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Abstract 

I f a Grand Uni f ied Theory wi th a compact un i fy ing group G 

is spontaneously broken to H , magnetic monopoles are created. 

The fate o f such an H-roonopole under a subsequent breaking to 

K c H is shown to depend on the behaviour of i t s non-Abelian charge 

Q introduced by Goddard, Nuyts, Ol ive: i f q belongs to the 

Lie algebra fe o f K , the monopole survives: i f Q can be H-

rotated to fe. i t can be converted. A necessary condit ion f o r an ' 

H-monopole t o survive i s that i t s Higgs charge sa t i s f y a topological 

constra int . 
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In Grand Unified Gauge Theories (GUT's) magnetic monopoles 

arise naturally as everywhere-regular, fin1te»energy, static, purely-

- magnetic solutions to the coupled Yang-Mills-Hlggs (YNH) equations. 

CI]. What happens to these monopoles i f the symmetry is broken sub­

sequently to smaller and smaller subgroups? This question has been 

asked and partially answered before [2-4]. Our approach is hoped to 

be more direct and i t allows us to derive the previous knowledge as 

a consequence. 

Let us consider a GUT with a compact, connected and simply 

connected unifying group G . At some energy scale the G-symmetry 

is broken to a closed subgroup H of G by the v.e.v. of a Higgs 

field 4 (transforming according to some representation $ •* g-* , 

g c G of G) . The field equations admit magnetic monopole solutions 

[1 ] . These solutions satisfy boundary conditions: on S, the "2-

sphere at infinity", ( i ) <j> takes its values in an orbit G-$Q = G/H ; 

( i i ) $ is parallel, D,t = 0 j • 1,2.3. I t follows from ( i l ) that 

on S the YHH equations decouple and the YM potential A. 

satisfies the pure YH equation 

(1) D ^ = 0 Vj . 

The point Is that any solution of (1) is characterized by a vector 

Q in h , the Lie algebra of H , called the "non-Abelian magnetic 
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charge" C5.63 : there exist gauges over U+ • S Usouth pole) and 
2 

U_ « S \{north pole) respectively such that (1) is solved by 

(2) A; » 0 . A| • 0 , /£ - ±Q(1 Ï Cos 6) 

for some fixed Q e ft , For a given solution Q is unique up to a 

constant global gauge transformation. In particular, i t can always 

be rotated to any given Cartan algebra of ft . t) must be quantized 

(3) exp 4«Q • 1 . 

(1) implies that • defines a class !>] in TT2(G/H) which we call 

its Higgs charge. The Higgs fields are gauge-related i f and only i f 

they have the same Higgs charge. « H:TT 2(G/H) •* iij(H) is an isomorphism 

since G is simply connected. SHC<H is represented by the loop 

(4) y(t) - exp 4irQt 0 s t s 1 

To have topological non-triviality, we require C*] t 0 . 

Conversely, for any quantized 0 e h , (2) provides us with a 
9 

solution of (1) which can be extended to a YHH solution on S simply 
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by putting • • *Q in l>± . Observe that this is a well-defined 

Higgs f ie ld since Q « k means that <J • * 0 = 0 , and so 

* 0 » exp ZQf+Q In U + n U. . The solution (A*,$) constructed 

in this way is interpreted as an H-monopole ( i . e . a monopole 

created in the "phase" when the symmetry group is H) assuming 

E « e ÏÏJ(G/H) is non zero. 

Let us no» assume that the symmetry is broken spontaneously to 

a closed subgroup K of H . In the K "phase" monopoles are pairs 

(A..X) , where X is a new Higgs f ie ld engineering the symmetry 
2 

breaking. In particular, X:S * G/K where K is the stabi l i ty 

subgroup of a XQ in a suitable representation; X must be para l le l , 

and TI_{G/H) J Cx] / 0 . The theory above te l ls us that any K-monopole 

Is .characterized by a K-magnetic charge Q1 « fe (the Lie algebra of K). 

Let us now consider an H-monopole associated to a Q c h . 

This same Q defines a K-monopole as well as soon as 

(S) Q e fe and IT, (K) 9 Cexp 4nQt]K t 0 . 

Saying that an H-monopole survives means hence that i ts K-

and H magnetic charges are in fact the same vector Q . 

Observe that for surviving monopoles «HC*3 and «KCx] are 

represented by the same loop ( 4 ) , so, i f i '• ¥><-+ H is the inclusion, 
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(6a) «!,[*] • 1* é ^ M 

where 1*:irj(K) •* ».(H) is the homomorphlsm Induced by 1 . 

Alternatively, the natural projection a : G/K + G/H induces 

o* : ir2(G/K) * ir2(G/H) and (6a) means 

(6b) m - o*CX] . 

Consequently, an H-monopole can survive only i f 

(7) W e Im o* I.e. 6HC<t>] c Im 1* . 

Let us now assume that (7) holds. Then texp 4nqt]K t 0 

automatically. I f there exists an h E H such that h Q h" « k -

and this may or may not be the case depending on how the Cartan algebra 

of & is related to that of ft (see examples below) - then the mono-

pole can save I tse l f by reorienting somehow i ts f ield's direction and 

so survive converted [41. But i f (7) is violated i t must disappear. 

The proposed scenario for this is confinement in a flux tube £3,4], 

Observe that (7) depends only on how the generators of it-,(K) s i t in 

H . In particular, i f they are contractible in H, im i , = 0 and no 

H-monopole can survive. Those K-monopoles whose K-charges are in Ker i, 
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can'not be surviving H-monopoles. They are hence newly created, 

light monopoles. 

An important special case is when irj(K) = Z . iu(K) has 

then a generator of the form Y 0 ( t ) « exp 2irçt , 0 s t s 1 . (7) 

requires [$] » r-ly01 for some integer r . I f furthermore, 

Q and r.ç/2 are conjugate then the monopole can be converted 

by reorienting its field. I f Q » rç/2 , then the monopole survives 

unchanged. 

In some cases,these relations can be translated into numbers. 

For example, i f t> is in the adjoint representation of 6 , then 

tr.(H) = Z£P where p is the dimension of Z(n) , the centre of the 

Lie algebra k . [$'] is then simply a p-tu pie of integers, 

<|> = (m, m.J [73. On the other hand, yQ above has (kj k ) 

as homotopy class in ir̂ (H} , so (7) means 

(8) ni. - r-kj , i * 1 p for some integer r . 

For example, i f K is a U(l) subgroup, Y 0 ' S K itself; 

i f K is a U{3) subgroup - locally SU(3)C x U(1) e m - then 
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e * i (diag(0,0,t£l)) is a generator for itjfK) . (1 is the 

inclusion i t fe - su(3) x u(l)<*h of Lie algebras). 

I f k c 1(h) and Q is not in Z(h) , then no conjugate , 

of Q belongs to Z(h) , and so no such H-monopole can survive, 

not even converted. For example, i f k * su(2)w + u(l) „ , 

fe = z(ft) = u( l ) e | | | , then only pure electromagnetic monopoles can 

survive the transition H * K C2]. 

We just mention that the formulae above have a nice geometric 

interpretation. YM fields are connection forms on principal bundles. 

Spontaneous symmetry breaking means bundle reduction. Higgs charges 

classify the principal bundles over S , so (7) means that 

H-bundie reduces to a K-bundle. ( i i ) is the condition for the 

connection to reduce. (2) - the content of the theorem of Goddard, 

Nuyts and Olive [5,63 - is expressed by saying that monopoles have 

1-dimensional holonomy generated by Q . I f an H-bundle reduces to 

a K-bundle, the H-connection reduces to a «-connection i f and 

only i f t contains the holonomy, i.e. (5). Full details are 

given in [9]. 
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As a first Il lustration let us consider S « SU(3) broken to 

H « U(Z) by a Higgs 8 ». The base point Is •„ = U/^l) dlag (1 ,1 . -2) . 

X e R. The non-Abel 1an charge Q reads, after diagonallzatlon, 

(9) Q « £d1ag [tiy «j -n^ -n 2 ) - r i 

where n, n 1 $ n 2 are Integers and n. , n, have no comnon divisor. The 

' form (9) 1s unique If we require 2n ] a n 2 a n } / ... The U(2)-H1ggs charge Is 

then « « n.n 2-

Let K be a U(l) subgroup K • exp 2irçt, c e U(2). ç can be 

dlagonallzed by a suitable U(2)-conJugat1on: 

(10) hcïf 1 • /?l dlag (kj. kj-kj, -k 2 ) 

The Integers kj, k ? here have no comnon divisor; they are unique If 2k1 Ï k 2 

2kg s k r . Conjugate vectors generate nomotopic loops, so CK]U<2) * ^ , 

(7) requtres hence m « rk 2 f ° r sw» •*• In particular [8 ] , i f 

kg • 0 all H-monopoles mist disappear when .the sjmmetry breaks down 

to K jlf k 2 « 2, m must be even, etc . 

It 1s easy to see that Q and some half-Integer multiple of (10) 

are U(2)-conjugate i f and only 1f Bj » k 2 and. nj » kj provided * t > k^. 

* If 2kj « k 2 , c Is In the centre and so c and Q cannot be conjugate 

unless they are equal, which 1s the third case. Otherwise, the 

monopole Is again confined In a flux tube [2] . 
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In this case the monopole can be converted by reorienting Its field's 
direction. 

Finally, the H-monopole survives unchanged i f Q and rty2 are not 

only conjugate but actually equal: r « n, n, * k, and n. * k. where 

now K itself is diagonal, and has the form (10). 

I f we choose instead * 0 « A l diag {X1.X2, -Xj -X 2) with Xj > X 2 

as base point, the residual symmetry group is 11(1) x U(l), so ir,(H) <• Z z . 

I f we choose nj * A l ( l , - 1 , 0) and n 2 * ^1(0, 1, -1) as generators 

for &, the Higgs charge of the monopole defined by Q in (9) is 

[*] » (nn^ nn 2). 

H - U(l) * U(l) is Abel tan, so any subgroup K is already of the 

form (10). (7) requires n^ • kj and n 2 = k 2 , so Q e fe. Hence all 

monopoles satisfying the topological constraint survive unchanged, while 

all others are destroyed. 

As a second example let us consider G » SU(3) and $ transforming 

according to the representation £ [*f >3| The representation space consists 

of 3 x 3 symmetric matrices with SU(3) acting as $ * g-*= g*g . I f we 

choose •„ * I3 * <H*9 (It 1.1) as base point, we get H « S0(3) as unbroken-

symmetry group. H is generated in fact by the Gel!-Mann matrices 
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/O 0 0\ /O 0 1\ /O -1 0 
X? - Al / 0 0 1 1 , -Ag » /^l f 0 0 0 ] , X2 - i^l f 1 0 0 |(11) 

\-i o o; ^ - l o o / \o o o 

Let us choose our Cartan algebra T to contain X-. The non-Abel 1an 

magnetic change, after rotation to T, reads 

(12) q » nftj, m an Integer. 

1^(50(3)) = Z 2 J the H1ggs charge of the S0(3)-monopole defined by (12) 

Is C4|]e(.(3) a m (mod 2 ) . So we get topologically non-trivial solutions 

only for m odd. 

Let us consider a U(l) "subgroup K •= exp 2nt£ = H c SU(3). £ can be 

brought to T by a suitable S0(3)-rotat1on. Ç * hçh" = ç e T for some 

h e H. ç Is a minimal generator since € Is minimal. Hence { ' S L . 

Consequently [K ] S 0 (3 ) " [exp 2ntt] S 0(3) " * ' i w d 2 ' - l t f o 1 1 o v , s t h i t 

a l l topologically non-trivial (m odd) H-monopoles satisfy the topological 

constraint ( 7 ) . i» : Z > m -<• m (mod 2) e Z 2 so the l ight , newly created 

K = U(l) monopoles are evenly charged CO. 

Let us assume m odd in (12). Q can be H - S0(3)-rotated to 

fe s R.ç, so a l l odd-charged S0(3)-monopoles can save themselves by 

reorienting their f ields and hence be converted. Their new 11(1} charge 
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will be simply m. They survive however unchanged I f Q and ç are 

actually parallel. I .e. ç « ± X 2 . 

Let us consider the prototype GUT based on G • SU{5) [10,11]. 

The SU(5) symmetry 1s broken first by a Higgs 24 (adjoint) * . I f 

* 0 - v/̂ *l dlag (1,1,1, -3/2, -3/2), we get H • S{U(3) x U(2)) » 

[SU(3)C x SU(2)W x U( l ) v ] /Z 6 of those matrices [AI 1 A £ U(3). B e U(2) 

det A. det 8 = 1. 

(13) 0 = ^/^1 dlag (n l t n 2 , -BJ, n 3-n 2, nj-n3, -n4) 

where n, n.» n., n 3 , n. are Integers, the last four has no common 

divisor, and 2nj i n 2 a n^/Z * n4/4 » ir^H) « Z. The Higgs charge 

of the monopole which corresponds to Q is calculated as [7, 12], 

(14) m = M = —i (2Q) « n.n, 
i ^ l 3 

(trace on the first 3 entries). 

At a lower energy scale H Is further broken to 

K « U(3) = S U p ^ O U U ) ^ by X = ( * , * ) , where # Is in 5, having 

base point v(0,0,0,1). 

let A" 

U 

, A e U(3). 

8 means local product, U(3) « SU(3)C x U ( l l / Z 3 . 
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A generator of t^K) 1s found as 

(15) ç - /^l dlag (0, 0, 1. - 1 , 0) 

so [K]H - t r 3 ( ç ) / ^ l - 1. 

Im 1 . « Z, the topoloav constraint Is always satisfied. 

Q as given In (13) can belong to fe If and only if n 4 - 0. 

If so, the H-monopole survives unchanged and has K-charge [X] » 

Tr (2Q)/«Q « nn2 = m. 

Q e H can be H-rotated Into fe « u(3) if and only 1f n̂ . » n 4 . 

If so, the H monopole reorients Its field and survives thus converted. 

No new monopoles are now produced when the symmetry breaks to K since 

i* i s infective. Ker i* •> 0. 

In some versions of the SU(5) theory r 10] the base point in the 

f irst breaking is rather • = v/^1 dlag (1 , 1, 1 - 3/2 • «, -3/2 - «) 

leading to H' « S(U(3) x U(l) x U(l)) =• U(3) x U.I) as residual symmetry 

group, n,(H) « z now. One can choose Cj - /^l diag (0, 0, 1, - 1 , 0) 

and ç z "*Cl diag (0,0,0,1,-1) as generators for Wj(K'). We have two 

Higgs charges, ntj and n^. Q as given by (13) belongs to fe'. The charges 

of the corresponding monopole are found as 

B i " 7 7 < 2 (» ' n n 3 
(16) ™ 

tr . 
m2 • - ? • (2Q) - nn4 
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K • U(3) as above Is a subgroup of H"; Its to» H1ggs charges In n^H") 
are 

tr- tr 
(17) k, - - f U ) - 1 and k. - —- (ç) - 0. 

Consequently Im 1 * Is generated by (1,0) c Z , and so only such 

H'-monopoles satisfy the tfipnlngte^l constraint (7) which have no 

nu-charge, I . e . n» - 0 . Those with n^ t 0 are destroyed under the 

transition H* * K. I f n 4 « 0 , Q belongs to fe, so I t survives unchanged. 

I ts K-charge Is nu » nn,. Ho new K-monopoles are produced since 1 * Is 

s t i n Injectlve. 
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