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ABSTRACT 

Using the standard model of cosmology we 
study the evolution of the population of a 
coupled system of two neutral fermions in 
which the lighter one is stable. During 
the expansion- their population can be 
frozen at a certain level which makes 
them contribute to the mass density of 
the universe; The details of the freezing 
depend crucially on the couplings and on 
the masses of these two fermions,so that, 
comparison with the measured mass density 
in the universe gives constraints on the 
parameters of the physical system we 
examine. W>; discuss 
different configurations for 
among these fermions; in 
the case of large mixing 
restrictive bounds on both 
study is relevant to 
grand unified models which 
occurence of light interacting 
fermions,particularly Hi ggsinos. 
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1 :Introduction 
Modern cosmology and the standard Big Bang model [1] provide 
us with an efficient framework to constrain proposed 
theories in high energy physics which are difficult to test 
in the laboratory [33. In particular,this approach proved to 
be very fruitful concerning weakly interacting 
particles,such as neutrinos [3] and axions [4]: to say the 
least ,in some occasion , cosmology strongly influenced a 
new approach to the problems [5]. 
Recently a very intense activity has been devoted to 
supersymmetry which,for aesthetical and technical reasons 
^appears to be a possible way to unify all interactions 
including gravity. Unification models based on 
supersymmetry possess a new rich spectrum of 
particles,which may" npt be out of reach of the forthcoming 
accelerators. In all models,each usual particle is 
expected to have a supersymmetric partner. Among all 
these newly proposed states, some are charged and/or 
colored (scalar partners of leptons and/or quarks),others 
are neutral colorless fermions (gauge and/or Higgs 
fermions) . These gauginos and Higgsinos are 
similar to neutrinos, except perhaps for the photino,and as 
such may be submitted to a cosmological analysis. 
In this paper we shall be concerned with the study of a 
coupled system of two massive neutral fermions which 
interact via the exchange of the neutral weak boson Zo 
(sometimes, we shall also use the name lepton for them).We 
shall try to obtain information on the parameters of this 
physical system,like mixing parameters and masses, using 
cosmological information. Let us first set the stage and 
briefly recall the analysis done by Lee and Weinberg [6] in 
the case of a stable heavy lepton. 
Following the standard model, at very, early times, the 
universe was very hot and dense so that most of the energy 
wis carried by radiation and that matter appeared under the 
form of its fundamental conslituents-Ieptons and quarks-. 
Contrary to usual physical systems which relax to 
equilibrium if c.te waits long enough, in the universe the 
shorter the time the larger the number or particle species 
which are in equiIibrium.Under the extreme conditions 
described above,reaclions rates are large and chemical 
equilibrium is achieved. However. as time flows the 
universe is expanding and its temperature drops,so that a 
particle of mass M ,whose density is further diluted by the 
Boltzmarn factor exp-(M/kT), becomes so rare that it ceases 
to interact and annihlla te.Whatever the interaction cross 
section is,reaction rates are virtually vanishing because of 
the dilut ion.From this time on,the population of the 
concerned particle in a covolume is frozen to a given amount 
and contributes to the mass density in the uni verse.This 
freezing (quenching) phenomenon [8,7] has been studied and 
used to derive lower bounds on the masses of neutral 
leptons iB,B] . 
Consider.for instance, N to be such a particle which is 
coupled to the Zo and stable. The only reac_Uon_whi ch can 
make the population evolve is annihilation N+N-»f + r .where f 



-2-

and f are light fermions coupled to the Zo as usual.As long 
as_the_temperature of the universe T>M the inverse reaction 
f+f-»NJ-N can occur at a sufficient rate lo maintain the 
number or N's,which behave like a relativistic _ ga_s_ 
of particles. When T is below M, the process f + f-»N+N 
slows down because of the decline of the available 
energy^ for the f's. Then one would expect that the N and 
the N continue to annihilate, leading them to 
extinct ion,a long their equilibrium curve. In fact the N's 
will not completely disappear due to different phenomena: 
First as T > Gf'/* the interaction cross section a =i T ~ 2 , 
therefore the reactions are very rapid and maintain the 
equilibrium despite fast expansion. At a lower temperature, 
the production rates of N cannot compete with expansion and 
the mean free path of the N's becomes larger than the 
typical expansion length c/H (H is the Hubble constant). 
Then the universe is transparent for these particles which 
begin free expansion. Standard calculations [1] give for 
light weakly interacting particles a decoupling temperature 
Tj*.\ 0(1 M e v ) . 
Second,if M > Ta the N's will decouple much earlier than 
expected from the calculation of Td.Indeed ,in addition to 
the effect of expansion,their density is damped by the 
Boltzmann factor exp-(M/T) once T < M.They are now so rare 
that annihilation will eventually stop. This freezing does 
not happen suddenly, at some point Ta < T < M,the population 
of N's leaves the equilibrium curve (this is the freezing 
point) and little by little becomes stabilized at its frozen 
value. This value is much higher than if they had decoupled 
at Td.The density number in a covolume stays constant. but 
the density is still diluted by expansion. 
This illustrates the quenching which can happen to heavy 
neutrinos as was used by Lee and Weinberg [ 6 ] . They found 
that the present mass density of these particles depends on 
their mass M in the fol lowing way : 

On" C .[ M(Gev) ] -t.83 (1-1) 

We observe that the higher the mass M the lower the density 
of the fossilized N's.Thus a lower bound on M can be 
obtained if we require that pn cannot exceed the presently 
measured mass density p. Using p=2.10~zs g/cm 3 it was found 
that a lower limit on M is 2 to 4 Gev.However, Gunn et al. 
[3] argued that such massive particles should bind around 
galaxies into halos.This can reduce the upper limit on pn by 
an order of magnitude and raise the lower limit on M to 7-15 
Gev. 
We shall follow closely such an analysis in the case of two 
neutral weakly interacting fermions,one oC them being 
unstable.In the next section we derive from general grounds 
the kinetic equations describing this physical system and 
we discuss in which approximation detailed balance 
applies. Section 3 is devoted to the solution of the 
obtained differential equa ». ions .We study different 
configurations for the couplings between our two fermions 
Ni and Nj .This detailed discussion allows us to 
derive interesting constraints on the Higgsino sector of 
supersymmetrie models in Section 4.Our conclusions are given 
in Section 5. 



2:EVOLUTION EQUATIONS FOR A BINARY SYSTEM 
In this section we derive the evolution equations for a 
system of two massive neutral fermions which interact among 
themselves and also with a thermal bath of light or 
massless fermions (quarks and Ieptons). 
On general grounds [8-10] ,the problem of density number 
evolution of a particle species in the early universe-hot 
and dense- can be tackled using the transport equation of 
the kinetic theory of gases. For instance if we are 
interested in the evolution of the distribution of particle 
ai we have: 

df.i 1 
= 2 rn fbi.(l-r.j).|M<bt,...t>m -ai,. .,a„)|2-

dt 3E.i i,j 

-n r. j<l-fbi).|JK(ai ,...a„-b,,..,bm)|2 ] 
I . J ' 

(2-1) 

where the f's are the energy distribution functions of the 
fermions involved in the physical process. K(b< *a ) is the 
transition amplitude for the reaction b — > a and the sum S 
runs over all processes which can create or destroy ai and 
also includes phase space integrals for all the particles 
except ai. The factors (l-fij) and (l-fbi) account for the 
exclusion principle in the final state for the fermions a, 
and bi. In eq(3-l) we have assumed that particle momenta 
are uncorrelated , so that multiparticle distributions 
factorize and also that there are no spatial inhomogeneities 
i.e. no x dependence in these distributions. At 
equilibrium the distribution function for a fermion is the 
usual Fermi-Dirac distribution: 

eq FD -1 
f (E/kT)=f <E/kT>=ri+exp(E/kT)j (3-2) 

We shall assume that the out or equilibrium distribution is 
still only a function of e=E/kT. 
The number density is defined for one helicity state as: 

n(T)=/ d3p/(2T)3 f(E/kT) (3-3) 

From (3-1) one easily obtains the kinetic equation for n(T) 
by integration. 

dn(T) dR(T) n(T) 
+3. = B /dLIPS(->,b)[n fbi(l-f,)>-

dl dt 73 a.b i,j 
.|M(b-a)|* - n (l-rbi)r.f|H(a-b)|! ] (8-4) 

I.J 



In (2-4) dLIPS(a.b) denotes the Lorentz invariant phase 
space volume element for ALL particles. 

d'pi d3pj 
J^,lPS(a,b)=n (3ff)< <5" (2 P i-Epi ) (3-5) 

i,j <37r)33Ei (3ir)33Es 

The right hand side or (2-4) .usually termed as the 
collision integral,simplifies greatly ir we consider only 
3-body and 3-body processes. Indeed it can then be 
expressed in terms of annihilation or scattering cross 
sections and decay rates. 
Having presented the general framework,let us now describe 
in more details the ..collision integrals relevant to our 
case. Let Ni and Na denote two heavy neutral fermions such 
that Mi>M2 and f be a generic notation for light fermions in 
thermal and chemical equilibrium. For the time being ,we do 
not refer to any specific model ,as we shall do in the next 
sections,but only assume that the interaction proceeds 
through the neutral weak current. Under this assumption, 
the reactions which change the number of Ni and/or Na are 
the following: 

Ni NT — » CT , Ni Fa — » f7, Na ¥2 — » f7 (3-6a> 

Ni ÏÏi — > Na Yi , Ni ÏÏT — > Na Ta . Ni Ta — > Na Ta 
(3-6b) 

Ni Ni — » Na Ni , Hi Ni — » Na Na , Ni Na — > Na Ha 

Hi f — » Ha f , Hi T — » N a T (3-6c) 

Ni — > Na r T (3-6d) 

We have grouped the reactions into four categories which we 
discuss separately in the order given above. As long as 
equilibrium is maintained , the inverse reactions (T or CP 
transformed of (3-6)) occur at the same rate as the direct 
ones (3-6):we shall denote them by a bar over the label of 
the direct reaction label. 

a/ Ni NT — > fT (i,j=l,3) 
Since we consider our particle system in a regime where the 
universe temperature T is such that 

Mi » kT » Mr (1 = 1,3) (3-7) 

the light fermions (f) are well above their decoupling 
temperature and are in thermal equilibrium. Then their 
energy levels are distributed following (3-3) .However as 
long as they participate to the interaction with Nt and Ha 
their energy is , in average, of the order of Mi.In such a 
circumstance the Fermi-Dirac distribution is ,to a good 
approximation , equivalent to the Maxwe1l-Bo1tzmann 
d; strI but ion i.e. 
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eq FD B 
r (e) = f (e> =. r (e> =exp(-Ef/kT) « 1 (3-8) 

In the same way because of (3-7) and because the Ni's go out 
of equilibrium at a rather low temperature we can guess that 
f(ei)<<l. Therefore we can forget the Tinal state factor 
il-r(ei){ and obtain for the collision integral ,denoted 
A(ij—>fT) : 

A(iI-ff)=/dLIPS(iJ,ff>.|K(HtNj-rr)|ï.[ro(et)f«(eT)-

- f(ei>r(ej)3 (3-9) 

In this equation we have explicitly assumed that the 
transition amplitudes are time, reversal invariant .which 
would not be the case if we had CP violating interactions. 
If we use energy conservation [10] : 

eq iq B B 
f (er).f (eT) = exp-(Er+ETAT) = exp-<Bi+Ej/kT) = f(ei;.f(ej) 

(2-10) 

we obtain: 

_ B B 
A(ij-->t7)= /dLIPS.|M(NiNj-»r7)|!.fr(ei).f(e.i).r(ei>.f(ej)i 

=<v.o-(ir->rr)>.[n»i(T).n<'J(T)-ni(T).ni(T)] (3-11) 

where 

<v.<r(ir-»rr)>= l/4E|.E1./dLIPS(pr ,PT). |M(Ni"FTi-*rf)|2 (3-13) 

The brackets indicate that we have taken an average over the 
distributions of Ni and ^"j,this enables us to exhibit the 
number densities ni(T) and nj(T). We keep an index i and j 
on these quantities to remember their mass dependence. Note 
that we assume that all chemical potentials are zero 
l.e.,m(T)=nT<T). 
Prom now on we shall use the superscript 0 to label physical 
quantities at their equilibrium value. In the present case 
and unless specified ,in the sequel of this paper ,the 
quantity <v.o> will be evaluated for heavy particles Ni at 
rest. W e have calculated the collision integral for 
one channel ff,ultimately we shall sum over all open 
channels and take Si A(lj-*fD . 

b/ Hi TTI — » Nj "ST (Ni h — > Nj Nk> 

In this subsection we consider the processes which 
participate to the evolution of the neutral fermion Ni,which 
heavier than Nj will decouple earlier, that is, at higher 
temperature. The collision integral reads: 
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B(li-»jlc)=/dLIPS. |M(NiNi->Nj!^)|î.Cr(ek>.f(ej)-f(ei).f(ei): 
(2-13) 

This expression can be simplified to a form similar to 
(2-11) • Indeed since Mi+Mi S Mj+Mk the direct channel b is 
always open ,whereas the inverse one is not. As the 
temperature of the universe drops reaction rates are slowing 
down because of the density dilution and the decline of the 
available energy. At some stage they will eventually stop 
and .for instance the reaction (b) will stop later than the 
reaction (b) CHI .In other words (b) ceases at a 
temperature T=©b<®b . where-0r denotes the temperature at 
which the reaction (r) stops.For T < 87 the equilibrium is 
no longer maintained in. the channel under concern.therefore 
the temperature Ti at which Ni goes out of equilibrium 
should be lower than lnf(0r) where T runs over all inverse 
reactions under concern. 
Let us examine how the-'-system evolves as the time goes on. 

i) As T > Tt all particles are still on their equilibrium 
distributions including the heaviest one.Ni.so we can write: 

f(ei).f(eic) = f(ej).fo(ek> = fO(ei).fo(ei) (3-14) 
which following the lines of subsection (a) gives for the 
col Iision integral : 
B(l"P->/!?)= <v.<7(ir-*jk)>.fn»i(T).nO|(T)-n,(T).n1(T)] 

(2-15) 
ii) As T < Ti all inverse reactions are virtually stopped 
and their contribution to (2*13) is negligible. 

r(ai).r(ek)-f(et).r(ei)e. -f(ei).f(ei) (3-16) 

In addition we expect that the number density of N) will not 
decrease very fast because of the slowdown of the direct 
reactions. In particular we can safely say that ni(T<Ti) >> 
n°i(T) since the equilibrium density is steeply decreasing. 
For these reasons we have to a good approximation 

-f(ei).r(ei) «* f°(ei).fo(ei)-r(ei).r(ei) (2-17) 
This allows us to keep the same expression for B(lT->jTc) 
given In (2-15) in all the temperature range. 

c / Ni r — » Ns r , Ni T — > NÎ T 

These reactions represent the scattering of Ni's on the 
light fermions which» in the temperature domain of interest 
do not go out of equilibrium. 
if the line of reasoning used in the previous case is still 
valid we cannot .without care. factor out the cross 
sect ion.Rather one should calculate the integral of v.tr over 
the f° of the light fermions. Wc prove in appendix A that 



it is a very good approximation to use <V.CT> calculated Tor 
an incoming energy squared s=Mi.(Mi+S77ICT),where TJ=3.15 
corresponds to the average energy for a fermion 

<Et> = 7/2.f(4)/f(3).kT = i7kT =s 3.15.kT (2-18) 
d/ Ni — > N2 fT 
The contribution of this decay channel can be derived as 
above.Here as scon as T<Ti the 3-body fusion 1*2 f f—>Ni 
becomes very unlikely and we can write for all temperatures 
with the same approximation as in (3-17) the collision 
intégra 1 : 

D(l->2f7) = <r(Ki-»Nzf7)> . [i>o,(T) - m(T)] (2-19) 

We note that this contribution is linear in the number 
density contrary to a 11 others. 
Let us finally consider the reaction which concerns 
Na,namely; 

e/ Na NT » fT 
As T is below Ti the population of N: is maintained in 
equilibrium' by this reaction. The freezing temperature Ta 
of the N2*s is then close to the stopping temperature ®. 
We .once again .can write Tor this annihilation channel: 

A(2T-»rT)= <va{ZZ-*t7)> . [ nO„(T)3 - n2(T)a ] (2-20) 
This is just a particular case of (2-11). 
Collecting all the terms we can obtain the kinetic equation 
Tor m ( T ) and ni(T) : 

dn,(T) dR(t) m ( T ) _ 
+3. =E t A(ll^rr)+A(l'2->f7)+D(l-»2fr>] 

dt dt Ta 
+2 B(li-*jk) +E B(ir-»af) (S-21a) 

dn*(T> dlt(t) n*(T) _ _ _ _ 
+3 =S [ A(22-»ff )+A(12->ff>-D(l-*2ff)] 

dt dl T» 
-E B(li-Hk) -S B(lf-»2f) (2-21b) 

where the sums arc over particle and antiparticle labels. 
The second term in the left hand side of the equations is 
related to the expansion of the universe:if instead of n(T) 
we define f(T)=n(T)/T3 -not to be confused with f(e)- .which 
corresponds to the number density for a covolume .this term 
disappears. We obtain : 



1 dfi(T) _ _ 
=S S<v.ff(ll->rf)> tf0i(T)2-fi(T)a] + 

T3 dt _ _ 
+ <v.(7(u->rr)>.[roi<T).roj(T>-f t(T).fs(T)]i 

<2-23a) 
+E'a' <v.<T(ii-»jk)>.Cf0i<T).roi(T)-ri(T).ri(T)] 

+ i S <r(l-»3f7)+2<v.<7(lf-*2f)>.nO(T)i .[r°i(T)-fi(T)]/T3 

1 dr 2<T) 
. =£ !<v.o-(2â-»rf)> Cf°a<T)a-fa(T)a] + 

T=> dt _ _ 
+ <v.<7(i3-»rr)>.Cf°i(T).roe(T)-ri<T).fa(T):H 

(2-22b) 
-£'2' <v.<r(li^>jk)>.tf0i(T).r<>i<T)-ri<T).ri<T>3 

-I 2 <r(l-»2rT>+S<v.<FOf-*2f)>.nO(T)(.[r0<(T)-fi(,r)]/T3 

where n°(T) is the equilibrium density of the light 
fermions which is 

1 3 
no(T>= f(3).T3 (2-23) 

ir* 4 

for each helicity state if we neglect the mass.Let us note 
that in this case f " (T)=n0(T)/T;J is a constant. The factor 
'2' takes into account the fact that reaction NtNi—>NjNa 
suppresses 2 Ni's at once. 

3.SOLUTION OF THE KINETIC EQUATIONS AND DISCUSSION. 

In this Section,we will solve ....the system of equations 
established in Section 3. In ordë'r to do that,we first have 
to calculate the cross-sections associated to processes 
(2.6).Let us assume that the coupling of our binary system 
lo the Zo gauge boson takes the general following form : 

HW(Gr/V2).(Fi ÏÏÎ).W(l-7a). • ' I Z*t 

(3-D 

We will first review the different reactions arising from 
such a Lagrangian whereas the corresponding cross-sections 
are ilven in Appendix B. 
A first class of processes couples the system to the light 
fermion matter.More precisely.we have 

— annihilation ( Figs.la-b-c) 

Ni TTi —> r T (a) 

Ni "51 —> f T and Ns "Bl —> f T (b) 

Ns Ns — » f T (c) 



These are the only ones present in the case of stable 
neutrinos [6,B].They are consequently the only reactions 
responsible for the violation of the total number ni+ng . 

— decay ( Fig.Id) 

Ni — > Hz f T (d) 

that leaves Hz as the only stable particle of the binary 
system. 

— the scattering of heavy "neutrinos" upon light matter 
( Fig.le) 

Ni f(or 7) — » Na f(or T) (e) 

which will prove to introduce noticeable modifications with 
the one leptoa case. 
A second class is provided by processes internal to the 
binary system : 

— annihilation ( Fig.lf-g-h) 

Ki Ti —•* Ns SI ( f ) 

Ni TÏ7 —» Ns F t <g) 

N, ffi —> Ns Tt (h) 

— s c a t t e r i n g < F i g . l i - j - k ) 

Ni Ni — » N i Nj (i) 

N, Ni — > NÎ »!• (j) 

N, Nj — > NÎ »Î (k) 

We did not compute the exact behavi_our of the cross-section 
for the decay process Si >Nz Ma Nj assuming that we could 
take it into account in the effective number of decay 
channels for process (d). 
The evolution equations for m and m have been derived in 
Section 2 ( eqs.2-33).Processes (a) to (c) and (f) to (k) 
yield terms quadratic in the number densities m or n 2 

whereas the presence of the decay (d) and the scattering 
upcn light matter (e) gives rise to linear terms which 
will prove to play an important role in the evolution of the 
number densities.We prefer to use in eqs(2-22) the 
variable 

x= T/Mi (3-2) 

where the temperature T is related to the time by the 
following relation ,valid in the radiation dominated era: 

J- 45 1 1 K 1 
( 3 - 3 ) 

327T3G VS7 T* VNf T 
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in (3-3) G is the gravi tationna1 constant ,Nf counts the 
number of degrees of freedom effective at the temperature T 
(if nF [nB] is the fermionic tbosonic] number of helicity 
states, Nf=7/16.nF+l/3.nB). Finally ,if temperatures and 
masses are expressed in Mev,K=0.26 1 0 z a Mev (1i=c = k= 1 ) . 
Using the notations defined in the appendix B for cross 
sections , the evolution equations now read : , 

dfi EKMi 
= J t f l ( x ) ' - f " l ( x ) J J [ < < 7 , V > + < < 7 f v>+<<7 < V>+<<7| V>+2<<TjV>J 

dx vT57 
+ C r i ( x ) f a ( x ) - f 0 l ( x ) f 0 j ( x ) ] [ < < 7 b V > + « T h V > + <<7kV>] 

+ C f i ( x ) - f O i ( x ) ] [ r + n ° r ( x ) . < c - e v > ] / ( M i . x ) 3 J ( 3 - 4 a ) 

d f s SKMi 
= f [ f l ( x ) * - f » l ' ( x > « - ] [ " <(7fV> - <CTgV> - <<J|V> - 2 < 0 - j V > ] 

dx >/NT 

+ [ f 2 ( x ) « - f 0 s ( x ) 2 ] . < f f c v > + 

+ [ r i ( x ) f a ( x > - f i ( x ) f O s < x ) ] [ < f f b v > - <<7hv> - <CT K V>] 

- C f i ( x > - f > i ( x ) ] [ r + n " t ( x ) . < o - e v > ] / ( M i . x ) 3 } <3 -4b) 

where n°f(x) is given in eq(2-23). 
We emphasize the fact that fi reTers to the population of Ni 
fermions (and not to the ant i fermions ~Wî ) . Since we assumed 
•CP conservation and* that the chemical potentials vanish: 

f = r = fi : • P =f_ =fa (3-5) 
N, TTi Nj Ne 

As already mentionned, the only processes that violate the 
total number m+nz are the annihilations into light 
mo tter(a-b-c). Therefore ,as one can ci-eck 

d(fi+fj) 2K.Mi 
= S[fl(x)2-r<>l(x)a]<(T aV> + [f2(x)Z-r0 2(x)!]<C7 cV> 

dx vW 
+2.[fi(x)f2(x)-f0i(x)r->j(x)].<ffbv> i (3-6) 

We will now discuss the solutions of the system (3-4) going 
all the way from a diagonal type of coupling (b=l,c=0) to an 
antidiagona1 coupling (b=0,c=l) and investigating 
intermediate possibilities. The discussion will therefore 
be based on the values for the b and c parameters and on the 
mass gap between the two heavy fermions: 

ÛM = Mi - M-j = Mi .(1 - o) (3-7) 

3-1: The quasi diagonal coupling 

In the diagonal case (c=0,b=l), we are left with two stable 
particles which interact with light matter through 
annihilation processes a) and c). The analysis of Lee and 
Weinoerg [6] can therefore be readily generalised to this 
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mixture of two heavy neutrinos to give a bound on the lower 
mass Ma. These bounds still depend on the mass gap. We 
have two extreme solutions : 
-if Mi >> Ma the present mass density is mainly due to N2 
and is equal to [6] : 

pz = (4.3 10 -»• g/cm->).(Ma Gev)-'•» =. (H,/VN7)-I>-9= (3-8) 

where N a is the number of annihilation channels(N» =14.6 for 
a mass of 5 Gev). We obtain a lower bound on Ms from the 
requirement that 

yos < 0.p c.(H/H l )>î (3-9) 

where Ho = 5 0 . Km/s/Mpo and pc = 5. 10-30 g/cn3 is the 
critical density [3] ...Taking 0=1 gives an absolute lower 
bound on M2 since it assumes that the Na fermions rill the 
whole missing mass in the universe.We can also,fol lowing 
Gunn et al. [B],consider that the heavy neutrinos collapsed 
around galaxies forming the so-called galactic halo,in which 
case 3=0.1.The limits on M2 reads : 

Ma > 4.5 Gev. (0-l)oj4 .(Ho/H)--°-> (3-10) 

tha t is for 0=0.1 

Mi >> Ma > 15 Gev . ( Ho/H) ••<> s> (3-11) 

-if Mi = Ma,the present energy . of these leptons is just 
twice that of each par tide.Therefore (See eq(3-8)) the 
lower bound is raised by a factor 30*34 and we obtain for 
0=0.1, 

Ml= Ma > 33 Gev. (Ho/H)-.°<> (3-13) 

We now allow for a small departure from this diagonal case 
by giving the non diagonal term a small value e << 1.The 
decay process d) and the scattering process e) on the light 
fermions play now a crucial role in the evolution and will 
lead to a rather different situation. If the mass gap is 
important,the scattering is suppressed but the decay is 
determinant.This situation has been studied in detail in ref 
C13J,where we have derived limits on the moss Mi and on the 
lifetime T (which is related to the parameter c).tn Fig.2-a 
we give the evolution of I>I and na for ÛM=500 Mev ( and 
ea=io-e .Clearly Ni leptons disappear completely after.some 
time of the order of their lifetime T . 

For a much smaller mass gap (AM=10 Mev) ,the lifetime 
becomes larger than the age of tne universe at the time of 
quenching and the decay does not play a significant role.For 
£2=10-8 (Fig.2-b),we are still in a case similar to the pure 
diagonal one .each heavy lepton behaves as if it was alone 
and \*e recover the limit (3-13).But already for c 2 = 10-e 
( f i g .3-a ) , the scattering process e) starts playing an 
important roie.Basîca1ly,as long as there are important 
amounts of light fermions and of Ni leptons,the 
transformation of Ni into Na occurs.But the expansion of the 
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universe and the decrease of the number density m generate 
the freezing of m.After some time and before the decay 
becomes important (for AM=10 MCV,T=SO minutes),both Ni and 
Nj populations are fossiIized.When we increase e , the role 
of the scattering process e) becomes more and more crucial 
and the frozen value of m / T 3 decreases .Fron. Fig.3-b for 
example we see that the frozen value is down by more than 
one order of magnitude when c* is changed from 10 _ 6 to 
4.10-*. 

Therefore as soon as one departs from the diagonal case with 
equal masses (AM^O or c/0),we have the elimination of the Ni 
leptons and we recover the limit of Lee and Weinberg(3-11): 

Me > 15 Gev . (Ho/H)<-o» (3-13) 

Due to the relaxation ,when the decay or the scattering 
becomes important,the m curve is pushed toward its 
equilibrium value n°i.When these processes piay a crucial 
role ,Ni remains in chemical equilibrium because very fast 
reactions connect it with light matter. 

3-2:The "democratic" coupling 

We consider the intermediate case where b=c=l. If Mi=Mj,the 
cross sections of reactions (a),(b) and (c) turn out to be 
equal.We therefore obtain from (3-6) the evolution equation 
for the total number density. 

d(fi+r s) 3K 
= .Hi«7,v>.[(fi+rz)2-(fo,+fo2)23 

dx VÏÏT (3-14) 

Clearly the solution is 

fi(x) = f 2(x) = f(x)/2 ' (3-15) 
where f(x) is the solution given by Lee and Weinberg. 
Despite the fact that we have two stable heavy neutrinos the 
present mass density is the same as if we had only one 
particle,and we still have the lower bound (3-11). On the 
other hand when Mi^He.even for a very small mass gap the 
decay d) and the scattering e) will play a crucial role and 
quicken dramatically the disapearance or Ni .We are thus 
rapidly left with a unique stable heavy lepton Ns and the 
Lee-Weinberg analysis still applies.Thus in both cases 

Ma > 15 Cev . (Ho/H>«.°» (3-16) 

3-3.'The anti-diagonal coupling 

We finally study the ease c=l and b=c'<<l. Since the 
coupling of Ni to Nj is the strong one,the decay d) and the 
scattering on light fermions e) will play the proéminent 
role and tend U* eliminate NL as the temperature drops below 
Mi.Therefore,eve- if 1er the decoupling or the Ni population, 
the number density of Ni will stay close to its equilibrium 
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value because every excess would dtcay or be scattered off. 
During the quenching of the Na population,we can therefore 
assume that : 

m = n°i << ne (3-17) 

Under these conditions, eq(3-6) supplies us with an 
evolution equation for fa : 

dfa 3K 

= .Hi Krs(x)a-r°iU)*]<oev>+af°i(x)r.r2(x) 
dx VÏÏ7 

-f°2(x)]«ri>v> I (3-18) 
Thus only annihilation processes influence the evolution of 
n2:a slow one (proportionnai to t'') involving only N2 and a 
fast one annihilating Na on Ni. 
We first discuss the case c '=0,.Resul ts are shown in Fig.4, 
for Ma=5Gev and various mass gaps(AM=0.5,1,3,5,10 Gev). We 
observe that the larger the mass gap the mere numerous the 
present Na population is. Moreover,as compared to the 
previous cases discussed above ,the Na density (even for a 
rather low mass gap of AM=500 Mev) is nrich higher and 
actually exceeds the upper limit allowed b; eq(3-9).The 
physical interpretation of this phenomenon is rather simple: 
the only reaction that will al^ow Na to disappear is the 
annihilation process b) (NaTTi-»fT) but al the time of 
quenching there are so few Ni leptons left (because of decay 
and scattering) that this annihilation is slowed down 
noticeably and even stopped for large enough mass gaps. We 
can therefore not only put a limit upon the mass or the Ne 
lepton but also on tie mass gap,The upper bound on AM is 
estimated very conservatively to be : 

AM = Hi - Ma S 0.1 Ma (3-19) 

As for the limit upon Ma,since we have a mixture of quasi 
degenerate heavy leptons,we recover the limit (3-13). 

Ma > 33 Gev . (Ho/H) =-•"> (3-30) 

We then turn to the case c'-O.Examples are shown for Ma = 5 
Gev and for various mass gaps in Fig.5 .For mass gaps up to 
3 Gev nothing is changed.The mixing interaction b) dominates 
and the upper limit upon the mass density of the Na 
population is exceeded even for AM=500 Mev. For very 
large mass gaps (AM=10 Gev),we observe that the present mass 
density of the surviving Na docs not depend on AM and 
decreases as c' increases;physica1ly,for a large mass gap, 
annihilation b) is suppressed whereas annihilation c) 
(NaîTâ-TT) acts with an extra factor c'a exactly as if the 
mass M a was renormalised to r'*/a.Ma. 

Finally we give the mass bounds that arise from our 
ana lysis. 
Either 

Ma > 15 Gev . f -»/a .<Ho/H>'•<>« (3-31) 

and the mass Mi is unconstrained (Mi > Ma),or Ma is smaller 
than this limit and the mass gap is also bounded 

Ma > 32 Gev . (Ho/H)'-°« : AM/Ma < 0.1 (3-33) 



4. A PHENOMENOLOGÏCAL MODEL. 

/ 

The supersymmetric grand unified theories provide us 
with model: where the above results apply in a viry direct 
way. In a simple SU(5) model for example, it is/' necessary 
[13J to ^ouifle the 5 of Higgs scalars and introduce a 5 
and 3 5 scalar superfields (respectively ^l'i and H^) . 
Their spin 1/3 components,the Higgsinos Hi 
therefore form a binary system of the kind 
in the previous section.Realistic theories 
somewhat more intricate . In the model of 
L.E.lbanez and G.G.Ross [14] , in the case where the 
photino is not the lightest particle,we ^have to 

three particles : Hi, Ha and the 
of an extra chiral superfield 
- a singlet under SU(5).The mass 
(neglecting 

consider a system of 
fermionic component 2 
which transforms as 
eigenstales are [14J 
gauginos >: _ 

viHi°-vaH2° 

and HE, 
studied 

are 
J.Ellis, 

small admixture of 

A» 
(4.1) 

vaHiO+viHjO 
+ Z ) 

where vi and ve are the vacuum expectation v-ilues of 
superfields Hi and Hz (v*=vi 2+v z3), 
These three r.eutral fermions couple to the Z through the 
coupling : 

—v"—Z«(S£SJ 
•Jz -Jz 

Z<i(§pSiA<>) 
'i'-vl'T 1 1 "I 2v (v 2r 1 T 

3V2 L 1 1 J V2 1. 1 J 
3V1V2 

V* 
[ 1 1 ] 

V» 

W O - Y S ! _ 

S» |(4-a) 

A» 

Let us suppose that the AO fermion is the heaviest : the Si 
is the lightest and , unless forbidden by a suitable choice 
of parameters the A 0 and S^ will decay into it . Following 
the results of Section 3,we can outline two different 
situations : 

4—1 : The asymmetric vacuum. 

We set for example 

V2«v and v(=^v (4-3) 

If ESO , X" and S.j> will decay rapidly into Si and we recover 
the bound (3-13) of Lee and Weinberg ( accounting for a 
difference of a factor 2V3 between couplings in Eq(3-1) and 
gq-(4-3) and the fact that we deal with Majorana spinors ) 

mass of SJ> > 30 Gev . ( Ho/H )«•<>» (4-4) 

This certainly^is a fairly high value for the mass of S£ 
If c=0, the À 0 does net decay and its presence would still 
raise the bound . 
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4-2: The symmetric vacuum. 

We now study the case 

viave and (va-vi)/v=c'<<l (4-5) 

The coupling matrix in Bq(4-2) now reads : 

J-l"] \'V 
v^ L.1 1 J L 1 J (4-8) 

_ H i i l -e'v'â _ 
This is precisely a coupling of the antidiagonal form 
(Seo^.3-3) . Because the S° fermions can annihilate only on 
the À 0 still present at the time of their quenching , their 
number density is untolerably high unless A 0 is almost 
degenerate to them . We therefore can bound all the masses 
of the system : 

mass of 5° - mass of S.? 
- - < o.l (4-7) 

mass or §2 

and ( e x t r a p o l a t i n g the r e s u l t of E q ( 3 - 2 0 ) to the c a s e cf 
t h r e e '.lajorana p a r t i c l e s ) 

mass of S°. > 27 Gev (Ho/H)'..»» ( 4 - 8 ) 

As the masses can be expressed in terms of several 
parameters of the model [14], £qs(4-7) and (4-8) put rather 
stringent bounds on these parameters . In particular, 
Eq(4-7) which .relates a priori uncorrela ted parameters 
constrains them in a somewhat unnatural way 
One should finally note that the situation of a 
symmetric vacuum , where our study gives the most severe 
constraints , is the one encountered 'When grand unified 
theories are coupled to N=l supergravity [15]. 

5.CONCLUSION. 

We think that it is important to study the evolution of the 
densities of a heavy stable neutral fermion and an heavier 
one that decays into it as the evolution of a coupled 
system. In that respect, not only the decay but 
also the scattering upon light particles prove to play an 
important role , because loth of them yield linear 
terms in the evc'ution equations . Thanks to them, 
as soon as one departs from a diagonal coupling (Sect.3-1 
and 3-2), one recovers for the lighter one the 
well-known limit given by Lee and Weinberg. However, we 
showed that in the case of a (quasi-)antidiagona1 
coupling (Sect.3-3), we can constrain the masses of the 
whole system. (n particular the masses of the two neutral 
fermions must be equal within 10%. This enabled us 
to give constraints on the Higgsino masses of 
supersymmetrie grand unified models (or models coupled to 
N=l supergravity). 
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Appendix A 

In this appendix, we justify our assumption made in section 
2 where for reactions (2-6c) we stated 

/ d3Pf/(27r)3.ro(er >.vo-(Nir->Naf) = <v<7>.n°r (T) <A-1) 

where <va> is calculated for an overage energy of the light 
fermion <E C> -" 3.15,kT . 
We prove our assumption in the case where f°(ef) is a 
Maxwel1-Boltzmann distr.bution to do the calculation 
analytically.We have: 

Gt* Ms* <M.Ms)s Mi 2+M22 
<<7.v>= s.(l )*.[ 8 t- + 3 (A-3) 

24ir s s* s 

where s=Mi^ 4-8.Mi.Br sMi.2.t i.e^ t=l+2Er/Mi. In this case the 
left-hand side of (A-l) takes the following form: 

r =A.exp(/i)./dt.exp-(/tt)( t-l)'t-3(t-oa)2[at2+2oa + t(l+n2)] 

where A= G f »>'(48n-3 ) .Mi ' .A<T)/8 ,û(T) is defined in 
appendix B , a=Ma/Mi and *t=i/3x=Mi/3T.The integrals in (A-3) 
can De performed analytically, the result contains the 
cxï lential integral function 

Ei(/t) = / dt/t exp-(«t> <A-3) 

However we are in a regime where T < Mi i.e. tt is large,so 
thet we can use the following expansion: 

E,(^) a exp-(n)//t.tl-lAi+E//*2-6/V3 ...] (A-4) 

Collecting all the terms we find that the terras in it-1 and 
ji"1 vanish , so we are left with 

I = 6.A.[8.(l-a«)/«t< +(3-5a2+a4+a«)/«3 ]+0(*i-') (A-5) 

This expression has to be compared with the right-hand sido 
or <A-1) 
In the case of a Maxwel1-Boltzmann distribution, 

no(T) =T3/ir» = 1/(8*3) MiV/« 3 (A-6) 

<E> = 3T i.e. s = Mi». (1+3/^) ( A - 7 ) 

Then if one calculates : 

<<7v>no(T) = 3 . A / a 3 . < l + 3 / * « > - ; 1 ( l - o 2 + 2 / ( i ) î [ 8 ( l + 3 / t f ) » + 2 a a + 
+ ( l + a * ) ( l + 3 / / 0 1 

(A-B) 
which expanded in ft c o i n c i d e s w i t h ( A - 5 ) . 
One can check t h a t 

I = <ov>. n o ( T ) . t l + 0 ( j t - J > ] . ( A - 0 ) 

Let us mention that higher order terms are all proportional 
to a* so that the accuracy improves for Mi » M.* and the 
two expressions coincide analytically for a=0. 
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Appendix B 

In this appendix we give the cross sections for all the 
processes which are discussed in the paper. The relevant 
graphs are giver; in Fig.1.We first review the notations that 
we use. 
yfs lake the couplings of the light fermions to the neutral Zo 
gauge boson to be of the form : 

htfz = M,/V3.V(Gt/Vâ).7.7ii.(vt-ac7a).r.ZM (B-1) 

The number of channels open for a specific process where the 
available energy is Vs", will be denoted by: 

A(Vs"/2) = E, (Vf» + ac!!>/a (B-2) 

where the sum runs over particles (not their 
antipart icles) for which nn<i/s"/2 . Finally we will use 

a = Ms/Mi (D-3) 

The cross sections for the annihilation into light matter 
are : 

a) NiîTi-rT <o .v> =<*f»/(8lOM>»b»A(Mt) ( B - 4 ) 

b) N , Ï Ï l - r 7 < < f i , v > = G f » / ( a » ) H | 2 ( l + a ) 2 c î û ( M l ( i + a ) / 2 ) <B-5) 

c) NaTû-f? <o*v>=GtZ/(.Sir)Hila'b'Matlt) ' ( B - 6 ) 

The decay width f o r the p r o c e s s d ) N«-Nef~ i s ; 

r = T - i = G f » / < 3 8 4 s - 3 ) . M | S e 2 A ( M i ( l - a ) / 3 ) . f ( o ) ( B - 7 ) 

where 

r ( a ) = l -8a*-12a«tno:a+8a6-«<i ( B - 8 ) 

Let us note that for Mi=*Mj 

f(e»)=2/5.(l-a») = + 0[(l-ei2)s] (B-9) 
whose effect is to slow down the decay in a drastic way. 
For the scattering on light matter, we have 

e) Ni f(or ~) - NÎ f(or T> 

<a«v>=Gtî/(12ir)M|îcS(l-aa+Si)x)2[(l+2i)x)(g+167jx)+a2<3+ai;x)] 

.tà(Mix)-3/3]/[l+27)Xp (B-10) 

where 17T is the average energy of the light fermions (v is 
defined in eq(2-18>>. 
The cross sections for processes that involve only heavy 
fields read : 

f ) NiîTi->NsÏÏj «7fV>=Gt*/7r(b2+c! ) !Mi3V( l -a2) ( B - l l ) 

.J 



g) NjFi-NaTTi 

< ( 7 , v > = G f 2 / ( 1 6 i r ) b * c 2 W . i * ( 3 + a * ) ( 5 - a * W ( 9 - a * ) ( l - a 2 ) ( B - 1 3 ) 

h) NiN^-NjTfl <ffhv>=Gf 2/ irb'cïM, 2( l+a)V( l - a ) ( l + 3 a ) ( B - 1 3 ) 

i ) NiNi->N (Na 

< f f i v > = G { 8 / ( £ i r ) b » c 2 M I 2 ( 3 - a ï ) V ( l - a S ) ( 9 - a 2 ) ( B - 1 4 ) 

j ) NiNi-»N sNs <ffiV>=Gf î / irc<M 1 2S(a-a^.>- / ( l -a ; 2> ( B - 1 5 ) 

k) rfaNi-NaNj 

<ffi,v>=Gr2/irbac2Mi 2( l+3o-a«)v ' ( l - a ) ( l + 3 a ) / ( l+a> ( B - 1 6 ) 
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FICURE CAPTIONS 

Fig.l : Processes leading to a change in the number of H, 
and Na via the exchange of a neutral weak giuge boson. 

a)b)c) annihilation into light fermions 
d) decay e) scattering upon light matter 
f)g)h) annihilation into Ni or N 2 

i)j)k) scattering of Ni upon N( or N 2. 

Fig.2 : Evolution of the densities ti> and n 2 in tie 
quasi-diagonal case for Ma=5.0 Gev,c2=10-8 m d a ) ûH=500Mev 

b) ÛM=10 Mev . The steep curves ( which are placed on 
top of each other in case b)) are the equilibrium 
densities, T is the lifetime of fermion Ni. 

Fig.3 : Evolution of the densities m and m in the 
quasi-diagonal case for )U=5.0 Cev , A.M=10 Mev and 

a) £2 = 10-6 b) 1:2=4.10-6.-

Fig.4 : Evolution or the density m in the ease of an 
antidiagonal coupling (c'=0) for Mj=5 Gev ar:d Mi=5.5,6,7, 10 
and IS Gev. 

Fig.5 : Evolution of the density n = in the case of a 
quasi-ant idiagona i coupling (e'*=10-*) for Ms=5 Gev and 
Mi=5.5,6,7,10 and 15 Gev. 
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