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ABSTRACT.

The equations of motion for an electron in a free electron laser amplifier are written in
hamiltonian form, and exactly solved for the circular polarization case, Successively, an ap-
proximate solution for a general polarization (elliptical or linear) and weak laser field is ob-
tained by a relativistic generalization of the two-timing technique.

Finally, the theoretical perturbative results are confirmed by comparison with numeri-
cal solutions.

1. - INTRODUCTION,

The free electron laser amplifier is a device in which a relativistic electron beam inter
acts with a static period magnetic field (wiggler field) and a travelling optical wave (laser
field).

The mean initial conditions of the beam may be chosen to yield a net energy transfer from
the electrons to the laser field, thus producing an amplification of the latter,

If the beam density is not too high, the Coulomb interaction between the electrons, as well
as quantum effects, may be neglected.

In these conditions, a theoretical investigation of the behaviour of a FEL starts with the
calculation of the classical one-electron trajectories in the combined fields,

Among the various designs which have been proposed for the FEL, specially interesting
are the circular case (both fields circularly polarized) and the linear case (both fields linearly
polarized in the same direction).

Though the circular case has been deeply :nvestigated, there is a lack of theoretical (and

experimental) results for the linear case, which is the main object of our investigation,




This work is organized in five sections. In Section 2 the principal results of previous cia

lysis are briefly considered, and a Hamiltonian approach to the equations of motion is presented.

In Section 3 some interesting cases are discussed, and an exact solution for the circular case
is obtained. In Section 4, we describe a scheme of perturbative analysis, the expansion parame
ter being the laser field strength, which generalizes the well-known nonrelativistic two-timing
technique. In Section 5, some plots of computer solutions of the equations of motion are presen

tec and discussed.

2. - EQUATIONS OF MOTION.

The classical one-electron trajectories for the circular case are calculated in ref.(1). In
this analysis, which assumes the electron longitudinally injected, the longitudinal motion (once
obtained this, writing down the transverse motion is straightforward, as will be shown) is de-
scribed by

() = - @2sin(E(1) (1)

where @7 is a function of the field strenght and electron energy, and
E() =, + dowt + Ky dz(t) ,

oz(t) = z(t) - Lz Dt

<>
}

do - E2
c ’

c Wy -9 (1 -

<z being the mean electron longitudinal velocity, and

o = 23C w. - 27C
w Aw ' 1 P

where lw and A are the period of the wiggler field and the wavelength of the laser field, re-

spectively,

As shown in refs.(1,2), maximum gain is achieved near the resonance condition

do =0,

which, in turn, may be written as

; ! (2)
<z> - C(——_—.—_) ,
wl + ww

The right side of (2} is easily recognized as the velocity, measured in the laboratory frame, of

a {rame in which the two fields have the same frequency (W frame). Thus, the resonance




condition amounts to saying that the velocity of the W frame is the same as that of a frame
in which the electron mean velocity is zero. Equivalently, when Am = 0 the electron motion is
bounded in the W frame.

All of the following calculations will be carried out in the W frame, where the two
fields can be represented, with fairly good approximation, by two plane monochromatic waves,
travelling in opposite directions along the z-axis,

In units where the speed of light, as well as the charge-mass ratio of the electron are

equal to 1, the equations of motion for an electron in an electromagnetic field are“)

a?xi oAk od Kk .
K, X Ta

where g is the proper time, Al is the electromagnetic four-potential, and summation over re-
peated indexes is understood.

For electromagnetic waves it is always possible to choosé a gauge in which the 4-potential
is purely transverse, Supposing.then,the potential independent of the transverse coordinates, (3)
implies the conservation of the transverse components of the generalized 4-momentum

i . ,
%?2—+A1 = p! = const i=1,2, (4)

Using (4) in (3), we get the equation of longitudinal motion

g M, Mz WM (5)
at 1_;!2 9z

where

Mz(Z,t) =1+ Ig -é(z.t)lz

the bars denoting Euclidean modulus of the two-dimensional vector. We may attain a more uge

ful formulation of (5) by passing to the Hamilton-Jacobi equation, which in its relativistic for-

mulation reads(a’ 4)
s aS i, _
(oxi -Ai)(o—xi -A)=1, (8)

The action is defined as the line integral of the electron Lagrangian along the effective path,

which obeys the variational principle
4s =0

the variation being taken for given initial and final positions, Equation(4) permits us to look for
soluti ons of (8) of the form

- X' +8'(z2.0). ™
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Equation {6), with S given by (7), becomes

;058" .2 as' .2 _ .2
\—m—') -(-az—) =M (8)

from which we see that the scalar M plays the role of a space-time dependent effective mass of
the clectron in its longitudinal motion. Regarding (8) as a Hamilton-Jacobi equation for the elec

tron motion in the z-t subspace, we also see that it obeys the variational principle

dfMda =0 (9)

with

2 2

do® = dt® - dz

Equation (9) may be written as

oth(z, z,t)dt = 0

Lt(z,i,t)=M¥ - _oMmy1-%2%. (10)

ttence, the Lagrange equation fo: the electron longitudinal motion reads

4 M, faom
o A "

heing

which is equivalent to (5).

The canonical momentum conjugated to z is given by

L ;
st . Mz (12)
% 1-2

and the lamiltonian corresponding to (10) is

Wo=sP -L, © e {13)

=t o2
Note that, though relative only to the longitudinal motion, H effectively represents the electron
energy. In fact, it is readily verified that

dt .2 dz.2 2

( )-(-;)=M

ds d

which in turn implies
@M.y
ds %]

"R




The Hamiltonian may be written in terms of z, P, and t as

H = P+ M (14)

from which

P .
Prpemte Bt M (15)
P2+ M VpZ + M2

The variational principle (9) permits us to write the equations of motion by using any couple of

variables, For example, choosing the phases

as ixiependent variables, and noting that

do? = dods
the Lagrangian reads
-mle .
Le=Mg = M Vi (16)

{whenever the phase variables will be used the dot will indicate differentiation with respect to r,

and the brackets will indicate v-average). Consequently

d M Js M
drt 2 [6 [.I)

Whenever M depends on either one of the couple of independent variables, a new constant of mo
tion is found, and the solution of the equations of motion is obtained by quadratures, We discuss

now some exact solutions of the equations of motion,

3. - EXACT SOLUTIONS.

Suppose A depending only on ¢. A potential of this kind represents the more general su-
perposition of waves, travelling in the positive z-direction. Being M independent of 0, equa-

tion (17) implies the conservation of the @-component of the canonical momentum
e = B, * const. (18)
2/o

As may be readily verified

do de¢ _ .2
sa M

which gives




{19)
Sa equation (18) implies that, for the motion in a superposition of waves travelling in one direc
tion, the phase is a linear function of the proper time

The law of longitudinal motion is

Q:—li- j Mzdf
4Pg

(20)

A -
n

while the transverse motion is obtained by (4). For a wave of unity angular frequency
Re (Ajexpit) .

Supposing P =0, which means absence of constant transverse drift, and using the vector identity

[Re(iz, 2. %Ig&_'z + %Re(lz) (21)
yield
1 2 1 2 .
M2 - 1 *3 Iﬁol +§Re (A exp2is) . (22)
| dz 1 dt do " fon, vi
Being 2z - 2(0-1), at "z a (dt - 1) the condition for bounded motion, viz.

dz,

A PTRAR

is satisfieed if
. de
(F;) = 1

(23)
which means that the coefficient of the linear part in 0(t) must be equal to 1. Using (20) and
(22). the bounded motion condition may he written as

1 2 2
1+ 2 '.‘ﬁo| h 4P9 :

(24)
For a circularly polarized wave, ézﬂ =0 and the longitudinal motion is uniform, When the

initial conditions satisfy (24), the trajectory is a circumference in the transverse plane,
For a linearly polarized wave, assuming the polarization directed along the x-axis, the

trajectory is an eight-figure in the z-x plane. For weak fields, it reduces to its nonrelativistic
limit, a segment parallel to the polarization axis,

unit, the potential is given by

Conslder now two waves of the same frequency, travelling in opposite directions along the
z-axis, For unity frequency, what may always be imposed by an appropriate choice of the length




Alz,t) = Re(A] expilt-z) + A expilt+z)) . (25)

Supposing again P =0 and using (21) lead to

"1 2 . .1 02 R
551 exp2ilt-z) + 3 Az exp2i(t+z) +

2 _ llolz 11,092
M®=1+5 51 +2|ﬁ2| + Re

(26)
* ,0 . o o .
AT Bpexpliz Ay Ay exp2iny.

If both waves are circularly polariced, £%2= ﬁ°22 0.

Furthermore, depending on the concordance of polarizations, either iolt- i‘; or f\_(: - ﬂ‘;
vanish. In both cases M depends on only one variable, what permits us to solve exactly the equa
tion of motion.

If the polarization are concordant, Qc;’- é; 0 and M? is given by

2

_ 1 0 2 11,0 2 0 L0
M =143 lﬁl' +3 ‘A_2| +Re(A, - A, exp2it)

and is independent of z. The z-component of the canonical momentum is then consgerved

M. P, - const, 27

V1 .22

the law of longitudinal motion being given by
P, dt

z = V_—T——:T'—.
P+ M™(t)

Note that the electron never changes its direction, what makes bounded motion impossible (save

(28)

of course, when the electron does not move at all), If the polarization are discordant,

2 . 1 2_ 11,012 ox 0 "
M®=1+3 |£] +2!ﬁ2l * Re|A "~ A) exp2iz| (29)

does not depend on t, and energy is conserved,

o]
n

const, (30)

which yields

dz VE? . m2(a)

where the sign must be chosen in such a way as to mantain at positive. The law of motion is

Edz

— (31)
VEZ . M!(z)

t=1?




and motion can be bounded or unbounded, depending on the value of E. For the transverse mo-

tion, equation (4) has to be used,

4. - PERTURBATIVE ANALYSIS FOR ELLIPTICALLY POLARIZED WAVES.

In nonrelativistic mechanics there exists a method, due to Kapitza, known as "two-tim-
ing approximation”, which permits to separate a slow component of motion from a rapidly oscil
. (3,5)
lating one

hod.

. What follows may be viewed as a relativistic generalization of the Kapitza met

The motion in the one-wave field is given by (20). Using (22), it may be written as

)

0-0+32 Re(L A%% expziv) (32)
2 2i —1!

where

a - [1 +% ' °|2-| -1 , 6 - const. , 6 - O+ const.

-1 4

In case of hounded motion, 6= 1,
Suppose,now,that a second wave, weak respect to the first, is added. We can look for a

solution of the form (32), where © is now a glowly varying function of .

Being 6 %1
. > 1 02
9 =61 +¢1Re(5é1 exp 2i7)) ’ ) (33)

Neglecting all terms containing i022 and supposing P =0, the effective mass 1\12(0,1) reduces to

2 1),0142 1 ,02 0 A0 . o, oXx .
M2 = 14 2] AY] 4 Re(5 A% exp2in) + Re(AS. A expi(r+0)+ AT A7 expi(z-9)). (34)

The lagrangian Lg = M Vo may then be written as

o 2
Lgs V%’ [(1+aRe(%l_\_(;2exp2if))(l+aRe(%§_(; exp 2it +

x
*“R"(ﬁ(;'ﬁz expi(t+9) +/_\_(;-£\; expi(t-9)) 1/2

and, up to the first order in A; ,

v / Af, 11 ,.0(2 ] 402 .
Lt-\n6h+zlﬁll +Re(§ i] exp2it) +

1 0 0 . o,.o%
+ 2 Re(ﬁ1 _/_\_2 expi(t+0) + ﬁl fg expi(t -0))] .
As in the Kapitza method, being @4<1, we may replace the effective Lagrangian by its

t-average, obtained keeping O constant,




. x
Lg* Vae[l +% é‘; 2, -;-Re(ic;'ﬁ\_(; {expi(s+0)> +§;'A° ’expi(f-°)>)] . (39)

-2 ~

Suppose <1, which corresponds to an almost bounded motion in absence of the second wave.

We may then consider @-t constant in one period, thus getting

' 2
exp-i(O-f)(exp—i—azg- Re(zl—i _A_(; exp 2it)> ,

Lexpi(t-0)>

aé 1 ,02
> Re(2i A exp 2i%)) .

Cexpi(v+0))> = expi(@-tv)expi(2 +

2
Supposing now A’; real, what may always be imposed by an appropriate choice of coordi

nates, and using the integral representation of Bessel functions of integral order

4
JN(x) = ,l' /cos (xgint - Nt)dt

0
it is readily verified that
. 3 A0 2
. . a® ,02 . i e84
(exp(-lTﬁl sin2¢)) = Il n )
. A 02
. ab 2 . aOﬁ\_l

(exp1(21+T£ sin 2¢)) =-J1(——-4'—').

the imaginary parts of complex exponents giving no contribution to the integrals. Then

Lg :V;g [1 +-;- Iéﬂ'z + Re(Bexpi(O-f)] »

where 02 02
alA al
_ a0, 1 -1 o* 1 —1 0,
B = .52(2 Jo( 4 )él -3 Jl(-—-4 )ﬁl Y, (36)

.

and we have put © = 1 in the arguments of Bessel functions, which are multiplied by _.‘f; The
action S is given by

S = ‘/'IE I'% + Re(B expi(O-t)] ;/é-df = '[—Jl: |-1+aRe(Bexpi(9-r)] \/gdt =
L a |-
= \% [1+aRe(2Bexpi(0-t)_.' 1/2 ngf.

S = /|:1 +-;-|A_‘;'2+ne(2Bexpi(e-r)]1/2 }/é-dt.

Using the variableg: T = -;: (B8+¢), Z = -;—(O-f) we see that S may be written in terms of T
and Z ag
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S = fM(z)dF-

where d22 - dT2 - dz2 and

2 1 0o 2 N \
M™(Z) = 1 t3 ﬁl + Re(2Bexp2iZ) . (37
2
a_A_(; 1 1 0" 0
Noting that, i never becoming greater than L B never differs too much fi‘om 551 -ﬁz.
we see that, as long as ioz 2«1, Equation {37) is formally equivalent to (29).
More-

The function T(Z) obeys then the same equation as t(z) for the circular cases.

over, suppose

eo b= dt .
t(z-zol =0, azl = io
z32,

Opportunely shifting the T-origin, what does not affect the previous considerations,and choos-

ing cos 27‘0 - 0, we have

_ ~ dT _l
TZ=2,) =0, 3z T -

Z=1z, [

The law of longitudinal motion then reads

z
T - * / E dz (38)
;s VEZ. M%)
Zs
where M2 is given by (37), and E still represents the initial electron energy. The electron po
sition is implicitely given by
2+ BRe(k 207 exp 2i (39)
z = 3 a7 A exp it) .
For a qualitative understanding of motion, consider first the slow oscillation Z, Its am-
plitude is implied from the condition
E2. M%2z) 20
and is the same as for the circular case, Denoting its T-period by T* and the t-period by

1}, pives

z X a 1 02 . % 2 .
Tt e S Re (5 AT Jexp2itty+ X - 2t +t%) - exp2ilt, - 2(t0)])

from which, since T¥ » 1
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Thus also the period of Z is the same as for the circular case, Denoting next the fast
oscillation as z;, (39) gives

@ 1 ,02 .
= ZRe(Eél exp2ilt-z - 2). (40)

!

In a first approximation we may consider Z =0, which gives Z; coinciding with the mo-

tion in the one-wave field1. For a better approximation, consider Z given by the broken line in
the figure below,

o

A indicating the amplitude of the Z-oscillation, As may be seen from (40), the frequency of Z;

is
Aw*
w =2(1 - T) for Z increasing, and
2
o =2(1+ Aw ) for Z decreasing,

where @¥ = 2a/t¥ is the frequency of the Z-oscillation.

We conclude that, in the bounded situation considered, the electron longitudinal motion is
formed by the superposition of the circular case solution corresponding to the same initial con-
ditions, and a frecuency modulated oscillation, whose amplitude is the same of the one-wave so
lution, and whose frequency oscillates between ®=2(1 % Az* ).

Note that, being w®%4¢1 the fast cacillation may be identified with the one-wave solution,

the approximation becaming better as the laser field strenght decreases,

5. - NUMERICAL SOLUTIONS,

The Hamilton 2quations (15), together with the transverse motion equations (4), have been

numerically solved by Runge-Kutta methods. Th2 expressions assumed for the fields are
Ay = Ajgcos(t-z+P ) + Ay, coslt+z+p, ),
Ay = Aycos(t-z+Pa)+ Ayy cos(t+z+f, ).

The data required are the initial electron posgition, the constant vector P and the initial

z-momentum P,.. A change in the initial transverse position does not affect the shape of the
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solution, while this is strongly dependent, as should be clear, on the initial longitudinal posi-
tion, @ change in which corresponds .o a phase shift.

Figures are plots of numerical solutions obtained for the linear case (O=A1y = Azy). The
initiaf values have been chosen to yield, for one wave only, a bounded solution (what happens if
the resonance condition is verifiedl, Figs. 1-4 represent the electron z-position as a function
of time, for different values of the laser field strenght A2x' In Fig. 1, this is mantained small
with respect to the wiggler field strenght. This is the case considered in the perturbative ana-
tvsis, and the reader may convince himself that the results of Section 4 are confirmed, Parti-

culariy, the siow oscillation always corresponding to the circular case solution.

‘T2

Apx=10"
Agy o107
2 4
Ax 310”7
"1
. A0

FiG. |

In Vigs., 2 and 3 the two fields have a comparable strenght. Note that the decomposition

of motion in two nscillations of different frequencies may no longer be made, Furthermore, mo
tion is how unbounded, In Fig, 4 the two fields have the same strenght, We gee that motion is
aprain botnnded,

Moreover, it appears as a single oscillation whose perind  is exactly double than the

one-wave motion frequency,
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Figs. 5-10 represents the electron trajectories corresponding to the same values of the
parameters, When the laser field strenght is small (Figs. 5,6,7) the trajectory is an eight-
-figure oscillating back and forih between the bounds of the slow motion. In Figs. 8 9 (com-
parable strenghts) the trajectory appears completely disordered. In Fig. 10 (equal strenghts)
we note again some sort of order,

We may observethatthe electronmotion undergoes two order -disorder "phasetransitions”
at some critical values of the laser field strenght, the order parameter being the mean longi-
tudinal velocity,

Figs. 11, 12, 13 show the electron phase space paths, For the circular case, the phase
space paths have proved to be a pov.erful tool for an intuitive understanding of the gain mecha-
nism. In Figs. 1-13 the following parameters are held fixed: z5 = /4, on= 0, P=0, A=

I, P1x =0, Py, -0, the varying parameter being A, .
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