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Abstract

1f a Grand Unified Theory with a compact unifying group G
is spontaneously broken to H , magnetic monopoles are created.
The fate of such an H-monopole under a subsequent breaking to
K ¢ H 1is shown to depend on the behaviour of its non-Abelian charge
Q introduced by Goddard, Nuyts, Olive: if Q belongs to the
Lie algebra k of K , the monopole survives: if Q can be H-
rotated to R, ft can be converted. A necessary condition for an’
H-monopole to survive is that its Higgs charge satisfy a topological

constraint.
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In Grand Unified Gauge Theories (GUT's) wmagnetic monopoles
arise naturally as everywheresregular, finiteeenergy, static, purely-
-magnetic sofutions to the coupled Yang-Mills-Higgs (YMH) equations.
{1]. What happens to these monopoles if the symmetry is broken sub~
sequently to smaller and smaller subgroups? This question has been
asked and partially answered before [2-4]. Our approach is hoped to
be more direct and it allows us to derive the previous knowledge as

a consequence.

Let us consider a GUT with a compact, connected and simply
connected unifying group G . At some energy scale the G-symmetry
is broken to a closed subgroup H of G by che v.e.v. of a Higgs
field ¢ (transforming according to some representation ¢ + g9-¢ ,
geG of G) . The field equations admit magnetic monopole solutfons
1 ].‘ These solutions satisfy boundary conditions: on SZ. the “2-
sphere at infinity", (i) ¢ takes its values in an orbit G-¢0 =G/ ;
(ii) ¢ {s parallel, Djo =0 j=1,2,3. 1t follows from (ii) that
on S2 the YMH equations decouple and the YM potential AJ

satisfies the pure YW equation
) o,Fd = 0w,

The point is that any solution of (1) is characterized by a vector
Q in h, the Lie algebra of H , called the "non-Abelian magnetic




|
charge” (5,61 : there exist gauges over U = Sz\tsouth pole} and
u = 52\(north pole} respectivzly such that (1) 1s solved by

(2) Aﬁuo.l:;-o.h:-to(limse)

\
for some fixed Q ¢ h . For a given solution Q 1s unique up to a
constant global gauge transformation. In particular, it can always

be rotated to any given éartan algebra of A . Q must be quantized
{3) exp4nd = Y

(i) implies that ¢ defines a class (4] in wz(G/H) which we call
its Higgs charge. The Higgs fields are gauge-related if and only if
they have the same Higgs charge, GH:nZ(G/H) - n,(!l) is an isomorphism
since G is simply connected. 6H[¢] is represented by the loop

(4) y(t) = exp 4nQt 0sts

To have topological non-triviality, we require ([¢)#0 .,

Conversely, for any quantized Q ¢ h , (2) provides us with a

solution of (1) which can be extended to a YMH solution on Sz stmply



by putting ¢ = °0 in I!t . Observe that this is 2 well-defined
Higgs fleld since Q ¢ h means that Q- 9 = 0, and so

L e exp ZQ'-oo in U, n U . The solution (Aj.¢) constructed
in this way is interpreted as an H-monopole (4.e. a monopole
created in the "phase” when the symmetry group is H) assuming

¢] e wz(G/H) is non zero.

Llet us now assume that the symuetry is'broten spontaneously to
a closed subgroup K of H. In the K “phase™ monopoles are pairs
(AJ.,X) ,» where X s a new Higgs field engineering the symmetry
breaking. In particular, X:52 + G/K where K is the stability
subgroup of a XO in a syitable representation; X must be parallel,
and nz(G/H) 3 {x1 #0 . The theory above tells us that any K-monopole
is characterized by a K-magnetic charge Q' ¢ & (the Lie algebra of K}.

Let us now consider an H-moropole associated to a Qe i .

This same Q defines a K-monopole as well as soon as
(5) Qek and mn (K) ? {exp 41!Qt]K $0

Saying that an H-monopole survives means hence that its K-

and H magnetic charges are in fact the same vector Q .

Observe that for surviving monopoles Sylel and §,[x1 are

represented by the same loop (4), so, if it Ker H is the inclusion,




(6a) 8,061 = i, §X1

where f,:m(K) + L] {H) is the homomorphism induced by 1 .
Alternatively, the natural projection o : G/K + G/H induces
o, : 1r2(G/K) - wz(G/H) and (6a) means ' !

(6b) 162 = 0,[X]
Consequently, an H-monopole can survive only if
(7) [¢] e Im o, i.e. Syl € Imi, .

Let us now assume that (7) holds. Then [exp 4110!:]'( £0
automatically. If there exists an h « H such that h Q vl ek -
and this may or may not be the case depending on how the Cartan algebra
of & 1is related to that of h (see examples below) - then the mono-
pole can save itself by reorienting somehow its field's d{rection and

so syrvive converted [4]. But if (7) is violated it must disappear.

The proposed scenario for this is confinement in a flux tube [3,4].
Observe that (7) depends only on how the generators of n](K) sit in
H . In particular, if they are contractible in H, [p i, = 0 and no

H-monopole can survive. Those K-monopoles whose K-charges are in Ker i,




cannot be surviving H-monopoles. They are hence newly created,
Tight monopoles.

An important special case is when n(K) =Z . m(K) has

. then a generator of the form volt) =exp2mct , 0st<1. (7)

requires [$] = r-[yoj for some integer r . If furthermore,
Q and r.z/2 are conjugate then the monopole can be converted
by reorienting its field. 1f Q = rz/2 , then the monopole survives
unchanged.
In some cases,these relations can be translated into numbers.
For example, if ¢ 1{s in the adjoint representation of 6 , then
m (H) =ZP where p is the dimension of Z(k) , the centre of the
Lie algebra h . [4].1s then simply a p-tuple of integers,
¢ = .(m].....m,,) [73. On-the other hand, Yp above has (kl""'kp)

as homotopy class in 1r.'(H) s S0 (7) means
(8) my = r--l(.1 s J=1,...,p for some integer r .

For exénple. if K isa U(1) subgroup, Yo is K f{tself;
if K is a U(3) subgroup - locally SI!(3)':>¢IJ(I)eln ~ then




g =i (diag(0,0,/~1)) is a generator for m(K) . (i is the
inclusion 1: kb = su(3) x u(1)~+h of Lie algebras).

If k cZ(h) and Q is not in Z2(r) , then no conjugate ,
of Q belongs to Z(h) , and so no such H-monopole can survive,
not even converted. For example, if h = su(Z)“ + u(l) v’
k=zfkR) = "'“)em » then only pure electromagnetic monopoles can

survive the transition H » K [2].

We just mention that the formulae above have a nice geometric
interpretation. YM fields are connection forms on principal bundles.
Spontaneous symmetry breaking means bundle reduction. Higgs charges
classify the principal bundles over Sz » S0 (7) means that
H-bundle reduces to a K~-bundle. {ii)} 1is the condition for the
connection to reduce. (2) - the content of the theorem of Goddard,
Nuyts and Olive [5,6] - is expressed by saying that mono.poles have
1-dimensionatl hoionomy generated by Q . If an H-bundle reduces to
a K-hundle; the H-connection reduces to a K-connection if and
only if k contains the holonomy, i.e. (5). Full details are

given in [9].



As a first 11lustration, let us consider G = SU(3) broken_to
H = U(2) by a Higgs 8 ¢. The base point is b * (x/=1) diag (1,1,-2),
A ¢« R. The non-Abelian charge Q reads, after diagonalization,

(9) Q= %diag (nys ey, ony)- =i

~ vhere n, f;s 0, Bre integers and n, N, have no common divisor. The
" form (9) 1s unique 1f we require 2y 2 ny 2 nyy .. The U(2)-Higgs charge is

thep m = n.n,.

Let K be a Uf1) subgroup ¥ = exp 2ngt, £ ¢ U(2). ¢ can be
diagonal{zed by a suitable U(2)-conjugation:

(10) hen™l 71 diag (ke kyoky, -ky)

The integers kl' k2 here have no common divisor; they are unique {f 2k] 2 k2
25 2 kr Conjugate vectors generate homotopic loops, so [KJU(ZJ = "2

(?) requires hence m = rk, for some r. In particular [8], if

"2 = 0 all H-monopoles must disappear when the symetry breaks down
to K ;if kz = 2, m must be even, etc.

It {s easy to see that Q and some half-{integer multiple of (10)
are U(2)-conjugate 1f and orly 1f By = ky and n, = k; provided &, > k,."

* If z:l = "2’ ¢ 1s in the centre and so £ and Q cannot be conjugate
unless they are equal, which is the third case. Otherwise, the
monopole 1s again confined in a flux tube [2] .



In this case the monopole can be converted by reorienting its field's
direction.

Finally, the H-monopole survives unchanged if Q and r&/2 are not
only conjugate but actually egual: r =n, n = kl and Ny * kz where
now K ftself is diagomal, and has the form (10).

If we choose instead ¢, = /-1 diag (Agodgs =2y =25) with 2, > 1,
as base point, the residual symmetry group is U(1) x U(1), so “I(H) =22,
If we choose n = /~1{1, ~1, 0) and n, = v=1(0, 1, -1) as generators
for A, the Higgs charge of the monopole defined by Q in {9) is
[¢1 = (nny, nn,).

H = U(1) x U(1l) is Abelfan, so any subgroup K is already of the
form (10). (7) requires n = kl and 0,y = kz. s0 @ ¢ k. Hence all
monopoles satisfying the topological constraint survive unchanged, while
all others are destroyed.

As a second exanple let us consider G = SW(3) and ¢ transforming
according to the representation 6 413} The representation space consists
of 3 x 3 symmetric matrices with SU(3) acting as ¢ + g-¢= g@gT. If we
choose ¢ " 13 = dfag (1,1,1) as base point, we get H = SQ(3) as unbroken.
symmetry group. H is generated fn fact by the Gell-Mann matrices

P



(I 0 0 1 0 -1 0
A s/~1{0 0 1{, “Ag = ~<1{0 0 O}, Ay = ~1{1 0o o}1)
-1 0 0 -1 0 0 0o 0 0

Let us choose our Cartan algebra T to contain Az. The non-Abelian
magnetic change, after rotation to T, veads

{12) Q = miy man fnteger,

111(50(3)) = I,; the Higgs charge of the S0(3)-monopole defined by (12)
is [4’]50(3) =m (mod 2). So we get topologically non-trivial solutions
only for m odd.

Let us cansider a U{1) ‘subgroup K = exp 2ntf < H < SU(3). £ can be
brought to T by a suitable SO(3)-rotation. £ + heh™ = ¢ ¢ T for some
h e H. ¢ s a minimal generator since & is minimal. Hence § = ¢ 7‘2’
Consequently [K]so(:” = [exp ':‘n;t]su(a) =1 (mod 2). It follows that
all topologically non-trivial (m odd) H-monopoles satisfy the topological
constraint (7). i, : Zdm-+m (mod 2) ¢ Z, so the light, newly created
K = U(1) monopoles are evenly charged [4].

Let us assume m odd in (12). Q can be H = SO(3)-rotated to
k =R.g, 50 all odd-charged S0(3)-monopoles can save themselves by
reorienting their fields and hence be converted. Their new U(1) charge
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will be simply m. They survive however unchamged if Q and £ are
actually parallel, {e. £ = + Ay

Let us consider the prototype GUT based on G = SU(5) [10,11].
The SU(5) symmetry is broken first by a Higgs 24 (adjoint) ¢. If
% = w=1 diag (1,1,1, =3/2, -3/2), we get H = S(U(3) x u(2)) =
SU(3) . »« su(2) x> u(1 of those mtrices [A A e U(3), B e U(2
[SU(3) x Su(2),, * U(1),)/Zg [Alg] 4 < v 8 e

det A, det 8 = 1.
(13) Q= -'2-' /=1 diag (n)snp, ~Nys Nghpy My=ngy -n) -

where n, UDLPY s 0, are integers, the la.st four has no common
divisor, and 2n, 2 n, 2 ny/2 2 /4, n,(H) =2, The Higgs charge
of the monopale which corresponds to Q is calculated as [7, 12].

(14} m=[¢] = ir_a_ (2Q) = n.ng
V-1
{trace on the first 3 entries).
At a lov':er energy scale H is fl-lrtlll" broken to
K = U(3) = 50(3) @ ““’:m by X = (¢,¥), where ¢ is in 5, having
base point v(0,0,0,1).
K=I'A _l-l.Aeuia).
det A
, 1}
* @ means local product, U(3) = su(a)c x l.l(l)em/la.

- .-
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A generator of nl(K) is found as
(18) . ¢ =/<1dfag (0, O, 1, -1, D)

0 [K]y, = tra(;)IJ:l =1,

Im 4, = Z, the topology constraint is_always satisfied,

Q as given in (13) can belong to k if and only if n, = 0.
If so, the H-monopole survives unchanged and has K-charge [X] =
Tr (2Q)/4=1 = any = m.

Q ¢ H can be H-rotated into k= u(3) if and only if Ny * Mo
If so, the H monopole reorients its field and survives thus converted.
No new monopoles are now praoduced when the symmetry breaks to K since
i, is injective, Ker i, = 0.

In some versions of the ;U(S) theory 710] the base point in the
first breaking is rather ¢, = w1l diag (1, 1, 1. - 3/2+ ¢, -3/2 - ¢)
leading to H' = S(U(3) x U(1) x U(1)} = U(3} x U 1) as residual symmetry
group,  my(H) = Z% now. One can choose ¢, = ¢=1 diag (0, 0, 1, -1, 0)
and g, =/=1 diag (0,0,0,1,-1) as generators for 'nl(l'l'). We have two
Higgs charges, my and m,. Q as given by (13) belongs to h'. The charges
of the corresponding monopole are found as

m = —':—::- (2Q) = Ang
(16}

tl‘4
my *® _"._1' (2q) = LY
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K = U(3) as above 1s a subgroup of H'; fts two Higas charges in m(H)

are

(n k=3 () m 1andky = () = 0
= —2 () = 1and k, = — (g) = 0..
17, " 2" At

Consequently Im 1, 1s generated by {1,0) ¢ Zz. and so only such
H'-monopoles satisfy the tapalogical comstrafat (7) which have no
TZ:_CEE' te. n, = 0. Those with n, # 0 are destroyed under the
transition H* » K. If ny = 0, @ belongs to k&, 50 1t survives unchanged.
Its K-charge 1s my = nny. No new X-moropoles are produced since 1, is
still injective.

24
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