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Blackness Coefficients, Effective Diffusion

Parameters, and Control Rod Worths

for Thermal Reactors

M. M. Bretscher

RERTR Program, Applied Physics Division

Argonne National Laboratory

Argonne, Illinois 60439

ABSTRACT

Simple diffusion theory cannot be used to evaluate control
rod worths in thermal reactors because of the strongly absorbing
character of the control material. However, good results can be
obtained from a diffusion calculation by representing the absorber
slab by means of a suitable pair of Internal boundary conditions.
These internal boundary conditions, or "blackness coefficients,"
are defined by the equations

J. + J J. - J

a , -k E 0 , JE £

where $ and J are the asymptotic values of the neutron flux and
current Into the slab on the left-hand and right-hand surfaces.
Mesh-dependent effective diffusion parameters (D, £a) for the
control slab are obtained from the blackness coefficients.

Methods for calculating a and f? in the Pj, P3, and P5 approxi-
mations, with and without scattering, are presented. By appropri-
ately weighting the fine-group blackness coefficients, broad group
values, <a> and <B>, are obtained.

The technique is applied to the calculation of control rod
worths of Cd, Ag-In-Cd, and Hf control elements. Results are
found to compare very favorably with detailed Monts Carlo
calculations.

For control elements whose geometry does not permit a thin
slab treatment, other methods are needed for determining the
effective diffusion parameters. One such method is briefly
discussed and applied to the calculation of control rod worths
in the Ford Nuclear Reactor at the University of Michigan. Calcu-
lated and measured worths are found to be in good agreement.
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Blackness Coefficients, Effective Diffusion
Parameters, and Control Rod Worths

for Thermal Reactors

1. INTRODUCTION

In strongly absorbing media the neutron flux i s a rapidly varying func-
tion of pos i t ion. Under these circuitstances Fick's law of diffusion i s
invalid and so diffusion theory cannot be used to evaluate control rod w'orths
in thermal neutron reactors. However, blackness theory provides a method for
modifying diffusion parameters in strongly absorbing media so that diffusion
theory may be used in regions where i t would normally be inadequate* Two
blackness coef f i c ients , a and 3, are defined by the equations

J , + J r J t - J g

where $£ and $r are the asymptotic neutron fluxes on the left-hand and right-
hand surfaces of the absorber slab and the J ' s are the net surface currents
into the s lab . These blackness coeff ic ients form a pair of internal boundary
conditions at the surfaces of the absorber slab and may be evaluated from one-
dimensional transport calculat ions . Effective diffusion parameters, £ a and
D, for the strongly absorbing control rod regions are determined as functions
of these blackness coe f f i c i en t s . This blackness-modified diffusion theory
permits a rather accurate calculation of control rod worths in thermal reactors
for control elements whose geometry can be represented by one or more s labs .

This paper deals with the methods used to calculate the blackness coe f f i -
c ients In the Pj , P3, and P5 approximations taking into account the ef fects
of both neutron absorption and neutron scattering within the control material.
A fine-group weighting scheme i s used to determine the average values of the
blackness coef f ic ients corresponding to each of the broad groups. Equations
for the ef fect ive diffusion parameters are derived as functions of the broad-
group blackness coe f f i c i en t s . Finally, the method i s used to evaluate control
rod worths for several different geometries and compositions, and the results
are compared with those obtained from detailed continuous energy Monte Carlo
calculat ions .

For control elements which cannot be described in terms of slab geometry,
quantities analogous to a and 3 do not e x i s t . For this case, however, a
different method may be used to find ef fect ive diffusion parameters for such
lumped absorbers. This technique i s described at the end of this report and
i s used to evaluate control rod worths in the Ford Nuclear Reactor at the
University of Michigan. Results are compared with measured values.

2 . THE ASSUMPTIONS OF BLACKNESS THEORY

From the outset i t i s well to l i s t the assumptions upon which blackness
theory r e s t s .

1. The control s lab i s assumed to be uniform and of in f in i t e lateral
extent.



and

T (E T, Z /Z ) - / V
m ) (x,u)du. (2)

mn t s t o n

and T m n are Che reflected and transmitted contributions to the outgoing
moments due to the incoming flux.

With a Vn source distribution, the ONEDANT Code2 is used to solve
the monoenergetic one-dimensional Boltzmann equation for the surface fluxes
4>n(0,l0 and ^n(T, y). These calculations are done using an angular quadra-
ture order of 24 (i.e. Szk) and double Pfj quadrature constants.

With the ONEDANT values for the surface fluxes <pn(O,u) and <Pn(x,u),
Eqs. (1) and (2) are numerically integrated by Gauss-Legendre quadrature
methods^ to obtain R ^ and Tmn. By using the double PN quadrature constants
in the ONEDANT calculations, the angular fluxes are evaluated at the required
Gaussian abscissas V± so that the Gauss-Legendre quadrature method gives

y<0R
mn

T
mn

(-1)

N/2

i - l

N/2
m ,—,

2L>
I*I

m
U ill

i n

m
V

i

( T ,

• (0,1
n

U )W ,
i i

i
i i

U>0

where Wj are the required Gauss-Legendre weights (see Table I) and N is the
angular quadrature order (SJJ).

In general, the reflection and transmission coefficients must be obtained
numerically. However, for the special case of a pure absorber (2g » 0) Rmn is
zero and T m n can be expressed analytically. For this case the transmitted
angular flux is the product of the incident flux and the probability of pass-
ing through the slab without absorption. Thus,

*n(T,u) =. u
n e~EaT/M ,

- 0, U<0 .

Thus,

T (S t) . J y"^" e "«
w | i du

mn a o

where Em+n+2(2aT) is the exponential integral of order m+n+2.

A computer program has been written to evaluate the reflection and trans-
mission coefficients using the angular flux output file from ONEDANT. To
check these numerical methods, ^ j , and T m n were calculated for 2tT and £8/£t

values corresponding to tabulated values of R ^ and T m n given by Maynard.
4

Results are compared in Table II. It is seen that the agreement is quite
satisfactory. For the pure absorption case, the numerical results agree with
the tabulated values of the exponential integral^ to within 0.0012.



Table I . Gauss-Legendre Abscissas and Weights

Absclassas, Ui

±0.99078

±0.95206

±0.88495

±0.79366

±0.68392

±0.56262

±0.43738

±0.31608

±0.20634

±0.11505

±0.047941

±0.0092197

(SN " S24>

Weights, W ±

0.023588

0.053470

0.080039

0.10158

0.11675

"0.12457

0.12457

0.11675

0.10158

0.080039

0.053470

0.023588



Table II. Comparison with Maynard Values4

Source

Maynard

ONEDANT,

Maynard

ONEDANT,

Maynard

ONEDANT,

Maynard

ONEDANT,

etc.

etc.

etc.

etc.

n

0

0

1

1

2

2

3

3

for Rg,n

Rln

0.053552

0.053539

0.033099

0.033100

0.023810

0.023810

0.018553

0.018554

and Tmn.

- 2.50,

*3«

0.023810

0.023811

0.014947

0.014946

0.010830

0.010829

0.0084735

0.0084733

V«t - o.4o

Tin

0.026897

0.026901

0.021450

0.021462

0.017915

0.017930

0.015403

0.015415

T3n

0,017915

0.017930

0.014765

0.014775

0.012676

0.012681

0.011145

0.011148

ET * 1.50, Z./Z - 0.0

Maynard

ONEDANT,

W2(l

etc.

.50)*

0

0

0

0

0

.0

.0

0

0

.0

.0

0.056751

0.056739

0.056739

0.038527

0.038530

0.038530

*From tables of the exponential integral given In Ref. 5.



4. MATCHING BOUNDARY CONDITIONS

Before obtaining expressions for the blackness coefficients a and B, it is
necessary to consider matching conditions imposed at the surfaces of the absorber
slab. Consider the three-region slab configuration shown below in which the
central region extends over the interval 0 < x < T.

II III

Three-Region Slab Configuration

The angular fluxes incident on Region II from Regions I and III must be continuous
at the boundaries.

•j^O.M) - ^(O,H), U>0

+II(T,y)

The moments of the distributions leaving Region II (^ii(0,p), !i<0 and +'il(T>'0»
u>0) are determined from the incident distributions by means of the reflection
and transmission coefficients.

Suppose the boundary fluxes in Regions I and III are expanded into a power
series over the full range of u(-l to 1).

L

n-0

L

n=0

(3)

(4)

This expansion is equivalent to the PL approximation.

If Region II is a source-free medium which scatters neutrons isotropically,
Maynardl has shown'that the matching conditions become

An - <-!)« •]
and

(5)

(6)



It turns out that either the even or the odd moments can be matched. The odd
moments are usually chosen. Thus, only odd values of m need be considered in
Eqs. (S) and (6) with nmax > L.

An important special case is obtained by talcing the center line of
Region II as an axis of symmetry. For this case

An - ("l)nBn

and Eqs. (3) and (4) reduce to

y \ ( 1

- + n
" 0

at either boundary. As discussed earlier, for the no scattering case R,,,n =• 0
and T m n - Em+n+2 and one can show that Eq. (7) leads to the boundary condi-
tions considered by Royston.6

5. EVALUATION OF THE BLACKNESS COEFFICIENTS

The blackness coefficients a and (5 were first introduced by Goldsmith,
et al.? and are defined by the equations

where Jjj and Jr are the net asymptotic neutron currents into the slab from
the left and right sides respectively and 4>Jt and 4>r

 t h e asymptotic rluxes
at the left and right boundaries of the slab. Note that 0 is indeterminate
if the center of the plate is a plane of symmetry. For this case a is the
surface current-to-flux ratio and corresponds to the internal boundary condi-
tion in the DIF3D code.8

To obtain expressions for a and f$ the angular fluxes to the left and
right of the absorber plate are expanded in a Legendre series, which in the
P. approximation becomes
1

£ >n(x) Pn(n). (10)
2 n-0

Before continuing with the evaluation of the blackness coefficients, we
must first determine the spherical harmonic moments, 4*n(x), corresponding to
the one-dimensional monoenergetic Boltzmann transport equation.



5.1 Evaluation of Che Spherical Harmonic Moments of the Angular
Flux Distribution

In the medium outside the control blade the monoenergetic, one-dimensional,
tine-independent transport equation for plane geometry, in the absence of
sources, i s

3 1 1 ~vZf

H— *(x,|i) + Zt •(x.v) - - /[28(uo) + — H •(x.li')dw' (11)

3x c 2 _i k

where

x i s the position coordinate,
V is the cosine of the angle between the direction

of the neutron velocity and the x axis,

<Kx,u)dy Is the flux between v and M + dy,

MO Is the cosine of the angle between Che incident and
scattered neutron velocities,

E ,£Sl£f the macroscopic total, scattering, and fission
cross sections, respectively,

v is the average number of neutrons per fission,
keff i s t n e effective multiplication factor. This is

needed to make the Boltzraann equation time-independent.

Now the flux and the differential scattering cross section are expanded
in spherical harmonics.

n-0

n-0

where Pn(u) is the n
c^ order Lengendre polynomial. In these last equations

1
4»n(x) » / \

-1
1

-1

The quantities tn(x) are called the spherical harmonic moments of the angular
flux distribution i>(x,u). The first two moments, *o(x) and +i(x), are identi-
cal to the flux •(x) and the current j(x), respectively.



Using the above expansions, Eq. (11) is multiplied by (2n + l)Pn(u) and
integrated over all u. This results in a coupled set of linear differential
equations for the spherical harmonic moments if>n(x). Using the recurrence
formula

(n + DPnrtfo) + nPn_!(y) - (2n + DuP n(u),

it follows that

+ (2n + 1) [bn - k J ^ «oJtn<*> - 0 (12)
n « 0, 1, 2, ...,<»

where X - l/£t is the total mean free path in the medium and where

Zt - Zs
^

t sn
bn i^ » b 0 ^

If the scattering is isotropic, E s n * 0 for n > 0 and so bn » 1 for n > 0. The
primes in Eq. (12) denote differentiation with respect to x. In general, the
scattering cross section may be written in terms of a frequency function (

where f(-ri0)d̂ o is the fraction of all scattering collisions which result in
scattering angles whose cosines lie between y0 and no

 + dM0- In the linear
anisotropic scattering approximation,

• j ( l + 3

and so
1 1.

-i B-i 2
- £ s / 7 ^ 1 + 3 MoUo)pn(PO^dMO

s for n

for n - 1

- 0 for n > 1 .

For this case,

- "So)

b n - 1 for n > 1

where E t r is the macroscopic transport cross section.

9



Equation (12) represents an infinite set of coupled differential equations.
Though rigorous, thay are not very useful unless approximations are made. In
the P^ approximation, the series expansion for i|>(|i,x) is truncated with the

term:

n»0

where •n(x) » 0 for n > L. Thus, in the PL approximation Eq. (12) becomes

a*0(x) - 0
(13)

X(n + l)*^fl(x) + Xn*n_i + (2n + l)bni|;n(x) * 0, n - 1, 2, .... L -

XL*Ji_1(x)-+ (2L + l)bL i|̂ (x) - 0

where

For reasons not discussed here (see Ref. 9), odd values of L lead to more
accurate results than those obtained with the next PL+I approximation.

We seek solutions to Eq. (13) of the form

*n(x) " g11<v)e
VxA. (14)

Substituting this Into Eq. (13) leads to the recurrence relation for the gn(v)'s.

v[(n +l)gn+i+ngn_1] + [(2n + l)bn - k^2 t
60nJgn - 0 (15)

where, by definition, g (v) - 1. Equation (15) shows that gi(v) - - o/v. It
follows from Eq. (15) that g_(-v) * (-1) gn(

v)« ln t h e PL approximation,
1(̂ +1(x) » 0 which requires that gL+i(v) - 0. This last equation determines
the allowed values of v in Eq. (14). Equation (15) is compatible only if the
determinant of the coefficients vanishes. This condition provides an alternate
method for finding the roots v±. Thus, the v^'s are the positive roots of the
determinental equation

10



a
V

0

0
0

0

0

0

0

V

3bi

2v

0
0

0

0

0

0

0

2v

5b2

3v
0

0

0

0

0

0

0

3v

7b3

0

0

0

0

0

0

0

4v
9K
5v

0

0

0

0

0

0

0
5v

llb5

0

0

0

. . 0

. . 0

. c 0

. « 0

. . 0

. . 0

. . (L-l)v

. . (2L-l)bL.

. . LV

0

0

0

0
0

0

0

.1 LV

(2L+l)bL

0 (16)

such that 0 < v± < v 1 +j. Recall that 3T » (Za - V £f/keff)/2t and that for
linear anisotropic scattering bo * Ea/2t, bi » Etr/£t and b n - 1 for n > 1.
For calculating higher order effects it is a good approximation to assume that
the control blade is surrounded by a homogenized fuel region of infinite extent.
Then, consistent with the one-group infinite medium model,

keff

and o - (Za - vEf/keff)/St - Za)/Et - 0.

If we take the x » 0 reference plane at the center of the absorber plate,
the general solution for the spherical harmonic moments is obtained from
Eq. (14) by summing over the permissible values of v. The result can be
written in the form

- * «0n
i-2

x<0 (17a)

and

6On + j 6ln

{ CL+1)

x>0 (17b)
i-2

where n=0, 1, ..., L, and where aj and bj are arbitrary constants to be
determined from boundary conditions.

With these relations the blackness coefficients can be evaluated in
the PL approximation for successive values of L.

11



5.2 Blackness Coefficients in the Pj Approximation

In the Pi approximation Eqs. (3), (4), (10) and (17) reduce to

\ ii\ V - y ^ + f j 4 V

•r = *IIl(T,P) - Bo + BiP - j *T + | Jr V

Hence,

1 3

*o " I h » Al ~I h
1 ' 3 .

8 0 " 2" *r » Bl " 2" Jr*

Note the j , and j are the neutron currents at the surfaces of the absorber
slab and, therefore, j ^ - J^ and j r - - J r .

For L » 1, the matching conditions (Eqs. 5 and 6) become

<7 " Rio )Ao " Tio Bo " (T + Rii>Ai + T n B: = °

( 7 " R10)B0 " h0 Afl + ( I + R11)B1 - T H Al - °

Adding these equations, rearranging terms, and using the expressions for the A's
and B's one obtains

A i - B i J - R i o - T i o I <Jz - V

Hence,

- V J r ^ ^ r I [1 - 2 R1Q - 2 T1Q]
= V *r h + *r ' [1 + 3 hi + 3 T l l ] *

By subtracting the two equations for the matching conditions i t follows that

Al al m 2 K10 MO _ 2 K3X. J r ;

^ " ^ - + R - T - ( • - • ) "3 11 11 2 % r

12



and so

c _ V
 Jr „ h + J, J ll - 2 R10 * 2 T10]

Note that in the Pj approximation a and 9 depend only on the properties
(£tT and £S/Zt) of the absorber slab (see Eqs. 1 and 2).

5.3 Blackness Coefficients in the P3 Approximation

The same methods are used to evaluate a and 3 in the P3 approximation.
From Eqs. (3) and (10) with L - 3 and the expressions for the Legendre polynomials,

h E •l<0'» l) " 7 *0A Po + I *UP1 + f *2«P2 + \ *3AP3

A , 5 , . ^ ,3 , 21 , . ^ 15 , , , 3 5 , 3

A similiar equation applies to the right side of the slab so that

1 , 5 , 1 , 5 .

A0 * 2 *0* - 4 hi. B0 " 2 *0r " 4 +2r

Al 2 *lt 4 *3* Bl 2 *lr 4 *3r

A2 4 *2i B2 4 *2r35 „ _ 35
A3 ' 4 hi

It follows from Eqs. (17a) and (17b) that

4 r3l °3~~ *3r

r0A T£ r0r *r

•l* * JA + g l < V 2 ) a *lr " j r " g l ( v 2 ) b

* *)9 **O *%'** TO— O ^ ^ VO * U

*3t " g 3 ( v 2 ) a *3r " " g 3 < V 2 ) b

13



where a = &2 « ~ V 2 T / 2 \ b ^ e"
v2T/2X^ ^ ± g t h e l a r g e g t p o s i c t v e

root of Eq. (16) with L - 3 , and the g's are given by the recurrence relation,
Eq. 15. From these equations i t follows that

V * - ! < • « ± * r
) + i ( « ± b ) I l - f g 2 ( V ]

Al ? Bl " 7 <J* ? V + I ( a * b ) [«l (V2> - 1 «3<V2)J (20)

A2 * B2 * "7 ( a * b ) g 2 ( V

A3 ¥ B3 - ^f (a ± b) g3(v2)

If the matching conditions (Eqs. 5 and 6) are evaluated for L - 3 with
m » 1 end added, one obtains

(AQ + B o ) [ { - R1Q - T1Q] - (Aj - B j ) ! } + R n + ! „ ]

+ (A2 + B 2 ) [ | - R12 - T12] - (A3 - B 3 ) [ | + S 1 3 + T n J - 0 (21)

Similarly for the m • 3 case, one obtains

% + B 0 ) t l " R30 ' T30J - (A1 " B l M i + »3l + T31J

+ (A2 + B2)[ |- - R32 - T32J - (A3 - B 3 ) i j + R33 + 7^) - 0 (22)

Now the P3 approximation for the blackness coefficient a i s obtained by sub-
s t i tut ing the results for (AQ + Bo), (Aj - Bi ) , (A2 + B2), and (A3 - B3) into
Eqs. (21) and (22) and eliminating the constant (a + b) from the two equations.
In a similar way, by subtracting the equations for the matching conditions one
obtains the P3 approximation for the blackness coefficient 3 . The result
for a may be written in the form

where

d l

d 3

•t

5 a o
S a o

"Jr
+ +r

b 1 0 "

b30 "

3

a l

a l

b 10
( b U

b l l

b31

d 3 "
d 3 "

+ a 2

+ a2

b30

• b 3 1

b12

b32

d l
dr

~ a 3

" a 3

b13

b 3 3

14



and

aO * I11 ' 2
ai "I [gi(V -y

< V

'10 2 R10

b12 " 4 " R12 " T12 13 ? + R 13 T13

30 4 K30 b31 " 5

b32-F" K32 33

R31

R33

T31

T33*

With L * 3, Eq. (16) determines v the largest positive root. The gn(
v
2)

functions are given by the recurrence relation (Eq. 15). An expression iden-
tical to Eq. (23) results for the blackness coefficient B except for a change
in sign of the transmission coefficients, Tmn, in the above equations for
the constants bmn. Note that it is sufficient to assume linear anisotropic
scattering for the purpose of evaluating the positive roots of Eq. (16).

For linear anisotropic scattering with a » 0, the determinental equation
(Eq- 16) In the P3 approximation reduces to

and becomes

The roots are

0

v :

0

0

v2 (gv2 _

therefore

v
± - o, o

and so ^2 - C^35)/3 - 1.
gn(V2). Thus,

V

»Etr/st

2\>

0

35) - 0.

9720266.

0

2V

5

3v

Equation (15)

0

0

3v

7

de

gl(v
2)

Equation (23) now gives the value of the blackness coefficient <* in the P3
approximation. The same equation but with the uigns of the transmission
coefficients_reversed determines 0. Note that for linear anisotropic scat-
tering with <* • 0, the P3 blackness coefficients are independent of the pro-
perties of the external media.
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5.4 Blackness Coefficients In the P5 Approximation

In

n
the P5

- Vo.
. (I*

^2 VC

approximation (L

1* ~ T *2* + IT *4

- 5)

* P 1

) +

Eqs.

+ 12

(3)

* 2 i>

U "

and

>2 +

(10)

>»+•

become

P 3 + !

I " +

' *4* P4 + — *,5*P5

A similar equation applies to the right side of the absorber slab so that

Equations

V
•w

A o "

A MtA l

A 2 -

A 3 -

A 4 -

A 5 "

(17a)

- • i *

" h +

1 5 27
T *0* " 4" *2A + 16" *4A '

2 *1

— *

— *

315
16

T6

and

a 2 '

I 4 V3l 16 *5l

2& 8 4X. f

385
3A 8 V5* '

^54 '

(17b) now become

f a3 '

S ) a , + g (v_)a3 ,

Bo"

B l

B2 "

B 3 -

B 4 -

B 5 "

* 0 r " 4

1
2* *

2

T

^ '
315

16

693
16

'r

-

l r ~

* 2 r -

*4r

*5r

b2 +

gj<V

5 ui + 2 7 ib
4 V2r 16 V'

4 *3r ' 16

.135
8 *4r

. 3 8 5 ^

b3

2 )b 2 - g (v )

hi " g 2 ( V 2 ) a 2 + g 2 ( V 3 ) a 3 » *2r * g 2 * V b 2 + g 2 ( V 3 ) b 3

•3* " g 3 ( v 2 ) a 2 + g 3 ( v 3 ) a 3 ' *3r " ~ g 3 ( V b 2 ~ g 3 ( v 3 ) b 3

*4* - g 4 ( V a 2 + g 4 ( v 3 ) a 3 • *4r " g 4 ( v 2 ) b 2 + g4< V3 ) b3

*5* " « 5
( v 2 ) a 2 + g 5 ( v 3 ) a 3 ' *5r * ~ g5< V2 ) b2 " g 5 < V 3 ) b 3

where 82, 83, b2, and D3 are constants, \>2 and V3 are the two largest posit ive
roots of the deterolnental Eq. (16), and the g n ' s are given by Eq. (15) .
From the above equations i t follows that
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<A0 * V 4 (h * +r> + I <a2 * V fl " I *2(V + T *4 <V>

(Aj f B j ) - | ( j z + j r ) + | (a2 ± b2) [g ; (v 2 ) - |- g 3 (v 2 ) + ^ | g5(v2)J

+ f (a3 ± b3) [»,<«,) - \ g3(v3) + 5 | g5 (v3)]

<A2 ± B2> - -if (a2 ± b2) Ig2(v2) - | g4(v2)] + ^ | (a3 ± b3) tg2(v3> - \

(A, * V * " (a2 * V I«3(V2) " T «5<V2)] + T (a3 * "3)f«3(v3> " ^T

(A4 * B4> - -2g. (a2 ± b2)g4(v2) + 2 « u 3 ±

<A5 T B5> " ̂ H (a2 ± b2 ) «5<V2) + T I (a3 * b3> *5 (V '

By adding and subtracting the matching conditions (Sqs. 5 and 6) for L « 5
one obtains:

m - 1

(AQ ± Bo) <i -

+ (A4 ± B4) (i - R u ? T u ) - (A5 ? B5) (I + R33 ± T33> , Q

m - 3

(AQ ± BQ) (I - R3Q * T30) - (Aj * BjXJ + R31 ± T31)

+ (A2 ± B2) (i - R32 T T32) - (A3 ? B3) (i + R33 ± T33)

+ (A4 ± B4) (1 - ̂  T T34) - (A5 ? B5) (1 + R35 ± T35) , Q
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m - 5

<Ao£

+ (A2

V
± B 2

±B 4

> (F

)( 1

R 5 0 ?

- R52

" R54

T50>

? T52

? T54

-

)

)

-(A3

-(A.

• • s i *

(? + R53

lT + R55

— T )

± T )
= 0

These three matching equations together with the previous equations for
pairs of constants of the form (An ± Bn) determine o (upper set of signs)
and B (lower set of signs) in the P5 approximation* Although the algebra is
very tedious, the three matching equations are used to eliminate the constants
(&2 + ^2^ an^ (a3 + ^3) an<* t n e resulting equation is solved for (jjj - j r)/
(•t + tr)> which is a. The blackness coefficient 3 is found in a similar
manner or by taking the expression for a and changing the sign of all of the
transmission coefficients, Tmn.

If we again assume linear anisotropic scattering with a = 0, the P5 form
of the determinental equation (Eq. 16) is

0

V

0

0

0

0

which reduces to

v2[225v

v 0

32tr/rt 2v

2v 5

0 3v

0 0

0 0

** - 2646v2 + 3465] = 0.

The allowed values of v are therefore

vi " 0.

0

0

3v

7

4v

0

0, ± 1.2252109, ± 3.2029453

and so v2 =* 1.2252109 and v3 = 3.2029453.

gl(v) =

g2(v) -

g3(v) -

g, ( v) »•

- a/v » 0

- 1/2

5/6v

3/8 - 35/24v2

It follows

0

0

0

4v

9

5v

from Eq.

0

0

0

0

5u

11

(15) that

" JZ I9

With these constants, the methods described earlier may be used to evaluate a
and @ in the P5 approximation. Like the P3 case, a and 0 are independent
j>f the properties of the external media for linear anisotropic scattering with
o - 0.
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5.5 Blackness Coefficients for a Purely Absorbing Slab

For the case of a purely absorbing slab (Es • 0) all the reflection
coefficients vanish, that is Rmn - 0. In Section 3 it was shown that for
this special case the transmission coefficients can be expressed analytically.
Thus,

1

A» " Em+n+2 (zaT>

where Em+n+2 (Ear) is the exponential integral of order nH-n+2. Using these
expressions for the reflection and transmission coefficients, all the previous
equations for a and 3 are directly applicable to the no scattering case. For
example, in the Pj approximation Eqs. (18) and (19) reduce to

1 - 2 E 3 (Eat)
a r)] < 2 4 )a° " 2 [1 + 3 E 4 (2ar)]

1 + 2 S 3 (Eat)
3° " 2 [1 - 3 E 4 (2aT)]

 ( 2 5 )

where the subscript on a and 3 serves as a reminder that these equations apply
to the zero scattering case. These equations were first given by Goldsmith in
Ref. 7- In a similar way the previous results can be used to obtain the P3
and P5 approximations for the zero scatter blackness coefficients.

5.6 The "Dirty Blackness" Approximation

For a perfectly black absorber (Ea •»• ») gqs. (24) and (25) reduce to
a * 6 » 1/2. However, from the expression for the extrapolation distance
into a vacuum from a plane surface (d - 0.7104 Atr) it is easy to show that
o - 0.4692 for this perfect absorber. Although without mathematical justifica-
tion, improved values for the Es • 0 blackness coefficients result if
Eqs. (24) and (25) are multiplied by 0.4692/0.5. We will call these modified
values "dirty blackness" (OB) coefficients and they are given by the equations

[1 - 2 E3 ( E » T ) ]
a0 (DB) - 0.4692 fl + 3 E 4 ( I ^ T ) ] (26)[l

tl

- 2
+ 3

+ 2

E3

E3

(Ej

(2,

if)J
,T)]

,T)][1 2 E3 (2aT)]
30 (DB) « 0.4692 ( l _ 3 4 ( Z » T ) ] . (27)

It is interesting to note that in the P5 approximation (Z8 j> 0) for a very
strong absorber (Eax » 15.76) the blackness coefficients have the values
a » 0 - 0.4690. Equations (26) and (27) often give a good approximation for
the blackness coefficients for those groups for which £8 « Ea. For the fast
groups, where the Es - 0 approximation i s not valid, the absorption cross
sections are small enough so that normal diffusion theory can be used and
blackness theory is not needed.
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6 . FINE-GROUP-WEIGHTED BLACKNESS COEFFICIENTS

The weighted values of the blackness coefficients <*re defined by the
equations

L «<">[**<"> + 4>r<u)]du
. . .

(29)
" 4>r> j j u f+A(u) - *r(u)]du

where Au i s Che lethargy range of the broad group. Because the same surface
flux combinations appear in both the numerator and denominator in the expres-
sions for <OL> and <0>, highly precise values of $ and <j>r are probably not
necessary. In this formalism a(u) and 0(u) are the fine group values of the
blackness coeff ic ients and are evaluated, usually in the P5 approximation,
by the methods discussed ear l i er . The fine-group surface fluxes used for
weighting are determined from a one-dimensional Pj , Sg transport calcula-
tion using a code such as ONEDANT.2 Fine-group cross sections needed in the
evaluation of a(u), 3(u), $ , (u) , and $r(u) were obtained from the EPRI-CELL
code.1 0 With this information Eqs. (28) and (29) may be numerically inte-
grated to determine <o> and <B> for each of the broad groups of Interest .
Other weighting schemes for determining <ct> and <B> have been proposed in the
literature (see Ref ' s . 11 and 12) .

I t i s usually suff ic ient to determine <a> and <B> only for the thermal
and epithermal broad groups. For the fast groups a and 6 can be calculated
from the broad-group macroscopic cross sect ions . The standard five-group
structure used at ANL for thermal reactor calculations and the number of fine
groups corresponding to the thermal and epithermal broad groups i s shown
below

Standard Group Structure

Group Eu(eV) Number of Fine Groups

32

14

21

1

2

3

4

5

1.0

8.208

5.531

1 .855

0.6249

E+07

E+05

E+03
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7. CONTROL SLAB EFFECTIVE DIFFUSION PARAMETERS

The blackness coefficients form a pair of internal boundary conditions
applicable on the surfaces of the absorber slab. However, most diffusion
codes are not programmed to handle these internal boundary conditions.
Therefore, it is convenient to determine effective diffusion parameters
(D, Za) which preserve the current-to-flux ratios on the surfaces of the
control slab in terms of the blackness coefficients. Since these effective
diffusion parameters are to be used in a finite difference solution, the
effective constants will be expressed in such a way as to contain an explicit
dependence on the mesh interval aize, h. This procedure allows one to use a
very coarse mesh in the absorber for the diffusion calculations.

Two cases will be considered. In the first case effective diffusion
parameters will be derived for use in those diffusion codes, such as DIF3D,
which evaluate fluxes at the center of the mesh intervals. In the second
case effective values for D and Ea will be obtained for use in diffusion
codes which evaluate fluxes on the mesh interval boundaries.

7.1 Case for Mesh-Centered Fluxes

^ F«?r the purpose of this derivation, it is convenient to assume that the
same material extends to regions outside the absorber slab of thickness T.
Since a and ft depend only on the properties inside the slab, this assumption
leads to no loss in generality. One first needs to find the surface flux
and current fj arid, J^, in terms of the mesh-centered fluxes +j and $_i
(see figure).

-1

-1

x l

•l

1

f

1
1
1

Control Slab

J

21



Assuming that the flux varies linearly from the edge to the center of the mesh
cell , I t follows that

•i" •*+1 •*" •* - h \

where h Is the width of the mesh Interval. Thus,

*t ' 1 < >

Jl " h

It Is convenient to consider symmetric and asymmetric solutions to the diffusion
equation separately.

Symmetric Solution

For this case J - J r and A - d>r so that

Jjt * Jr Jjj 2D
° *A + 4>r ^ h

where

$1 - C cosh kxj « C cosh y (T - h)

It
+-1 » C cosh kx-i - C cosh J (T + h)

and where x is measured from the center of the slab. After some manipulation,
the expression for a becomes

a «-|r Isinh (kx/2) etnh (kh/2)]/[cosh (kT/2) cosh (kh/2)]n

Asymmetric Solution

For this case J • -Jr and $ • -$t so that

J^ - J r Jt 2D
8 " Tt - +r " Tt ' h"

where now

$\ - A sinh kxj - A sinh -s (T - h)

i-l • A sinh kx-i - A sinh ^ (T + h)
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The expression for 6 reduces to

3 - ~ [co8h (kt/2) ainh (kh/2 )]/[sinh (kt/2) cosh (kh/2)J.n

Thus,

This equation determines k in terms of a and 0. I t can be put into a more
useful form by making use of the identity

tanh~*x • •? ln|T~I— Hence,

By adding the above equations for a and 0 i t can be shown that

f <" + 6> ISHar COBh k h ) 1

An expression for £ a can be obtained from the diffusion equation written in
the difference form and solving for La. Thus,

3y substituting

$n * C cosh kxn •
•n+1 * C cosh k(xn + h) » C[cosh kxn cosh kh +• sinh kxn sinh khj
'f'n-l * C cosh k(xn - h) - Cfcosh kxn cosh kh - sinh kxn sinh kh]

into the above equation i t follows that

za m2 fcosh kh - 1] . (32)

Note that this equation is valid for both mesh-centered and mesh-boundary
fluxes.

Equations (30-32) determine the effective diffusion parameters in terms of
the blackness coefficients. Since these equations incorporate h explicitly, a
very coarse mesh may be used. The equations are applicable for the case where
the diffusion code determines fluxes at the center of mesh intervals.
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Diffusion parameters can be obtained to describe the behavior of an
effectively black absorber. For this limiting case a •*• $ + 0.4692 and kt
(Eq. 30) tends to infinity, it is sufficient to set kx equal to an arbitarily
large, but finite, value such as kx - 10. For a black absorber Eq. (31)
reduces to

D + h « / 2 » 0.2346 h .

And Eq. (32) becomes

This is equivalent to using a black internal boundary (j/<}> » 0.4692) in the
DIF3D8 code.

7.2 Case for Mesh-Boundary Fluxes

The same general procedures may be used to derive effective diffusion
parameters for the case where fluxes are evaluated on the boundaries of the
mesh intervals. Written in finite difference form, the diffusion equation
and Fick's law become

n̂ " " if <**i - W •

Again for the purpose of the derivation, we assume that the same material
extends to regions outside the absorber slab of thickness T only now the
fluxes are specified on the mesh boundaries. It follows from the above
equations and Eq. (32) that

•*"" T (*-i + ( ( > i ) / a + 1 k*hZ) * 1 (*-i + • i ) / c o 8 h k h

h - h ' Iff (*-i - - M '
As before, we consider separately symmetric and asymmetric solutions to the
diffusion equation.

Symmetric Solution

For this case Jg - Jr and ^ - <f>r so that

« " * + / ' ~T m 7 (* * A C08h kh
*£ *r ** (*-l *r

where

^j - C cosh kx • C cosh k (T/2 - h)

^ , - C cosh kx, - C cosh k (x/2 + h)
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Substituting these fluxes into the equation for a and simplifying one obtains

a » r- sinh kh tanh kx/2 .
n

Asymmetric Solution

For this case J^ » -Jr and $£ * -$ r so that

X. r * D —1 1

where now

(j>, » A sinh kx - A sinh k (x/2 - h)

<j> , * A sinh kx_1 - A sinh k (x/2 + h)

Substituting these fluxes into the expression for 0 and simplifying, it
follows that

3 - jj sinh kh coth kx/2 .

Hence,

•f • tanh2 (kx/2) .

This is the same result as that obtained in pararaph 7.1. Therefore,

k-TlnUl/2-«l/2j'
By adding the above equations for a and & it follows that

u . tanh kx 'D " I (a HnTTkh '

We see that Eqs. (30) and (32) also apply to the case where fluxes are
calculated on the mesh boundaries and that only the. expression for the
diffusion coefficient [compare Eqs. (31) and (33)] changes.

For the limit of a black absorber, D + 0 and £a • 2o/h - 0.9384/h.
Setting kx - 10 in Eq. (33) will yield results essentially indistinguishable
from the limiting case.
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7.3 Verification

The effective diffusion parameters were chosen so as to preserve the
values of the blackness coefficients on the surfaces of the control slab.
To verify that this has been accomplished, fluxes from the diffusion calcu-
lation can be used to evaluate fa, Jj, fa, and Jr which determine a
and 3. Using procedures similar to those described in the first part of
paragraph 7.1, it is easy to show that for mesh-centered fluxes

hj; *> + hi +i 2<jo - fa)
H ' £o+Di • J* " .ho+hi.

ho hi X D±
;

where <fro and fa are the fluxes just outside and just inside the left-hand
surface of the absorber slab. Do, Dj, h0, and h± are the diffusion co-
efficients and mesh intervals on each side of the left-hand surface of the
absorber slab. Similar equations are used to evaluate $r and Jr on the
right-hand surface. Then,

Ji. + Jr Jl ~ Jr
* r , _ * r

and these values based on the fluxes from the diffusion code should be the
same as those used to determine the effective diffusion parameters.

For diffusion codes which evaluate fluxes on the mesh interval boundaries,
fa and fa are given in the output of the problem and

T (»o - •!>

ft-a
with a similar equation for Jr. As before, a and 0 may be calculated from
these surface fluxes and currents and compared with those used to calculate
the effective diffusion parameters.
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8 . PROCEDURE FOR CALCULATING BLACKNESS COEFFICIENTS AND THE CORRESPONDING
EFFECTIVE DIFFUSION PARAMETERS

In the previous sec t ions the formalism was developed for determining a and
3 and the corresponding values of D and £ a for the control s l a b . A procedure
for ca lculat ing the numerical values of these constants i s outl ined in the
steps below.

1 . The EPRI-CELL Code^® i s used to generate both broad and f i n e group
cross sec t ions for the control material, i t s immediate environment, and the
fue l region. Because of code l imi ta t ions , two cross sect ion s e t s having
di f ferent group structures are generated. The f i r s t s e t cons i s t s of two f a s t
groups, 32 epithermal f ine groups and two broad thermal groups for a to ta l of
36 groups. The second s e t cons i s t s of two f a s t and one epithermal broad
groups and 35 thermal f i n e groups for a to ta l of 38 groups. Energy boundaries
for the f ine groups are j u s t those used in the EPRI-CELL input cross sec t ion
l ibrary . A brief ou t l ine of the group structure i s given at the end of
Sect ion 6 . For control materials having large low energy resonances, such as
Ag, In, and Hf, i t may be necessary to generate the fine-group epithermal cross
sect ions with the MC2-2 Code. 1 3 The RABANL nodule of MC2-2 rigorously treats
resolved resonance absorption whereas EPRI-CELL does not .

2 . Using the ONEDANT Code2 together with the EPRI-CELL cross s e c t i o n s ,
ID transport ca lculat ions ( P j , S8) are performed to determine the absorber
surface f luxes needed for weighting the fine-group blackness c o e f f i c i e n t s .
These surface f luxes are saved on a f i l e for l a t e r use . The f i l e of macro-
scopic cross sec t ions for the control s lab i s a lso saved. Because of the
strongly absorbing character of the control s lab , a f ine mesh structure i s
needed, e s p e c i a l l y near the surfaces of the s l a b . For some ca lculat ions mesh
interva ls near the s lab surfaces of l e s s than 0.001 cm have been used.

3 . With the f i l e of the control s lab fine-group macroscopic cross
sect ions Za, £ t , and £ s , a s e r i e s of ONEDANT source calculat ions (P i , S24)
are performed to determine the angular f lux d i s tr ibut ion on the surfaces of
the s l a b . With a source d i s tr ibut ion of the form un , s i x calculat ions are
needed corresponding to n » C, 1, 2 , 3 , 4 , 5 . A program has been wri t ten to
ca lcu la te and s tore the r e f l e c t i o n and transmission c o e f f i c i e n t s , Rmn and Ton,
from the ONEDANT angular f lux f i l e . Since these coe f f i c i en t s w i l l be used to
ca lcu late the blackness c o e f f i c i e n t s in the P5 approximation, m values
(See Eqs. 1 and 2) of 1, 3 , and 5 are needed. For 67 f i n e groups and 5 broad
groups a tota l of 1296 r e f l e c t i o n coe f f i c i ent s and an equal number of trans-
mission coefficients are calculated.

4. The f i l e of reflection and transmission coefficients is used in
another program to calculate the fine-group and broad-group blackness coef-
ficients in the Pj, P3, P5 and no-scatter approximations. Using the f i l e of
surface fluxes, the program also calculates the fine-group-weighted blackness
coefficients, <a> and <@>. Finally, these values are used to determine the
broad-group effective diffusion parameters D and Sa. These parameters are
calculated for mesh intervals corresponding to h * r/n with n « 1, 2, 3, 4,
and 5.

5. Control rod worths are evaluated using diffusion theory with these
modified macroscopic cross sections for the control material.
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9. APPLICATIONS

In this section the blackness coeff icients and the corresponding effec-
tive diffusion parameters are evaluated for several types of control elements
using the methods discussed ear l i er . Eigenvalues based on this blackness-
modified diffusion theory are compared with those obtained from continuous-
energy Monte Carlo methods.

9.1 Cadmium Control Elements

Control elements for the 30-MW Oak Ridge Research Reactor (ORR) consist
of square, wate^-fil led cadmium boxes 5.8912 cm on a side and 77.47 cm long.
The boxes are formed from a sheet of natural cadmium 0.1016 cm thick and clad
in 0.0508 cm thick aluminum.

Fine-group cross sections were generated by the EPRI-CELL Code.10

Reflection and transmission coefficients for each of the f ine groups were
obtained by numerically integrating Eqs. (1) and (2) using ONEDANT2 values
for the surface angular f luxes, ijin (0,u) and ijin ( T , U ) . Using the methods
described in Section 5, fine-group blackness coeff icients were evaluated
from the ref lect ion and transmission coeff icients in various orders of approxi-
mation. Broad-group blackness coeff ic ients , <a> and <|J>, were obtained by
weighting the fine-group values as described in Section 6 .

Results for the broad-group blackness coeff ic ients , calculated in the
Pi, P3, and P5 approximations and by "dirty blackness" theory,"are
summarized in Table I I I . Pick's law i s valid provided the second derivative
of the flux does not change s ignif icantly over a few mean free paths within
the absorber. Thus, diffusion theory should be valid for those groups for
which Za « Z8 . Table III shows that blackness theory i s really needed
only for groups 4 and 5 . Even group 4 could be treated with diffusion theory
with l i t t l e loss in accuracy because of the narrowness of this group and
because T/L « 1 for group-4 neutrons, where L i s the diffusion length in the
absorber s lab . "Dirty blackness" theory gives remarkably good results for
die group-5 blackness coeff ic ients , as Table III indicates. However, Eqs. (24)
and (25) were derived for the case of no scattering. As scattering within
the slab becomes s ignif icant , the "dirty blackness" coeff ic ients , especially
0, become progressively worse, as Table III shows. Note that for a black
absorber a " B * 0.4692. Thus, the cadmium i s nearly black to group-5
neu trons.

The effective diffusion parameters corresponding to the broad-group
blackness coefficients were calculated from Eqs. (30-32) and are therefore
applicable for use in the DIF3D Code,8 which evaluates fluxes at the center of
mesh intervals . Results from these calculations are summarized in Table IV.
They apply for mesh interval spacings of h • t , T / 2 , T /3 and T / 4 .

These effect ive diffusion parameters, for h » T / 2 , were applied to the
ID and 2D models shown in Figs . 1 and 2 . The fuel cross sections used in
these calculations were generated for an ORR standard 19-plate element with
285 g 2 3 5 U . Eigenvalues obtained from blackness-modified diffusion theory
are compared with those from VIM1'•/Monte Carlo calculations in Table V. Note
that eigenvalues obtained by using normal diffusion theory in the cadmium
region for groups 1-4 and a black internal boundary condition ( j / $ • 0.4692)
for group 5 are in good agreement with those based on the use of effective
diffusion parameters, as one would expect.
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Fable III. Broad-Group Blackness Coefficients for a
0.1016-cm-Thick Cadniun Slab.

Quantity Group 1 Group 2 Group 3 Group 4 Group 5

E u (eV)

*a*

5

1

No. of Fine
Groups

a(Pl)

o(P3)

o(P5)

<o(P5)>

<a(DB)>*

8(Pl>

BCP3>

«P5)

<B(P5»

<0(DB)>*

7

7,

7.

7.

6.

2.

2.

2.

2.

4.

1.OE+07

.7044E-03

.4074E-04

1

.2308E-05

.2304E-05

.2304E-05

.2304E-05

.9793E-05

6866E+01

6868E+01

6868E+01

6868E+01

7010E+03

8.208E+05

3.5980E-02

1.1472E-03

1

5.7402E-04

5.7374E-04

5.7371E-04

5.7371E-04

5.6720E-04

2.0183E+01

2.0183E+01

2.0183E+01

2.0183E+01

5.7673E+02

5.531E+03

4.6885E-01

1.6371E-02

32

8.0056E-03

7.9567E-03

7.9516E-03

7.0560E-03

6.6565E-03

1.3004E+01

1.3002E+01

1.3002E+01

1.3453E+01

1.9728E+03

1.855

3.3797

8.3122E-02

14

3.8072E-02

3.7158E-02

3.7084E-02

3.6251E-02

3.4987E-02

6.2150E+00

6.2058E+00

6.2041E+00

8.6247E+00

1.4705E+01

0.6249

2.7866E+02

6.8515E+00

21

4.9904E-01

4.7188E-01

4.6980E-01

4.4449E-01

4.4366E-01

4.9955E-01

4.7241E-01

4.7035E-01

4.7099E-01

4.6982E-01

Weighted Average of the "dirty blackness" coefficients (see Eqs. 26 and 27).
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Table IV. Cadmium P5 Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-Weighted a and 0.

Group Deff h(cm)

I
2
3
4
5

1
2
3
4
5

1
2
3
4

5

1

2
3
4
5

7.23039D-05

5.73709D-04

7.O5597D-O3

3.62513D-02

4.44494D-01

7.23039D-05

5.73709D-04

7.05597D-03

3.62513D-02

4.44494D-01

7.23039D-05

5.73709D-04

7.05597D-03

3.62513D-02

4.44494D-01

7.23039D-05

5.73709D-04

7.05597D-03

3.62513D-02

4.44494D-01

2.68679D+01

2.01829D+01

1.34533D+01

8.62472D+00

4.70986D-01

2.68679D+01

2.01829D+01

1.34533+01

8.624720+00

4.70986D-01

2.68679D+01

2 .01829D+01

1.34533D+01

8.62472D+00

4.70986D-01

2.68679D+01

2.O1829D+O1

1.34533D+01

8.62472D+00

4.7O986D-O1

3.22925D-02

1.04953D-01

4.50896D-01

1.27801D+00

4.168840+01

3.22925D-02

1.04953D-01

4.50896D-01

1.27801D+00

4.16884D+O1

3.22925D-02

1.04953D-01

4.50896D-01

1.278O1D+OO

4.16884D+01

3.22925D-02

1.04953D-01

4.50896D-01

1.27801D+00

4.16884D+01

1.36489D+00

1 .02529D+00

6 .834260-01

4.38136D-01

2.39261D-02

1.36489D+00

1.02528D+O0

6.83336D-01

4.37675D-01

1.48003D-02

1.36489D+O0

1 .02528D+O0

6.83319D-01

4.37590D-01

1.274O7D-O2

1.364890+00

1.02528D+00

6.83314D-01

4.37560D-01

1.19823D-02

2.44220D-01

3.251110-01

4.87739D-01

7.60799D-01

1.39318D+01

2.442210-01

3.25113D-01

4 .87803D-01

7.61600D-01

2.252210+01

2.442210-01

3.25114D-01

4.87815D-01

7.61749D-01

2.61628D+01

2.44221D-01

3.25114D-01

4 .87819D-01

7.61801D-01

2.78189D+O1

1.42331D-03

1.12938D-02

1.38970D-01

7.16621D-01

1.55559D+02

1.423310-03

1.12936D-02

i .38933D-01

7.15113D-01

3.68934O+01

1.42331D-03

1.12936D-02

1.38927D-01

7.14834D-01

2.60738D+01

1.423310-03

1.12936D-O2

1.38924D-01

7.14737D-O1

2.284420+01

h-T«l.016000-01
••
H

tt

»

h-t/2-5.080000-02
M

••

tt

h-t/3»3.38667D-02
••
it

H

II

h-T/4-2.540000-02
"
••

tt

t*
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Fig. 1. Cadmium Slab Model

31



72.40032

52.40032

28.10008

20". 00

0.
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Fig . 2 . XY Cadmium Box Model
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Table V. Cadnlum Rod Worths

Model Code
Rod In

*eff

Rod Out

keff

X-Slab
(Fig. 1)

VIM

DIF3D

XY-Box
(Fig. 2)

'*

t t

XYZ
(Fig. 3)

t t

DIF3D
(Gp. 5 Black)

VIM

D1F3D
(a, 3)

DIF3D
(Gp. 5 Black)

VIM

DIF3D
(Gp. 5 Black)

0.9864*0.0036 1.2291*0.0046 20.02*0.48

0.9897

0.9870

1.2290

1.2290

1.1380*0.0033 1.2082*0.0032

1.1271

1.1258

*&p B (kout - kln)/kout kln.

1.2090

1.2090

19.67

19.95

5.10*0.34

6.01

6.11

0.9700*0.0022 1.1662±0.0025 17.34*0.30

0.9654 1.1602 17.39
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The effect ive diffusion parameters are chosen so that the currents and
fluxes on the surfaces of the absorber slab preserve the values of the black-
ness coef f ic ients . To verify that this has been accomplished, the output
fluxes from the one-dimensional DIF3D calculation were used to determine * ,
J;» $r> a n d Jr from Eqs. (34) and a and 3 from Eqs. (8) and ( 9 ) . The
results for group-5 neutrons are shown below.

Quantity Left Surface Right Surface

ho (cm) 0.1016 0.1016
^ (cm) 0.0508 0.0508
Do (cm) 3.5573 3.6509
D± (cm) 0.0148 0.0148
$o 1.8084E+10 8.2218E+09
d»± 4.O622E+O9 2.1728E+09

*„ - 1.8073E+10 A - 8.2169E+09

J - 8.1637E+09 J r » 3.5218E+09

Hence,

% r " 0.44449, g - * _ r » 0.47099

These results are identical to <a(Ps)> and <3(Ps)> for group-5 neutrons in
Table III, which verifies that the effective diffusion parameters (Eqs. 30-32)
have been properly determined.

Figure 3 shows a model of the Swedish R2 Reactor which has the same
type of Cd box control elements as the ORR. Eigenvalues for an XYZ model
of this reactor were obtained for various control rod configurations. The
results are summarized in Table VI and in the last part of Table V and are
compared with VIM^/Monte Carlo calculations. Withdrawn rods are in the upper
reflector, and fuel followers are in the lower reflector for the inserted rods.
For these calculations, group 5 was made black and groups 1-4 were treated
with normal diffusion theory.

Generally speaking, Tables V and VI show that the worths of the cadmium
control elements based on blackness-modified diffusion theory are in good
agreement with the results of detailed Monte Carlo calculations. However, the
comparison is somewhat disappointing for the XY model. No explanation for
this discrepancy has been found.

9.2 Ag-In-Cd Control Elements

A number of research reactors use control elements consisting of flat
blades composed of a Ag-In-Cd alloy. For the purpose of these calculations,
the control blades were assumed to be 0.310 cm thick with a density of
9.32 g/cm3 and a composition of 4.9 wtZ Cd, 80.5 wtX Ag, and 14.6 wtZ In.
Table VII shows the broad-group blackness coefficients for the 0.31-cm-thick
Ag-In-Cd slab calculated by the procedures outlined in Section 8. The values
of the z /v ratios given in Table VII show that normal diffusion theory
could be used for groups 1 and 2 whereas blackness theory is needed for
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Fig. 3. The R2 Reactor Model.
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Table VI. Eigenvalues and Cadmium Control Rod Worths
for the Swedish R2 Reactor.

Fueia

HEU .25019

••

il

LEU 32618

•1

•t

it

Rod
Conflg.

All Out

All In

At 50Z

Only 63 Out

All Out

All In

At 50Z

Only 63 Out

keff .
DIF3D&

1.1602

0.9654

1.0826

1.0233

1.1562

0.9655

1.0816

1.0184

ApC
Z

17.39

6.18

11.53

17.09

5.97

11.70

keff
VIM

1.1662±0.0025

0.9700*0.0022

1.0862*0.0024

1.0266±0.0024

1.1537±O.0020

0.9656±0.0025

1.0790±0.0026

1.0191±0.0025

Apc

Z

17.34±0.30

6.32±0.27

11.66±0.29

16.89iO.31

6.00±0.27

11.45±0.28

aThe HEU 25019 notation stands for HEU fuel with 250 g 2 3 5U per 19-plate
element.

DIF3C calculations were done for group 5 of cadmium made black.

= (kout
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Table VII. Broad-Group Blackness Coefficients for a
0.31-c«-Thick Ag-In-Cd Slab.

Quantity Group 1 Croup 2 Group 3 Group 4 Group 5

Eu (eV)

s a*

1

0

1

No. of Fine
Groups

a(Pl)

o(P3>

ot(P5)

<a(P5)>

<a(DB)>*

UPO

<KP3)

«P5)

<3(P5»

<P(DB)>*

5

5

5,

5,

5,

7.

7.

7.

7.

5 .

.OE+07

.01388

.1788E-03

1

.8971E-04

.8948E-04

.8946E-04

.8946E-04

.5110E-04

.7410

7410

7410

7410

3069E+02

8

0

8

4

4,

4,

4,

3.

4.

4 .

4 .

4 .

7 .

.208E+05

.06620

.3250E-03

1

.1294E-03

.1191E-03

.1184E-03

.1184E-03

,8370-03

9746

9738

9736

9736

5151E+01

5.531E+03

0.9549

1.8357E-01

32

8.0743E-02

7.8255E-02

7.8052E-02

5.3232E-02

5.2921E-02

1.8153

1.8052

1.8037

2.4627

8.2595

3

3

3

3

3

6

6

6,

7,

7.

1.855

9.2358

1.2372

14

.5099E-01

.2980E-01

.2762E-01

.0963E-01

.O99OE-O1

.6227E-01

.3920E-01

.373OE-O1

.1679E-01

•8897E-01

0.6249

14.916

2.0308

21

4.3407E-01

4.0888E-01

4.0657E-01

3.8747E-01

3.9047E-01

5.4799E-O1

5.2324E-01

5.2151E-01

5.4003E-01

5.6342E-O1

^Weighted average of the "dirty blackness" (DB) coefficients (see Eqs. 26
and 27).
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groups 3, 4, and 5. "Dirty blackness" coefficients provide a good approxima-
tion for the thermal groups, but the group-3 value of <8(DB)> is a poor
approximation because ths no-scatter condition is badly violated. Effective
diffusion parameters were calculated from the values of <a(P5>> and <&(P^)>
using Eqs. 30-32. These parameters are given in Table VIII for the mesh
intervals h - *, T/2, T/3, and V 4 .

Figures 4 and 5 show one-dimensional reactor models of asymmetric and
symmetric control blade positions. For these cases eigenvalues calculated by
blackness-modified diffusion theory are compared with those from corresponding
Pi, Ss transport calculations. The results of this comparison are summarized
in Table IX, which shows that blackness theory and transport theory yield
nearly identical results. The table also shows that the mesh-dependent effec-
tive diffusion parameters produce eigenvalues independent of the number of
mesh intervals in the Ag-In-Cd control blade.

The internal boundary condition option of the DIF3D Code assumes that
the surface currents and fluxes are the same on each side of the control
blade. This condition is met only for the symmetric model (Fig. 5). Table IX
shows that the Internal boundary condition option of DIF3D yields results
consistent with transport theory only for the symmetric case, as one would
expect.

The effective diffusion parameters are chosen so as to preserve the
values of the blackness coefficients on the surfaces of the control slab.
To verify that this has been accomplished, DIF3D fluxes from the asymmetric
model with h - T/2 were used to calculate +%, J^, • , and Jr from Eqs. (34).
Table X compares the blackness coefficients calculated from these fluxes and
currents with those used to determine the effective diffusion parameters.
It is seen that the results are entirely consistent, showing that the effec-
tive diffusion parameters are correctly defined by Eqs. (30), (31) and (32).

The above results show that blackness theory applied to Ag-In-Cd blades
in 8lab geometry produces very acceptable results. The method is now applied
to a 3D reactor model. Figure 6 shows the locations of the forked Ag-In-Cd
control blades in the 10-MW Generic Reactor.15 Calculations were performed
for the case of fresh U3Si2"Al LEU fuel (390 g 2 3 U per 23-plate fuel
element) using both the DIF3D -XYZ and VIM /Monte Carlo Codes.

The blackness coefficients given in Table VII were calculated using EPRI-
CELL cross sections. Because of code limitations, however, self-shielding in
the low-energy resolved resonances of the Ag and In isotopes is not adequately
accounted for by EPRI-CELL. Therefore, the blackness coefficients were nor-
malized to the VIM broad-group Ag-In-Cd macroscopic cross sections by multi-
plying <«(P5)> by <*(VIM)/«(E-CELL) and <3(P5)> by S(VIM)/0(E-CELL). This norma-
lization resulted in about a 0.5Z increase in the eigenvalue. The norma-
lization would not have been necessary if the MC -2 Code had been used to
generate the epithermal fine-group Ag-In-Cd cross sections. The RABANL module
of MC -2 performs a hyper-fine-group integral transport slowing down calcula-
tion which rigorously treats resolved resonance absorption.

Eigenvalues from the 3D (see Fig. 6) calculations are compared in
Table XI. The results show that the XYZ diffusion-theory calculations using
blackness-modified diffusion parameters for the control blades agree very
well with the VIM/Monte Carlo calculations.
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Table VIII. Ag-In-Cd P5 Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-Weighted
a and p.

Group «$> Deff h(cm)

1
2

3
4
5

1
2
3
4
5

1

2
3
4
5

1
2
3
4
5

5.
4.
5.
3.
3.

5.
4.

5.
3.
3.

5.
4,
5,
3,
3

5,
4

5
3
3

89456O-04

11835D-03

323230-02

09634D-01

87471D-01

89456D-04

,118350-03

,323230-02

.09634D-01

,874710-01

.894560-04

.118350-03

.32323D-02

.096340-01

.87471D-01

.894560-04

.118350-03

.323230-02

.096340-01

.874710-01

7.
4.

2.
7.
5.

7.
4.

2.
7.
5.

7,
4.
2,
7,
5,

7
4
2
7

5

74088D+00

973640+00

46267D+00

16793D-01

40029D-01

74088D+00

,973640+00

,462670+00

16793D-01

,40029D-01

,740880+00

.97364D+00

.462670+00

.167930-01

.40029D-01

.740880+00

.973640+00

.46267D+00

.16793D-01

.40029D-01

5.
1.
9.

5.
8.

5.
1.
9.
5.
8.

5,

1,
9
5
8

5
1
9
5
8

63002D-02

85700D-01

554580-01

033540+00

03533D+00

.63002D-02

.857000-01 >

.55458D-01

.083540+00

,036330+00

.630020-02

.85700D-01

.554580-01

.083540+00

.03633D+00

•63002D-02

.857000-01

.55458D-01

.083540+00

.036330+00

1.
7.

3.
1.
8.

1.
7.
3.
9.
6.

1.
7,
3,
9,
6,

1
7
3
9

5

199840+00

70914D-01

81714D-01

11103D-01

37045D-02

19981D+00

,707540-01

.79640D-01

,741930-02

.40970D-02

,199810+00

,707250-01

.792550-01

.479470-02

.01548D-02

.199810+00

.707140-01

.79121D-01

.386900-02

.87489D-02

2.
4.
8.

3.
3.

2.
4.
8.
3.
5.

2,

4,
8
3
5

2
4
8
3
5

77816D-01

32387D-01

73254D-01

00022D+00

982260D+00

77821D-01

•32477D-01

.78025D-01

.421640+00

.20045D+00

.778220-01

.32493D-01

.789150-01

.516370+00

.54126D+00

.778220-01

.32499D-01

.79227D-01

.551050+00

.673870+00

3.

2.
3.
3.
8.

3.
2.
3.
2.
4.

3,

2,
3
2
4

3
2
3
2
3

80323D-03 h-r«3.10000D-01

65920D-02

51022D-01

516800+00

84890D+00

80309D-03 h-T/2-1.550000-01

,658100-02

.472070-01

.650530+00

,703250+00

.803060-03 h-T/3-1.033330-01

.657900-02

.465040-01

.506570+00

.113400+00

.803050-03 h-T/4-7.75000D-OJ

.657830-02

.46258D-01

.457340+00

.91840D+00
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Table IX. Eigenvalue Calculations for One-Dimensional
Reactor Slab Models with Ag-In-Cd Blades.

Model

Fig. 4
(Asymm.)

Fig.

Fig.

Fig.

••

••

Fig.

4

4

4

4

Fig. 5
(Symm.)

Fig.

Fig.

Fig.

II

••

»

Tiz.

5

5

5

5

Ag-In-Cd
Blade Position Code

Out

Out

In

In

•i

••

»

In

Out

Out

In

In

li

»

••

In

ONEDANT

DIF3D

ONEDANT

DIF3D

ti

»

DIF3D

ONEDANT

DIF3D

ONEDANT

DIF3D

••

II

II

DIF3D

h
cm

K-T

h-T/2

h-T/3

h-T/4

h-T

h-T/2

h-T/3

h-T/4

keff

1.5379

1.5352

1.3200

1.3208

1.3208

1.3208

1.3208

1.3688

1.5093

1.5050

1.3689

1.3688

1.3688

1.3688

1.3688

1.3691

Comments

P|, S3 Calc.

Pi, S3 Calc.

Za, D from <a(P5)>
and <3(P5)>

••

«

<o(P5)> Internal B.C.*s

Pi, Ss Calc.

P|, Ss Calc.

Sa, D from <a(P5)>
and <0(P5)>

•-

II

II

<ct(Pc)> Internal B.C.'s
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Table X. Consistency Check of Ag-In-Cd Blackness Coefficients
(Asymmetric Slab Model with h-r/2).

Quantity

H

H

*r

Jr

t+Jr)/<*Jl+4>r>

<a(P5)>

Ratio

rJr)/(H"*r)

<3(P5)>

Ratio

Group 3

17.1776

0.61820

17.4218

1.2199

0.05313

0.05323

0.9981

2.4637

2.4627

1.0004

Group 4

1.4671

0.44085

1.5321

0.48740

0.3095

0.3096

0.9997

0.7167

0.7168

0.9999

Group 5

3.8416

1.4615

4.1866

1.6478

0.3873

0.3875

0.9995

0.5400

0.5400

1.0000
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Blades in the 10-MW Generic Reactor.



Table XI. XYZ Calculations for the 10-MW Generic Reactor for
Fresh LEU U33I2 Fuel with Ag-In-Cd Control Blades.

Rod
Configuration

All Out

All Out

All In

All In

Rod 3 Out

Rod 3 Out

Rod 3 Out

Rod 3 Out

Rod 3 Out

Code

VIM

DIF3D

VIM

DIF3D*

VIM

DIF3D*

DIF3D*

DIF3D*

DIF3D*

h
cm

h-t/2

h-t

h-T/2

b-T/3

h-T/4

keff

1.1922±0.0031

1.1903

1.0296±0.0031

1.0309

1.0838*0.0033

1.0790

1.0813

1.0818

1.0816

Ap**
X

13.25*0.36

12.99

8.39*0.36

8.66

8.47

8.43

8.44

Based on the Ag-In-Cd blackness-modified diffusion parameters.

* * .

45



9.3 Hafnium Control Elements

Control elements for the Japanese 20-MW JRR-3 reactor consist of water-
f i l led natural hafnium boxes 6.36 cm on a side and with walls 0.50 cm thick.
They are illustrated in Fig. 7.

Natural hafnium i s a strong resonance absorber, as Fig. 8 (from Ref. 16)
shows. Since the EPRI-CELL library does not contain resonance information
for the hafnium isotopes and because of the flat flux approximation used by
EPRI-CELL for fast and epithermal cross sections, only the thermal fine-group
cross sections were used in the evaluation of the blackness coefficients.
The non-thermal cross sections were generated by the MC2-2 Code13 which
rigorously treats resolved resonance absorption. Shown below is the assumed
composition of the natural hafnium control material of density 13.3 g/cm3.

Hafnium Composition

Isotope Abundance, % Atoms/barn-cm

174

176

177

178

179

180

0.16

5.20

18.60

27.10

13.74

35.20

7 .1797E-05

2.3334E-03

8.3464E-03

1.2161E-02

6 .1656E-03

1.5795E-02

With these fine-group macroscopic hafnium cross sections, Eqs. (1) and (2)
were numerically integrated to obtain the reflection and transmission coeffi-
cients using ONEDANT2 values for the angular fluxes on the surfaces of a
0.50-cm-thick hafnium slab. From these reflection and transmission coeffi-
cients, the fine-group blackness coefficients were evaluated by the methods
described in Section 5. The broad-group coefficients, <a> and <3>, were
obtained by weighting the fine-group values by means of the surface fluxes, as
described in Section 6.

Table XII summarizes the broad-group blackness coefficients for natural
hafnium calculated in the Pj, P3, P5, and "dirty blackness" approximations.
This table also shows that £a/£ s « 1 for groups 1 and 2 and, therefore, black-
ness theory is needed only for groups 3, 4, and 5. The effective diffusion pa-
rameters corresponding <a (Ps)> and <B (Ps)> were calculated from Eqs. (30-32)
for mesh interval spacings of h » T, T/2, T/3 , and T / 4 . They are shown in
Table XIII.

These effective diffusion parameters, for h - T /2 , were f irs t applied to
a ID cel l calculation with reflective boundarv conditions (See Fig. 9 . ) .
Using diffusion theory, eigenvalues were calculated for hafnium in the cell
and for water replacing the hafnium slab. For these calculations blackness-
modified hafnium diffusion parameters were used for groups 3, 4, and 5. VIM14/
Monte Carlo calculations were made for the same cell problem. Generally
speaking, the fine-group macroscopic hafnium cross sections obtained by VIM
were found to be in good agreement with those obtained by the MC2/EPRI-CELL
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Fig. 7. Hafnium Control Element for the JRR-3 Reactor.
All dimensions in cm.
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Table XII. Broad-Group Blackness Coefficients for a
0.50-cm-Thick Natural Hafnium Slab.

Quantity Group 1 Group 2 Group 3 Group 4 Group 5

E u (eV) 1.0E+07

0.01075

1.6286E-03

No. of Fine 1
Groups

a(Pl)

a(P3)

a(P5)

<o(P5»

<a(DB)>*

3(Pl)

3(P3>

3(P5>

<3(P5»

<3(DB)>*

8.1451E-04

8.1413E-04

8.1410E-04

8.1410E-04

7.6051E-04

4.3542

4.3541

4.3541

4.3541

3.8416E+02

8.208E+05

0.05192

1.1406E-02

1

5.6485E-03

5,6328E-03

5.6316E-03

5.6316E-03

5.2312E-03

2.8878

2.8869

2.8868

2.8868

5.4857E+01

5.531E+03

0.6362

2.3999E-01

32

1.0356E-01

1.0046E-01

1.0016E-01

1.0208E-01

1.0070E-01

1.1282

1.1191

1.1179

1.2135

4.8787

1.855

11.1581

2.6010

14

4.5802E-01

4.3288E-01

4.3074E-01

4.1096E-01

4.17O7E-O1

5.1022E-01

4.8566E-01

4.8394E-01

5.1162E-01

5.3505E-01

0.6249

6.5293

1.4916

21

3.8305E-01

3.6102E-01

3.5886E-01

3.5165E-01

3.5647E-01

5.8520E-01

5.6261E-01

5.6093E-01

5.7023E-01

6.2356E-01

*Weighted average of the "dirty blackness" (DB) coefficients (see Eqs. 26
and 27).
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Table XIII. Natural Hafnium P5 Effective Diffusion Parameters for Mesh-Centered Fluxes with Fine-Group-
Weighted a and 0.

Group k Deff 'tr '«eff h(c«)

1
2
3
4
5

1
2
3

u. 4

° 5
1
2
3
4
5

1
2
3
4
5

8.14101D-04
5.63162D-03
1 .02082D-01
4.10961D-01
3.51649D-01

8.14101D-04
5.63162D-03
1.02O82D-O1
4.109610-01
3.51649D-01

8.14101D-04
5.63162D-03
1.02082D-01
4.10961D-01
3.51649D-01

8.14101D-04
5.63162D-03
1.02082D-01
4.10961D-01
3.51649D-01

4.35410D+00
2.88677D+00
1.21349D+00
5.11615D-01
5 .70234D-01

4.35410D+00
2.88677D+00
1.21349D+00
5.11615D-01
5.70234D-01

4.35410D+00
2.88677D+00
1.21349D+00
5.11615D-01
5.70234D-01

4.35410D+00
2.88677D+00
1.21349D+00
5.11615D-01
5.70234D-01

5.46987D-02
1.76788D-01
1.19444D+OO
5.81127D+O0
4.23606D+00

5.46987D-02
1.76788D-01
1.19444D+OO
5.81127D+OO
4.23606D+OO

5.46987D-02
1.76788D-01
1.19444D+OO
5.81127D+00
4.23606D+00

5.46987D-02
1.76788D-01
1.19444D+OO
5.81127D+00
4.23606D+00

1.088530+00
7.21693D-01
3.03372D-01
1.27904D-01
1.42559D-01

1.08847D+00
7.21340D-01
2.96852D-01
9.23179D-02
1.15411D-01

1.08846D+00
7.21275D-01
2.9563oD-01
8.49782D-02
1.10066D-01

1.08846D+00
7.21252D-01
2.95212D-01
8.23438D-02
1.08169D-01

3.06225D-01
4 .61877D-01
1 .09876D+00
2.60612D+00
2 .33822D+00

3.06239D-01
4.62103D-01
1.12290D+00
3.61071D+0O
2.88824D+00

3.06242D-01
4.62144D-01
1.12751D+00
3 .92257D+00
3.02850D+00

3.06243D-01
4.62159D-01
1.12913D+00
4.O48O7D+OO
3.08159D+00

3.257010-03 h-T-5.00000D-01
2.25705D-02
4.45834D-01
8.35548D+00
3.669470+00

3.25671D-03 h-x/2-2.50000D-01
2 .25485D-02
4.26ft69D-01
3.70609D+00
2.27189D+00

3.25665D-03 h-t/3-1 .66667D-01
2.25444D-02
4.23176D-01
3.101260+00
2.05846D+00

3.25663D-03 h-x/4-1.250000-01
2.25430D-02
4.21958D-01
2.90527D+00
1.98679D+00



Posi t ion (cm)

<{.' = 0
» — _ — — . _ 14.019

Fuel
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A l

3.310H~0
—= 3.180
Hf

2.680

V

<f>' = 0

Fig. 9. One-Dimensional Hafnium Cell With Reflective
Boundary Conditions.
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combination. Eigenvalues from the two sets of calculations are compared in
Table XIV. For reasons which do not appear to be related to the values of
the hafnium blackness coefficients, the DIF3D eigenvalues for both the rod-in
and the rod-out configurations are higher than those from the corresponding
VIM calculations by about 1.4Z. The worth of the hafnium rod based on blackness-
modified diffusion theory is within 1.6 standard deviations of the VIM result.
Had the blackness coefficients been based on the VIM broad-group cross sec-
tions, the worth values would have agreed within one standard deviation.

The effective diffusion parameters shown in Table XIII for h » T/2 were
used to calculate the worth of the hafnium control rods in the JRR-3 reactor
in an XYZ calculation. Figure 10 shows a sketch of the JRR-3 reactor,17 and
the geometry of the hafnium control element is given in Fig. 7. The standard
fuel element consists of 20 plates with 16 plates in the control rod follower
element. For the purpose of these calculations, the fuel was assumed to
consist of fresh LEU. In addition to the 3D blackness-modified diffusion
calculations, detailed Monte Carlo analyses were performed. DIF3D and VIM
eigenvalues and rod worths are compared in Table XV. As with the ID cell
problem, blackness-modified hafnium diffusion parameters were used only for
groups 3, 4, and 5. For the rods half-way withdrawn, the DIF3D eigenvalue is
0.732 larger than the VIM result whereas for the rods fully-inserted the
DIF3D value is 0.84Z smaller than the VIM calculation. Since the same effec-
tive diffusion parameters were used for both of the DIF3D calculations, i t
appears that this cross-over in keff relative to VIM is not due to the
blackness coefficients.
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Table XIV. Eigenvalues and Hafnium Worths for One-Dimensional
Cell Calculations.

Rod-ln Rod-Out Ap*
Code k e f f

VIM 1.0305*0.0024 1.3388±0.0031 22.34±0.29

DIF3D 1.0460 1.3562 21.87

*Ap = (kout - k±n)/kout kln.

53



[=]

[o)

'.rJ
Standard fuel element

Control fuel

SeiyIlium

Irradiation

Irradiation

Cold ncut]on

clement

element

hole

SOUICt

1000

500

-J o
(r.a>)
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Table XV. Eigenvalues and Hafnium Control E; a Worths in the JRR-3 Reactor.

Rod
Conf ig .

Al l out

At 50*

All In

k eff
DIF3D

1.2291

1.1224

0.8689

Ap"

7.74

33.74

k eff
VIM

1.2227*0.0023

1.1143*0.0024

0.8763*0.0028

7.

7.96*0.25

32.33*0.39

*Ap H (kout - k)/kout k.
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10. TWO-AND-THREE DIMENSIONAL CONTROL RODS

The primary purpose of this report was to present a set of procedures
for calculating control rod worths for a special class of control elements —
those that can be approximated by a one-dimensional slab treatment. For this
class of problems, a pair of blackness coefficients was evaluated which de-
pends only on the characteristics of the control material and from which
effective diffusion parameters are determined. In the more general case of
two or more dimensions, however, quantities analogous to « and 3 do not exist.
For this general case the assumption is made that effective diffusion para-
meters for the strong absorber can be fcund which depend primarily on the
cross sections of the absorber, its dimensions, and the mesh spacing used in
diffusion theory to describe the region but do not depend on the environment
outside the lumped absorber.

Unmodified diffusion parameters may be used for those groups for which
2 a « Es« The following procedure may be used to determine the effective
diffusion parameters for the other groups of the lumped absorber.

1. An arbitrary relationship between Deff and £ a is defined. For
example, Hannum .suggests using

Def f -
aeff

2 . A characteristic model cel l with reflecting boundary conditions is
defined. This cel l contains the lumped absorber, i t s immediate environment,
and a homogenized fuel zone.

3• For this cell a fine mesh high-order transport or Monte Carlo calcu-
lation i s performed to determine for each energy group the capture rate in
the homogenized control region relative to the fission rate in the fuel
region. I t may be necessary to divide the absorber into several nested
regions and to generate appropriate cross sections for each region for the
transport calculations.

4. The same cell is used for a diffusion-theory calculation choosing
the same mesh structure which will be used later for global diffusion
calculations.

5. The diffusion-theory calculations are repeated using different sets
of £a and 0 values for the homogenized control region. For each case and for
each energy group the capture rate in the absorber is determined relative to
the fission rate in the fuel. Effective diffusion parameters are those values
of £a and 0 for the control region which produce the same reaction rate
ratios as those obtained from the transport or Monte Carlo calculations.

6« Control rod worths are determined by performing global diffusion
calculations with and without the control rod inserted using the above
group-dependent values for &a . , and Deff.

This procedure for determining £a and Deff by matching reaction
rate ratios was used to calculate the worths of the borated-steel shim-safety
rods in the University of Michigan Ford Nuclear Reactor (FNR). The geometry
and composition of the shim-safety rods are shown in Fig. 11. It is obvious
from this figure that the FNR shim-safety rods do not lend themselves to a
one-dimensional slab treatment.
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Fig, 11. FNR Shim-Safety Bod Geometry and Composition

Geometry

5.668cm

Composition

CBoron stainless steel, 1.5 w/o natural boron)

Isotope/Element

10B

" B

Cr

Fe

Ni

Atoms/barn-cm

0.

0.

0.

0.

0.

001108

005184

0164

05644

0113
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Figure 12 shows an XY model of the FNR 27-eleaent fresh LED core configura-
tion in which shin-safety rod worth measurements were made. Diagrams of the
standard and control LEU UA1X fuel elements are given in Fig. 13.

VIM-Monte Carlo calculations were performed for a control cel l consisting
of the borated-steel rod and the control fuel element surrounded on each side
by one half of a standard fuel assembly. For these calculations reflective
boundary conditions were used and each fuel slab, side plate, clad plate,
water channel, and the control rod were explicitly represented. Results were
collapsed into the standard five-group structure shown at the top of Table I II .
Group-wise reaction rates were edited over the control region, the two core
regions, and the side-plate regions shown in Fig. 14. For each group the
reaction rate ratio of absorption in the control rgion to fission in the core
regions was determined.

Cross sections for each homogenized region shown in Fig. 14 were generated
by EPRI-CELL. The mesh structure used in the XY diffusion calculations of the
control cel l (Fig. 14) was the same as that used later in the full core model
(Fig. 12). Beginning with the highest energy groups, Ea and D in the control
region were adjusted until the diffusion-theory calculation for the reaction
rate ratio, Ra (Control Region)/Rf (ce l l ) , matched that determined by the
VIM-Monte Carlo calculations for each energy group. For the purpose of modifying
D, i t was assumed that only Ea changed in the expression for the macroscopic
transport cross section, E t r - £a - Ea(l ~ it).

Having thus determined the group-dependent effective diffusion parameters
for the homogenized control region, FNR control rod worths were evaluated using
the DIF3D code and the XY odel shown in Fig. 12. For these calculations i t was
assumed that the non-borated-steel regulating rod in grid postion 28 was fully
withdrawn. The results are summaried in Table XVI and are compared with the
measured values of the worths of the shim-safety rods. I t is seen that the
measured and calculated worths are in very satisfactory agreement.
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Table XVI. FNR Shin-Safety Rod Worths for
27 Fresh LEU Fuel Element Core

Rod
Configuration

All Out

A In

B In

C In

Grid
Position

46

48

26

keff

1.02208

0.99910

0.99782

0.99944

Reactlvl ty
Measured

E

2.22

2.32

2.28

Worth, X Ak/k
Calculated

C

2.25

2.38

2.22

C/E
Ratio

1.01

1.02

0.97
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11. CONCLUSIONS

There are several important underlying assumptions upon which blackness
theory r e s t s . These are:

1. The control slab can be adequately described by the monoenergetic,
one-dimensional, Boltznann transport equation.

2 . There can be no sources ( f i s s ion , scattering, or n,2n) in the control
material.

3 . The thickness of the absorber slab i s very small relat ive to the
transverse dimensions.

4 . Scattering within the slab i s i sotropic .

5 . Diffusion theory i s applicable to regions outside the control s lab .

If these conditions are met reasonably well and i f good, se l f -shie lded,
cross section data are available for the control s lab, the fine-group-weighted
blackness coef f ic ients , <a(P5)> and <3(P5», can be expected to y ie ld accurate
eigenvalues when used in a diffusion-theory calculation. For this purpose
effect ive diffusion parameters for the control slab can be determined in terms
of the blackness coeff ic ients and the mesh Interval width.

Those fas t energy groups for which £ s » Ea in the control slab may be
treated with normal diffusion theory. "Dirty blackness theory" provides a
good approximation for <a> and <f5> for those thermal groups for which Za » £ s .
However, S i s very sens i t ive to the effects of neutron scattering and so the
"dirty blackness" approximation should not be applied to the epithermal
groups.

If the geometry of the control rods does not lend i t s e l f to a thin slab
approximation, a and 3 blackness coeff ic ients do not e x i s t . Other methods
must then be used to determine effective diffusion parameters for the con-
trol material. One such method i s to define a representative control c e l l
and to determine by a Monte Carlo or high-order transport calculation the
capture rate in the absorber relative to that in a nearby fuel region for each
energy group. For the same c e l l D and Za of the control material are adjusted
so that a diffusion-theory calculation gives the same values for the reaction
rate rat ios . Results in good agreement with the measured values were obtained
by this method for the FNR shim-safety rods.

ACKNOWLEDGEMENTS

There are many persons who have made important c o n t r i b u t i o n s to t h i s
s t u d y . E . M. Gelbard showed how mesh-dependent e f f e c t i v e d i f f u s i o n parameters
can be expressed i n terms of the blackness c o e f f i c i e n t s . R. B . Pond did the
d i f f u s i o n c a l c u l a t i o n s f o r the R2 and JRR-3 r e a c t o r s and K. £ . Freese p r o -
vided s i m i l a r informat ion f o r the IAEA I0-MW Generic Reactor . Nearly a l l the
Monte Carlo c a l c u l a t i o n s were done by R. M. L e l l . The c o n t r i b u t i o n s from
each of these individuals is most gratefully acknowledged.

63



References

1. C. W. Maynard, "Blackness Theory and Coefficients for Slab Geometry,"
Nucl. Sci. Eng. 6,, 174 (1959). Also, C. W. Maynard, "Blackness Theory
for Slabs," in Naval Reactors Physics Handbook, Vol. I, A. Radkowsky,
Editor, pp. 409-448, U.S. AEC (1964).

2. R. D. O'Dell, F. W. Brinkley, and D. R. Marr, "User's Manual for ONEDANT:
A Code Package for One-Dimensional, Diffusion-Accelerated, Neutral-
Particle Transport," LA-9184-M (February 1982).

3. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book
Company, Inc., 1956, see Chap. 8.

4. C. W. Maynard, "Blackness Theory and Coefficients for Slab Geometry,"
WAPD-TM-168 (May 1959).

5. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of
Standards Applied Mathematics Series #55, U.S. Government Printing Office
(March 1965).

6. R. J. Royston, "The Behavior of a Flux of Neutrons in the Neighborhood
of a Control Plate," AERE T/R 2211 (March 1957).

7. M. Goldsmith, R. T. Jones, T. M. Ryan, S. Kaplan, and A. D. Voorhis,
"Theoretical Analysis of Highly Enriched Light Water Moderated Critical
Assemblies," Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy, Vol. 12, pp. 435-445,
United Nations, Geneva (1958).

8. K. L. Derstine, "DIF3D: A Code to Solve One, Two, and Three Dimensional
Finite Difference Theory Problems," ANL-82-64, April 1984.

9. B. DaviBon and J. B. Sykes, Neutron Transport Theory, Oxford University
Press (1957).

10. B. A. Zolotar, et al., "EPRI-CELL Description," Advanced Recycle Metho-
dology Program System Documentation, Part II, Chapter 5, Electric Power
Research Institute (September 1977). EPRI-CELL code supplied to Argonne
National Laboratory by Electric Power Research Institute, Palo Alto,
California (1977).

11. W. H. Hannum, "Representation of Plate Self-Shielding in Diffusion
Theory," in Naval Reactors Physics Handbook, Vol. I, A. Radkowsky,
Editor, pp. 595-620, U.S. AEC (1964).

12. A. F. Henry, "A Theoretical Method for Determining The Worth of
Control Rods," Bettis Atomic Power Division Report WAPD-218 (August 1959).

13. H. Henryson II, B. J. Toppel, and C. G. Stenberg, "MC2-2: A Code to
Calculate Fast Neutron Spectra and Multigroup Cross Sections," ANL-8144,
June 1976.

64



References (Contd.)

14. R. E. Prael and J . J . Milton, "A User's Manual for the Monte Carlo Code
VIM," PRA-TM-84 (February 20, 1976).

15. "Research Reactor Core Conversion from the Use of Highly Enriched Uranium
to the Use of Low Enriched Uranium Fuels Guidebook," IAEA-TECDOC-233,
Vienna (1980).

J . E. Matos, K. E. Freese, and W. L. Woodruff, Comparison of Safety
Parameters and Transient Behavior of a 10-MW Reactor with HEU and
LEU Fuels," Proceedings of the International Meeting on Reduced
Enrichment for Resarch and Test Reactors, 24-27 October, 1983, Tokai,
Japan, JAERI-M 84-073 (May 1984).

16. D. J . Hughes and R. B. Schwartz, Neutron Cross Sections. 2nd Edition,
BNL 325 (July 1, 1958).

17. H. Icikawa, H. Ikawa, H. Ando, M. Takayagi, H. Tsuruta, and Y. Miyasaka,
"Neutronic and Therrao-Hydraulic Design of JRR-3(M) Reactor," Proceedings
of the International Meeting on Reduced Enrichment for Research and
Test Reactors," 24-27 October, 1983, Tokai, Japan (May 1984).

18. W. Kerr, "Low Enrichment Fuel Evaluation and Analysis Program," Summary
Report for the Period January 1979 - December 1979. University of
Michigan, Department of Nuclear Engineering (January 1980).

65



Distribution for ANL/RERTR/TM-5

Internal:

A. Schriesheim
C. E. Till
R. Avery
L. Burris
D. W. Cissel
P. I. Amundson
F. Y. Fradin
J. H. Kittel
L. 6. LeSage

External:

R.
R.
D.
S.
E.
A.
R.
G.
L.
J.

A. Lewis
J. Teunis
C. Wade
K. Bhattacharyya
M. Gelbard
Travelli (100)
F. Domagala
L. Hofraan
A. Neimark
Rest

D.
C.
H.
T.
J.
ANL
ANL
ANL
TIS

R. Schmitt
Steves
R. Thresh
Wiencek
A. Zic
Contract File
Patent Dept.
Libraries (3)
Files (6)

DOE-TIC, for distribution per UC-83 (83)
Manager, Chicago Operations Office, DOE
Director, Technology Management Div., DOE-CH
Applied Physics Division Review Committee:

E. L. Draper, Jr., Gulf States Utilities, Beaumont, Tex.
J. F. Jackson, Los Alamos National Lab.
W. E. Kastenberg, U. California, Los Angeles
D. A. Meneley, U. New Brunswick, Fredericton
J. E. Meyer, Massachusetts Inst. Technology
N. J. McCormick, U. Washington
A. E. Wilson, Idaho State U.

Materials Science and Technology Division Review Committee:
C. B. Alcock, U. Toronto
A. Arrott, Simon Fraser U.
R. C. Dynes, Bell Lab., Murray Hill
A. G. Evans, U. California, Berkeley
H. K. Forsen, Bechtel Group, Inc., San Francisco
E. Kay, IBM San Jose Research Lab.
M. B. Maple, U. California, San Diego
P. G. Shewmon, Ohio State U.
J. K. Tien, Columbia U.

66


