab. A procedure
for calculating the numerical values of these constants is outlined in the

steps below.

1. The EPRI-CELL CodelV is used to generate both broad and fine group
crogs sections for the control material, its immediate environment, and the
fuel region. Because of code limitations, two cross section sets having
different group structures are generated. The first set consists of two fast

“groups, 32 epithermal fine groups and two broad thermal groups for a total of
36 groups. The second set consists of two fast and one epithermal broad

groups and 35 thermal fine groups for a total of 38 groups. Energy boundaries
for the fine groups are just those used in the EPRI-CELL input cross section
library. A brief outline of the group structure is given at the end of

Section 6. For control materials having large low energy resonances, such as
Ag, In, and Hf, it may be necessary to generate the fine-group epithermal cross
sections with the MC2-2 Code.!3 The RABANL module of MC2-2 rigorously treats
resolved resonance absorption whereas EPRI-CELL does not.

2. Using the ONEDANT CodeZ together with the EPRI-CELL cross sections,
1D transport calculations (P}, Sg) are performed to determine the absorber
surface fluxes needed for weighting the fine-group blackness coefficients.
Thege surface fluxes are saved on a file for later use. The file of macro—
scopie cross sections for the control slab 13 algo saved. Because of the
strongly absorbing character of the control slab, a fine mesh structure is
needed, especially near the surfaces of the slab. For some calculations mesh
intervals near the slab surfaces of less than 0.001 cm have been used.

3. With the file of the control slab fine-group macroscopic cross
sections Iy, Z¢, and Lg, a series of ONEDANT source calculations (P}, S24)
are performed to determine the angular flux distribution on the surfaces of
the slab. With a source distribution of the form y®, six calculations are
needed corresponding ton =0, 1, 2, 3, 4, 5. A program has been written to
calculate and store the reflection and transmission coefficients, Rp, and Ty,
from the ONEDANT angular flux file. Since thase coefficients will be used to
calculate the blackness coefficients in the P5 approximation, m values
(See Eqs. 1 and 2) of 1, 3, and 5 are needed. For 67 fine groups and 5 broad
groups a total of 1296 reflection coefficients and an equal number of trans-—
mission coefficients are calculated.

4, The file of reflection and transmission coefficients 1s used in
another program to calculate the fine-group and broad-group blackness coef~
ficients in the P}, P3, P5 and no-scatter approximations. Using the file of
surface fluxes, the program also calculates the fine~group-weighted blackness
coefficlients, <> and <g>. Finally, these values ares used to determine the
broad-group effective diffusion parameters D and I,. These parameters are
calculated for mesh intervals corresponding to h = ¢/nwithn=1, 2, 3, 4,
and 5.

5. Control rod worths are evaluated using diffusion theory with these
modified macroscopic cross sections for the control material.
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9.,  APPLICATIONS

In this section the blackness coefficients and the corresponding effec-
tive diffusion parameters are evaluated for several types of control elements
using the methods discussed earlier. Eigenvalues based on this blackness-
modified diffusion theory are compared with those obtaiqed from continuous-

energy Monte Carlo methods.

9.1 Cadmium Control Elements

Control elements for the 30—ﬁW Oak Ridge Research Reactor (ORR) consist
of square, wate.~filled cadmium boxes 5.8912 cm on a side and 77.47 cm long.
The boxes are formed from a sheet of natural cadmium 0.1016 cm thick and clad

in 0.0508 cm ¢hick aluminum.

Fine-group cross sections were generated by the EPRI-CELL Code. 10
Reflection and transmission coefficients for each of the fine groups were
obtained by numerically integrating Eqs. (1) and (2) using ONEDANTZ? values
for the surface angular fluxes, yp (O,u) and y, (1,u). Using the methods
described in Section 5, fine-group blackness coefficients were evaluated
from the reflection and transmission coefficients in various orders of approxi-
mation. Broad-group blackness coefficients, <a> and <B>, were obtained by
weighting the fine-group valuesa as described in Section 6.

Results for the broad-group blackness coefficients, calculated in the
Py, P3, and P5 approximations and by "dirty blackness” theory,” are
summarized in Table III. Fick's law is valid provided the second derivative
of the flux does not change significantly over a few mean free paths within
the absorber. Thus, diffusion theory should be valid for those groups for
which I; << Ig. Table III shows that blackness theory is really needed
only for groups 4 and 5. Even group 4 could be treated with diffusion theory
with little loss in accuracy because of the narrowness of this group and
because 1/L << 1 for group—~4 neutrons, where L is the diffusion length in the
absorber slab. "Dirty blackness" theory gives remarkably good results for
the group~5 blackness coefficients, as Table III indicates. However, Eqs. (24)
and (25) were derived for the case of no scattering. As scattering within
the slab becomes significant, the "dirty blackness” coefficients, especially
B, become progressively worse, as Table III shows. Note that for a black
absorber @ = g = 0.4692, Thus, the cadmium is nearly black to group-5

neutrons.

The effective diffusion parameters corresponding to the broad-group
blackness coefficients were calculated from Eqs. (30-32) and are therefore
applicable for use in the DIF3D Code,® which evaluates fluxes at the center of
mesh intervals. Results from these calculations are summarized in Table IV.
They apply for mesh interval spacings of h = 1, 1/2, 1/3 and t/4.

These effective diffusion parameters, for h = 1/2, were applied to the
1D and 2D models shown in Figs. 1 and 2. The fuel cross sections used in
these calculations were generated for an ORR standard 19-plate element with
285 g 235y, Eigenvalues obtained from blackness-modified diffusion theory
are compared with those from VIM!“/Monte Carlo calculations in Table V. Note
that eigenvalues obtained by using normal diffusion theory in the cadmium
region for groups -4 and a black internal boundary condition (j/¢ = 0.4692)
for group 5 are in good agreement with those based on the use of effective
diffusion parameters, as one would expect,
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fable 1II. Broad-Group Blackness Coefficients for a
0.1016-cm~Thick Cadmium Slab.
Quantity Group 1 Group 2 Group 3 Group 4 Group 5
E, (ev) 1.0E+07 8.208E+05 5.531E+03 1.855 0.6249
La/Zg 5.7044E-03 3.5980E-02 4.,6885E-01 3.3797 2.7866E+02
Iyt 1.407 4E~G4 1.1472E-03 1.6371E-02 8.3122E-02 6.8515E+00
No. of Fine 1 1 32 14 21
Groups
a{Py) 7.2308E-05 5.7402E~04 8.0056E-03 3.8072E~-02 4.,9904E-01
a(P3) 7.2304E-05 5.7374E-04 7.9567E-03 3.7158E-02 4.7188E-01
a(Ps) 7 «2304E~05 5.7371E-04 7.9516E~03 3.7084E~02 4,6980E~-01
<a(P5)>  7.2304E-05 5.7371E-04 7 .0560E-03 3.6251E-02 4.4449E~01
<a(DB)>* 6.9793E-05 5.6720E-04 6.6565E-03 3.4987E-02 4.4366E-01
B(P;) 2.6866E+01 2.0183E+01 1.3G04E+01 6.2150E+00 4.9955E-01
8(P3) 2,6868E+01 2.0i83E+01 1.3002E+01 6.2058E+00 4.7241E~01
8(Ps) 2.6868E+01 2.0183F+01 1.3002E+01 6.2041E+00 4.,7035E-01
<B(P5)> 2.6868E+01 2.0183E+01 1.3453E+01 8.6247E+00 4.7099E-01
<B(DB}>* 4.7010E+03 5.7673E+02 1.9728E+03 1.4705E+01 4.6982E-01

*weighted Average of the "dirty blackness” coefficients (see Eqs. 26 and 27),
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Table 1V,

Cadmium Py Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-Weighted a and g.

Group <> <> k Deff Ter Lageg h(cm)
1 7.23039D-05 2.,68679D+01 3.22925D-02 1,36489D+00 2.44220D~01 1.42331D-03  h=1=] .01600D~01
2 5.73709D-04 2.,01829p+01 1.04953D-01 1,02529p+00 3.25111Dp-01 1.12938D-02 "
3 7 ..05597D-03 1.34533D+01 4.50896D~01 6.83426D-01 4 .87739D-01 1.38970D-01 »
4 3.62513D-02 8.62472D+00 1.27801D+00 4 .38136D-01 7 .60799D-01 7.16621D-01 "
5 4 ,44494D~01 4 ,70986D-01 4.16884D+01 2.39261D-02 1.39318D+01 1.55559D+02 "
1 7 .23039D-05 2.,68679D+01 3.22925p~02 1.,36489D+00 2.44221D-01 1.42331D-03 h=1/2=5,08000D-02
2 5.73709D-04 2.01829p+01 1.04953D-01 1.02528D+00 3.,25113D-01 1.12936D-02 "
3 7.05597D-03 1.34533401 4.,50896D~-01 6 .83336D-01 4 .87803D-01 i.38933p-01 »
4 3.62513D-02 8.62472D+00 1.27801D+00 4 .,37675p-01 7 .61600D-01 7.15113D-01 "
5 4 .44494D-01 4,70986D-01 4.16884D+01 1.48003D-02 2,252211401 3.68934D+01 "
1 7.23039D~05 2.68679D+01 3.22925p-02 1.36489D+00 2.44221D-01 1.42331D-03 h=1/3=3,38667D-02
2 5.73709D-04 2,01829p+01 1.04953D-01 1.02528D+00 3.25114D-01 1.12936D-02 "
3 7.05597D-03 1.34533D+01 4.,50896D-01 6.83319D-01 4.87815D-01 1.38927D-01 *
4 3.62513D-02 8.62472D+00 1.27801D+00 4 ,37590D-01 7.61749D-01 7 .14834D-01 "
S 4 .64494D-01 4 ,70986D~01 4.16884D+01 1,27407p-02 2,61628D+01 2 .60738D+01 "
1 7.23039D-05 2.,68679D+01 3.22925D-02 1.36489D+00 2,44221D-01 1.42331D-03 h=v/4=2,54000D-02
2 5.73709D-04 2,01829p+01 1.04953D~-01 1,02528D+00 3.25114D-01 1.12936D-02 "
3 7.05597D-03 1.34533D+01 4.,50896D-01 6.83314D-01 4 .87819D-01 1.38924D-01 "
4 3.62513D-02 8.62472D+00 1.27801p+00 4 .37560D-01 7.61801D-01 7.14737D-01 "
5 4 ,44494D-01 4 .,70986D-01 4,16884D+01 1.19823p~-02 2.78189p+01 2.28442Dp+01 *
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Table V., Cadaium Rod Worths

Rod In Rod Out Ap*
Model Code kef £ keff L4
X-Slab VIM 0.9864%0.0036 1.2291+0.0046 20.0240.48
(Fig. 1)
" DIF3D 0.9897 1.2290 19.67
(a,B8) A
* DIF3D 0.987¢C 1.2290 19.95
{Gp. 5 Black)
XY-Box VIM 1.1380%0.0033 1.2082+0. 0032 5.10%0.34
(Fig. 2)
* DIF3D 1.1271 1.2090 6.01
(a,B)
" DIF3D 1.1258 1.2090 6.11
(Gp. 5 Black)
XYz VIM 0.9700%0.0022 1.166210.0025 17.34%0,30
(Fig. 3) '
" DIF3D 0.9654 1.1602 - 17.39

(Gp. 5 Black)

. .
8 = (koyt = kin) /Koyt kine
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The effective diffusion parameters are chosen so that the currents and
fluxes on the surfaces of the absorber slab preserve the values of the black-
ness coefficients., To verify that this has been accomplished, the output
fluxes from the one-dimensional DIF3D calculation were used to determine ¢ ,
J,s ¢r» and Jy from Eqs. (34) and o and g from Eqs. (8) and (9). The
r%sults for group-5 neutrons are shown below,

' Quantity Left Surface Right Surface
hy (cm) 0.1016 0.1016
hy (cm) 0.0508 0.0508
Do (cm) ' 3.5573 36509
Dy (cm) 0.0148 0.0148
¢ 1.8084E+10 8.2218E+09
b 4 ,0622E+09 2,1728E+09
¢, = 1.8073E+10 4, = 8.2169E+09
J£ = 8.1637E+09 Jr = 3.5218E+09
Hence,
J o+ Jy J - Jr
a = 2 = 0.,44449, g = —E—— = 0.47099
¢y *oor $g ~ ¢r

These results are identical to <a{P5)> and {g(P5)> for group-5 neutrons in
Table III, which verifies that the effective diffusion parameters (Eqs. 30-32)

have been properly determined.

Figure 3 shows a model of the Swedish R2 Reactor which has the same
type of Cd box control elements as the ORR. Eigenvalues for an XYZ model
of this reactor were obtained for various control rod configurations. The
results are summarized in Table VI and in the last part of Table V and are
compared with VIMl%/Monte Carlo calculations., Withdrawn rods are in the upper
reflector, and fuel followers are in the lower reflector for the inserted rods.
For these calculations, group 5 was made black and groups 1-4 were treated

with normal diffusion theory.

Generally speaking, Tables V and VI show that the worths of the cadmium
control elements based on blackness-modified diffusion theory are in good
agreement with the results of detailed Monte Carlo calculations. However, the
comparison is somewhat disappointing for the XY model. No explanation for
this discrepancy has been found. -

9.2 Ag-In-Cd Control Elements

A number of research reactors use control elements consisting of flat
blades composed of a Ag-In-Cd alloy. For the purpose of these calculations,
the control blades were assumed to be 0.310 cm thick with a density of
9.32 g/cem3 and a composition of 4.9 wtl Cd, 80.5 wt¥ Ag, and 14.6 wt% In.
Table VII shows the broad-group blackness coefficients for the 0.31-cm-thick
Ag-In-Cd slab calculated by the procedures outlined in Section 8. The values
of the L,/r, ratios given in Table VII show that normal diffusion theory
could be used for groups 1 and 2 whereas blacknesas theory 1is needed for
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Table VI. Eigenvalues and Cadmium Control Rod Worths
for the Swedish R2 Reactor.

f Rod keff 4p¢ kef £ apc
Fuela Config. DIF3DD 4 VIM z

HEU .25019 All out  1,1602 1.1662%0,0025
“ All In 0.9654 17.39 0.9700%0.0022  17.34%*0.30
" At 50% 1.0826 6.18 1.0862+0.0024 6.32%0.27
" Only G3 Out 1.0233 11.53 1.026620.0024  11.66%0.29

LEU 32618 All Qut  1.1562 1.1537%0.0020
" All In 0.9655 17.09 0.9656+0.0025  16.890.31
" At 50% 1.0816 5.97 1.0790£0.0026 6.000.27
" Only G3 Out 1.0184 11.70 1.019120.0025  11.45%0.28

8The HEU 25019 notation stands for HEU fuel with 250 g 235y per 19-plate
element.

brhe DIF3D calculations were donme for group 5 of cadmium made black.

CAp = (kout“‘ kin)/koutkins
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Broad-Group Blackness Coefficients for a

Table VII.
0.31-cm-Thick Ag~In-Cd Slab.
Quantity éroup 1 Group 2 Group 3 Group 4 Group 5
E, (ev) 1.0E+07 8.208E+05 5.531E+03 1.855 0.6249%
Ia/Lg 0.01388 0.06620 0.9549 9.2358 14.916
gt 1.1788E-03 8.3250E-03 1.8357E-01 1.2372 2.0308
No. of Fine 1 1 32 14 21
Groups

a(P)) 5.8971E-04 4.1294E-03 8.0743E-02 3.509%E~01 4.3407E-01
a(P3) 5.8948E-04 4.1191E-03 7 .8255E~02 3.2980E~01 4 .0888E-01
a(Pg) 5.8946E-04 4.1184E~-03 7 .8052E-02 3.2762E-01 4.0657E-01
<a(Pg)> 5.8946E-04 4.1184E~03 5.3232E-02 3.0963E-01 3.8747E~01
<a(pB)>*  5.5110E-04 3.8370-03 5.2921E-02 3.0990E~-01 3.9047E-01
B(P)) 7.7410 4.9746 1.8153 6.6227E-01  5.4799E-01
B(P3) 7.7410 4,9738 1.8052 6.3920E~01 5.2324E-01
8(Ps) 7.7410 4.,9736 ‘ 1.8037 6.3730E~01 5.2151E-01
<B(P5)> 7.7410 4.9736 2.4627 7.1679E-01 5.4003E-01
<B(DB)>*  5.3069E+02 7.5151E+01 8.2595 7.8897E-01 5.6342E-01

*Jeighted average of the "dirty blackness” (DB) coefficients (see Eqs. 26

end 27).
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groups 3, 4, and 5. "Dirty blackness” coefficients provide a good approxima-
tion for the thermal groups, but the group-3 value of <B(DB)> is a poor
approximation because thz no-scatter condition is badly violated. Effective
diffusion parameters were calculated from the values of <%(P5)> and <8(P5)>
using Eqs. 30-32. These parameters are given in Table VIII for the mesh
intervals h = T, ©/2, T/3, and /4.

Figures 4 and 5 show one-dimensional reactor models of asymmetric and
symmetric control blade positions., For these cases eigenvalues calculated by
blackness-modified diffusion theory are compared with those from corresponding
P, Sg transport calculations. The results of this comparison are summarized
in Table IX, which showe that blackness theory and transport theory yield
nearly identical results. The table also shows that the mesh~dependent effec-
tive diffusion parameters produce eigenvalues independent of the number of
mesh intervals in the Ag-In-Cd control blade.

The internal boundary condition option of the DIF3D Code8 assumes that
the surface currents and fluxes are the same on each side of the control
blade. This condition is met only for the symmetric model (Fig. 5). Table IX
shows that the internal boundary condition option of DIF3D yields results
consigtent with transport theory only for the symmetric case, as one would

expect.

The effective diffusion parameters are chosen so as to preserve the
values of the blackness coefficients on the surfaces of the control slab.
To verify that this has been accomplished, DIF3D fluxes from the asymmetric
model with h = T/2 were used to calculate 9;, Jy, ¢_, and Jr from Eqs. (34).
Table X compares the blackness coefficients calculafed from these fluxes and
currents with those used to determine the effective diffusion parameters.

It is seen that the results are entirely consistent, showing that the effec-
tive diffusion parameters are correctly defined by Eqs. (30), (31) and (32).

The above results show that blackness theory applied to Ag-In-Cd blades
in slab geometry produces very acceptable results. The method is now applied
to a 3D reactor model. Figure 6 shows the locations of the forked Ag-In-Cd
control blades in the 10-MW Generic Reactor.l5 Calculations were performed
for the case of fresh USip-A} LEU fuel (399 g 2°°u per 23-plate fuel
element) using both the DIF3D -XYZ and VIM /Monte Carlo Codes.

The blackness coefficients given in Table VII were calculated using EPRI-
CELL cross sections. Because of code limitations, however, self-shielding in
the low-energy resolved resonances of the Ag and In isotopes is not adequately
accounted for by EPRI-CELL. Therefore, the blackness coefficients were nor-
malized to the VIM broad-group Ag-In-Cd macroscopic cross sections by multi-
plying <%(P5)> by ®(VIM)/®(E-CELL) and <B(P5)> by B(VIM)/B(E-CELL). This norma-
lization resulted in about a 0.5% increase in the eigenvalue. The norma-
lization would not have been necessary if the MC™=2 Code ™ had been used to
generate the epithermal fine-group Ag-In-Cd cross sections. The RABANL module
of MC™~2 performs a hyper—-fine-group integral transport slowing down calcula-
tion which rigorously treats resolved resonance abgorption.

Eigenvalues from the 3D (see Fig. 6) calculations are compared in
Table XI. The results show that the XYZ diffusion-theory calculations using
blackness-modified diffusion parameters for the control blades agree very
well with the VIM/Monte Carlo calculations.
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Table VIII. Ag-In-Cd P5 Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-Weighted

o and B.

Group {a> <8> k Deff Ity Laass h(cm)
1 5.89456D-04 7.74088D+00 5.63002D~02 1.19984D+00 2.77816D-01 3.80323p~03 h=1=3.10000D-01
-2 . 4.11835D-03 4,97364D+00 1.85700D-01 7.70914D-01 4.32387D-01 2.65920D-02 "
3 5.32323Dp-02 2.46267D+00 9.55458D-01 3.81714D-01 8.73254D-01 3.51022p-01 "
4 3.09634D-01 7.16793p~-01 5.08354D+00 1.11103p-01 3.00022p+00 3.51680D+00 "
5 3.87471D-01 5.40029D-01 8.03533D+00 8.37045D-02 - 3.982260D+00  8.84890D+00 "
1 5.89456D-04 7.74088p+00 5.63002D-02 1.19981D+00 2.77821p-01 3.80309D-03 ° h=1/2=1,55000D-01
2 4.,11835p-03 4.97364D+00 1.85700D-01 7.70754D-01 4.32477D~01 2.65810D-02 "
3 5.32323D-02 2.46267D+00 9.55458D-01 3.79640D-01 8.78025D-01 3.47207D-01 b
4 3.09634Dp-01 7.16793p~01 5.08354D+00 9.74193D-02 3.42164D+00 2.65053p+00 "
5 3.87471D-01 5.40029D~-01 8.03633D+00 6.40970D~-02 5.20045D+00 4.703250+00 b
1 5.89456D-04 7.74088p+00 5.63002D-02 1.199810+00 2.77822p-01 3.80306D~03 h=1/3=1.03333D-01
2 4.11835D-03 4.97364D+00 1.85700D~01 7.70725D-01 4.32493D-01 2.65790D-02 "
3 5.32323p-02 2.46267D+00  9.55458D-01 3.79255D-01 8.78915D-01 3.46504D~01 "
4 3.09634D-01 7.16793Dp-01 5.08354D+00 9.47947D-02 3.51637D+00 2.50657D+00 "
5 3.87471p-01 5.40029D~01 8.03633D+00 6.01548D-02 5.54126D+00 4.11340D+00 "
. | '5.89456D-04 7.74088D+00 5.63002D-02 1.19981D+00 2.77822p~01 3.80305D0~03 h=t/4=7.75000D-02
2 4.11835D-03 4.97364D+00 1.85700D-01 7.70714D-01 4.32499p-01 2.65783D~02 "
3 5.32323D-02 2.46267D+00 9.55458D-01 3.79121D-01 8.79227p-01 3.46258D-01 "
4 3.09634D-01 7.16793p~-01 5.08354D+00 9.386900-02 3.55105D+00 2.45734D+00 "
5 3.87471n-01 5.40029p~01 8.03633D+00 5.87489D-02 5.67387D+00 3.91840D+00 "
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Table IX. Eigenvalue Calculations for One-Dimensional
Reactor Slab Models with Ag-In-Cd Blades.
Ag-In-Cd h
Model Blade Position Code cm keff " Comments
Fig. 4 Out ONEDANT 1.5379  P;, Sg Calc.
(Asymm. )
Fig. 4 Out DIF3D 1.5352
Fig. 4 In ONEDANT 1.3200  P;, Sg Calc.
Fig. 4 In DIF3D h=T1 1.3208 L3, D from <a(Ps5)>
and <B(P5)>
" " " h=1/2  1.3208 *
v " * h=1/3  1.3208 "
" " " h=1/4 1.3208 v
Fig. 4 In DIF3D 1.3688 <a(P5)> Internal B.C.'s
Fig. S Out ONEDANT 1.5093  Pj, Sg Calc.
(Symm. )
Fig. 5 Out DIF3D 1.5050
Fig., 5 In ONEDANT 1.3683  P;, Sg Calc.
Fig. 5 In DIF3D h=T 1.3688 L5, D from <a(Pg5)>
and <B(P5)>
* " " h=1/2 1.3688 "
" b " h=1/3 1.3688 "
" " " h=1/4 1.3688 *
Fig. 5 In DIF3D 1.3691 <a(P5)> Internal B.C.'s
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Table X. Consistency Check of Ag-In-Cd Blackness Coefficients
(Asymmetric Slab Model with h=t/2).

Quantity Group 3 Group 4 Group 5
7 17.1776 1.4671 3.8416
Je 0.61820 0.44085 1.4615
or 17.4218 1.5321 4,1866
Jr 1.2199 0.48740 1.6478
(Ip+Je)/ (oatéyp) 0.05313 0.3095 0.3873
<a(Ps5)> 0.05323 0.3096 0.3875
Ratio 0.9981 0.9997 0.9995
(Je=Jp)/ (92—¢r) 2.4637 0.7167 0.5400
<B(Pg5)> 2.4627 0.7168 0.5400
Ratio 1.0004 0.9999 1.0000
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Table XI. XYZ Calculatfions for the 10-MW Generic Reactor for
Fresh LEU U35i) Fuel with Ag-In-Cd Control Blades.

Rod : h Ap**
Conf iguration Code cm kaff 4
All Out VIM 1.1922+0.0031
All Out DIF3D 1.1903
All In VIM 1.029620,0031 13.2520.36
All In DIF3D*  h=t/2 1.0309 12.99
Rod 3 Out VIM 1.083820.0033 8.39%0.36
Rod 3 Out  DIF3D*  he=1 1.0790 8 .66
Rod 3 Out DIF3D* h=1/2 1.0813 8.47
Rod 3 Out DIF3D* h=t/3 1.0818 8.43
Rod 3 Qut - DIF3D* h=t/4 1.0816 8.44

*Based on the Ag-In-Cd blackness-modified diffusion parameters.

*k,
80 = (koyt = kin)/koutkin-
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9.3 Hafnium COn;rol Elements

Control elements for the Japanese 20-MW JRR-3 reactor consist of water—
filled natural hafnium boxes 6.36 cm on a side and with walls 0.50 cm thick.
They are illustrated in Fig. 7.

Natural hafnium Is a strong rcsonance absorber, as Fig. 8 (from Ref, 16)
shows. Since the EPRI-CELL library does not contain resonance information
for the hafnium isotopes and because of the flat flux approximation used by
EPRI-CELL for fast and epithermal cross sections, only the thermal fine-group
cross sections were used in the evaluation of the blackness coefficients.

The non-thermal cross sections were generated by the MC2-2 Codel? which
rigorously treats resolved resonance absorption. Shown below is the assumed
composition of the natural hafaium control material of density 13.3 g/cma.

Hafnium Composition

Isotope Abundance, % Atoms/barn—cm
174 0.16 7.1797E-05
176 5.20 2.3334E-03
177 18 .60 8 .3464E-03
178 27.10 1.2161E-02
179 13.74 6 .1656E-03
180 35.20 1.5795E-02

With these fine-group macroscopic hafnium cross sections, Eqs. (1) and (2)
were numerically integrated to obtain the reflection and transmission coeffi-
clents using ONEDANT? values for the angular fluxes on the surfaces of a
0.50-cm-thick hafnium slab. From these reflection and transmission coeffi-
cients, the fine-group blackness coefficients were evaluated by the methods
described in Section 5. The broad-group coefficients, <> and <B>, were
obtained by weighting the fine-group values by means of the surface fluxes, as
degcribed in Section 6.

Table XII summarizes the broad-group blackness coefficients for natural
hafnium calculated in the P;, P3, P5, and "dirty blackness” approximations.
This table also shows that Iz/Zg << 1 for groups 1 and 2 and, therefore, black-
ness theory is needed only for groups 3, 4, and 5. The effective diffusion pa-
rameters corresponding <a (P5)> and <B (P5)> were calculated from Eqs. (30-32)
for mesh interval spacings of h = v, ©/2, ©/3, and t/4. They are shown in

Table XIII.

These effective diffusion parameters, for h = 1/2, were first applied to
a 1D cell calculation with reflective boundarv conditions (See Fig. 9.).
Using diffusion theory, eigenvalues were calculated for hafnium in the cell
and for water replacing the hafnium slab. For these calculations blackness-
modified hafnium diffusion parameters were used for groups 3, 4, and 5. vimlty
Monte Carlo calculations were made for the same cell problem. Generally -
speaking, the fine-group macroscopic hafnium cross sections obtained by VIM
were found to be in good agreement with those obtained by the MCZ2/EPRI-CELL
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Table XII. Broad-Group Blackness Coefficients for a
0.50-ca-Thick Natural Hafnium Slab.
Quantity Group 1 Group 2 Group 3 Group 4 Group.S
Ey (eV) 1.0E+07 8.208E+05 5.531E+03 1.855 0.6249
L/ig 0.01075 0.05192 0.6362 11.1581 6.5293
IgT 1,6286E-03 1.1406E-02 2.3999e-01 2.6010 1.4916
No. of Fine 1 1 32 14 21
Groups

a(Py) 8.1451E~-04 5.6485E-03 1.0356E-01 4.5802E-01 3.8305E-01
a(P3) 8.1413E-04 $.6328E~03 1.0046E-01 4.3288E-01 3.6102E-01
a(Ps) 8.1410E-04 5.6316E~03 1.0016E-01 4,3074E-01 3.5886E-01
<a(Ps5)> 8.1410E-04 5.6316E-03 1.0208E-01 4.1096E-01 3.5165E-01
<a(DB)>*  7.6051E-04 5.2312E-03 1.0070E-01 4.1707E~01 3.5647E-01
g(P;) 443542 2.8878 1.1282 5.1022E-01 5.8520E~01
B(Pj) 4.3541 2,8869 1.,1191 4.8566E-01 5.6261E-01
B(Ps5) 4.3541 2.8868 1.1179 4.8394E-01 5.6093E-01
<B(P5)> 4.3541 2.8868 1.2135 5.1162E-01 5.7023E-01
<B(DB)>*  3.8416E+02 5.4857E+01 4,8787 5.3505E-01 6.2356E-01

*Weighted average of the “dirty blackness” (DB) coefficients (see Eqs. 26

and 27).
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Table XIII.

Weighted o and B.

Natural Hafnium P5 Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-

Group <a> <8> k Deff Ler Lagss h(em)
1 8.14101D-04 4 ,35410D+00 5.46987D-02 1.08853D+00 3.,06225D-01 3.25701D-03 h=1=5.00000D-01
2 - 5.63162p-03 2,.88677D+00 1.76788D-01 7.21693p-01 4 ,61877D-01 2.25705D-02 "
3 1.02082p-01 1.21349D+00 1.19444D+00 3.03372p-01 1.09876D+00 4 .45834D-01 "
4 4.10961D~01 5.11615D-01 5.81127p+00 1.27904b-01 2.60612D+00 8 .35548D+00 "
5 3,51649D-01 5.70234D-01 4 .23606D+00 1.42559D-01 2,33822p+00 3.66947D+00 "
1 8.14101D-04 4 ,35410D+00 5.46987D-02 1.08847D+00 3.06239D-01 3.25671D~03 h=1/2=2,50000D~01
2 5.63162D~03 2.88677D+00 1.76788Dp-01 7.21340D-01 4 .62103D-01 2.25485D-02 "o
3 1.02082p-01 1.21349D+00 1.19444D+00 2.96852D-01 1.12290D+00 4 .26€69D-01 "
4 -4,10961D~-01 5.11615D-01 5.81127Dp+00 9.23179p-02 3.61071D+00 3.70609D+00 "
5 3.51649D-01 5.70234D~01 4 ,23606D+00 1.15411D-01 2 ,88824D+00 2.27189D+00 "
1 8.14101D-04 4.35410D+00 5.46987D-02 1.08846D+00 3.06242Dp-01 3.25665D-03 h=1/3=1.66667D~01
2 5.63162D-03 2.88677D+00 1.76788D-01 7.212750-01 4 ,62144D-01 2.25444D-02 *
3 1.02082p~01 1.21349D+00 1.19444D+00 2.9563,D-01 1.12751D+00 4,23176D-01 "
4 4.10961p-01 5.11615D-01 5.81127D+00 8.49782D-02 3.92257D+00 3.10126D+00 "
5 3.51649D-01 5,.70234D-01 4 .23606D+00 1.10066D-01 3.02850D+00 2.,05846D+00 "
1 8.14101D-04 4 .35410D+00 5.46987D~02 1.08846D+00  3,06243D-01 3.25663D-03 h=1/4=1.25000D-01
2 5.63162p-03 2,88677D+00 1.76788p-01 7.21252p-01 4,62159D-01 2.254300-02 "
3 1.02082p-01 1.21349D+00 1.19444D+00 2.95212p-01 1,.12913D+00 4.21958D-01 "
4 4.10961D-01 5.11615D-01 5.81127D+00 8.23438D-02 4 ,04807D+00 2,90527D4+00 "
5 3.51649D-01 5.70234D-01 4.23606D+00 1.08169D-01 3,08159D+00 1.98679D+00 "



Position (em)

¢' =0
— e e e et e e e e 14.019
Fuel
_ — 3.860
_ 2 3.810
~ Al
. - 3.310
. 2 3.180
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2.680
H20
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Fig. 9. One-Dimensional Hafnium Cell With Reflective
Boundary Conditions.
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combination. Eigenvalues from the two sets of calculations are compared in
Table XIV. For reasons which do not appear to be related to the values of

the hafnium blackness coefficients, the DIF3D eigenvalues for both the rod-in
and the rod-out configurations are higher than those from the corresponding

VIM calculations by about 1.4Z. The worth of the hafnium rod based on blackness-
modified diffusion theory is within 1.6 standard deviations of the VIM result.
Had the blackness coefficients been based on the VIM broad-group cross sec—
tions, the worth values would have agreed within one standard deviation.

The effective diffusion parameters shown in Table XIII for h = 7/2 were
used to calculate the worth of the hafnium control rods in the JRR-3 reactor
in an XYZ calculation. Figure 10 shows a sketch of the JRR-3 reactor,'’ and
the geometry of the hafnium control element is given in Fig. 7. The standard
fuel element consists of 20 plates with 16 plates in the control rod follower
element, For the purpose of these calculations, the fuel was assumed to
consist of fresh LEU. 1In addition to the 3D blackness-modified diffusion
calculations, detailed Monte Carlo analyses were performed. DIF3D and VIM
eigenvalues and rod worths are compared in Table XV. As with the 1D cell
problem, blackness-modified hafnium diffusion parameters were used only for
groups 3, 4, and 5, For the rods half-way withdrawn, the DIF3D eigenvalue 1is
0.73% larger than the VIM result whereas for the rods fully—-inserted the
DIF3D value is 0.842 smaller than the VIM calculation. Since the same effec-
tive diffusion parameters were used for both of the DIF3D calculations, it
appears that this cross-over in kgef relative to VIM is not due to the

blackness coefficients.

52



Table XIV. Eigenvalues and Hafnium Worths for

Cell Calculations.

One-Dimensional

Rod-1In Rod-0Out Ap*
Code keff keff 4
VIM 1.030520.0024 1.338810.,0031 22.34%0.29
DIF3D 1.0460 1.3562 21.87

*
ap = (koyt — kin)/kout kin-
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Table XV. Eigenvalues and Hafnium Control E:u Worths in the JRR~3 Reactor.
Rod keff ap* keff ap*
Config. DIF3D h 4 VIM h A
All out 1.2291 1.2227%0.0023
At 50% 1.1224 7.74 1.1143%0.0024 7.96%0.25
All Inm 0.8689 33.74 0.8763+0.0028 32.33%0.39

*8p = (kout = k) /kout ke
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10. TWO-AND~THREE DIMENSIONAL CONTROL RODS

The primary purpose of this report was to present a set of procedures
for calculating control rod worths for a special class of control elements —
those that can be approximated by a one-dimensional slab treatment. For this
class of problems, a pair of blackness coefficients was evaluated which de-
pends only on the characteristics of the control material and from which
effective diffusion parameters are determined. In the more general case of
two or more ditiensions, however, quantities analogous to @ and B do not exist.
For this general case the assumption is made that effective diffusion para-
meters for the strong absorber can be fcund which depend primarily on the
cross sections of the absorber, its dimensions, and the mesh spacing used in
diffusion theory to describe the region but do not depend on the environment

outside the lumped absorber.

Unmodified diffusion parameters may be used for those groups for which

I, « Lg. The following procedure mzy be used to determine the effective
diffusion parameters for the other groups of the lumped absorber.

1. An arbitrary relationship between Deff and zaeff is defined. For
example, Hannum' .suggests using

1
Deff =37
3 Aef f
2. A characteristic model cell with reflecting boundary conditions is
defined. This cell contains the lumped absorber, its immediate environment,

and a homogenized fuel zone.

3. For this cell a fine mesh high—order transport or Monte Carlo calcu-
lation i3 performed. to determine for each energy group the capture rate in
the homogenized control region relative to the fission rate in the fuel
region. It may be necessary to divide the absorber into several nested
regions and to generate appropriate cross sections for each region for the

transport calculations.

4, The same cell is used for a diffusion—theory calculation choosing
the same mesh structure which will be used later for global diffusion

calculations.

S. The diffusion—-theory calculations are repeated using different sets
of Z; and D values for the homogenized control region. For each case and for
each energy group the capture rate in the absorber is determined relative to
the fission rate in the fuel. Effective diffusion parameters are those values
of Z, and D for the control region which produce the same reaction rate
ratios as those obtained from the transport or Monte Carlo calculations.

6. Control rod worths are determined by performing global diffusion
calculations with and without the control rod inserted using the above

group-dependent values for zaeff and Deff.

This procedure for determining Za £ and Deff by matching reaction
rate ratios was used to calculate the ssrths of the borated-steel shim—safety
rods in the University of Michigan Ford Nuclear Reactor (FNR). The geometry
and compositinn of the shim—safety rods are shown in Fig. ll. It is obvious
from this figure that the FNR shim-safety rods do not lend themselves to a
one-dimensional slab treatment.

56



Fig, 11. TFNR Shim-Safety Rod Geometry and Composition

Geometry
———’ 2.198cm p——
3.470cm
. [ 5.668cm
: Composition

(Boron stainless steel, 1.5 w/o natural boron}

Isotope/Element Atoms/barn~cm
10g 0.001108
11 0.005184
Cr 0.0164
Fe 0.05644
Ni 0.0113
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Pigure 12 shows an XY model of the FNR 27-element fresh LEU core configura-
tion in which shim—gafety rod worth measurements were made. Diagrams of the
standard and control LEU UAl, fuel elements are given in Fig. 13.

ViM-Monte Carlo calculations were performed for a control cell consisting
of the borated-steel rod and the control fuel element surrounded on each side
by one half of a standard fuel assembly. For these calculations reflective
boundary conditions were used and each fuel slab, side plate, clad plate,
water channel, and the control rod were explicitly represented. Results were
collapsed into the standard five-group structure shown at the top of Table III.
Group-wise reaction rates were edited over the control region, the two core
regions, and the side-plate regions shown in Fig. 14. For each group the
reaction rate ratio of absorption in the control rgion to fission in the core

regions was determined.

Cross sections for each homogenized region shown in Fig. 14 were generated
by EPRI-CELL. The mesh structure used in the XY diffusion calculations of the
control cell (Fig. 14) was the same as that used later in the full core model
(Fig. 12). Beginning with the highest energy groups, Iy and D in the control
region were adjusted until the diffusiomtheory calculation for the reaction
rate ratio, Ry (Control Region)/Rf (cell), matched that determined by the
VIiM-Monte Carlo calculations for each energy group. For the purpose of modifying
D, it was assumed that only I, changed in the expression for the macroscopic
transport cross section, Zyp = Ly — Zg{l - p).

Having thus determined the group-dependent effective diffusion parameters
for the homogenized control region, FNR control rod worths were evaluated using
the DIF3D code and the XY odel shown in Fig. 12. For these calculations it was
assumed that the non-borated-steel regulating rod in grid postion 28 was fully
withdrawn. The results are summaried in Table XVI and are compared with the
measured values of the worths of the shim-safety rods. It is seen that the
measured and calculated worths are in very satisfactory agreement.
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Table XVI.

FNR Shim-Safety Rod Worths for
27 Fresh LEU Fuel Element Core
Reactivity Worth, % Ak/k
Rod Grid Measured Calculated C/E
Configuration Pogition keff E Cc Ratio
All Out 1.02208
A In 46 0.99910 2.22 2,25 1.01
B In 48 0.99782 2,32 2,38 1,02
C In 26 0.99944 2,28 2,22 0.97
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11. CONCLUSICNS

There are several important underlying assumptions upon which blackness
theory rests, These are: ‘

l. The control slab can be adequately described by the monoenergetic,
one-dimensional, Boltzmann transport equation.

2. There can be no sources (fission, scattering, or n,2n) in the control
material,

3. The thickness of the absorber slab is very small relative to the
transverse dimensions.

4. Scattering within the slab is isotropic.
5. Diffusion theory is applicable to regions outside the control slab.

If these conditions are met reasonably well and if good, self-shielded,
cross section data are available for the control slab, the fine-group-weighted
blackness coefficients, <a(P5)> and <B(P5)>, can be expected to yield accurate
eigenvalues when used in a diffusion-theory calculation. For this purpose
effective diffusion parameters for the control slab can be determined in terms
of the blackness coefficients and the mesh interval width.

Those fast energy groups for which Zg >> £ in the control slab may be
treated with normal diffusion theory. "Dirty blackness theory” provides a
good approximation for <a> and <B> for those thermal groups for which I, >> Ig,
However, B8 is very sensitive to the effects of neutron scattering and so the
"dirty blackness" approximation should not be applied to the epithermal

groups.

If the geometry of the control rods does not lend itself to a thin slab
approximation, a and B blackiiess coefficients do not exist., Other methods
must then be used to determine effective diffusion parameters for the con-
trol material. One such method is to define a representative control cell
and to determine by a Monte Carlo or high—order transport calculation the
capture rate in the absorber relative to that in a nearby fuel region for each
energy group. For the same cell D and I; of the control material are adjusted
so that a diffusion-theory calculation gives the same values for the reaction
rate ratios. Results in good agreement with the measured values were obtained
by this method for the FNR shim-safety rods.
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