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ABSTRACT

Using the standard model of cosmology we
study the evolution of the population of a
coupled system of two neutral fermions in
which the 1lighter one is stable. During
the expansion. their population can be
frozen at a certain level which makes
them contribute to the mass densily of
the universe: The details of the freezing
depend crucially on the couplings and on
the masses of these two fermions,so Lhat,
comparison with the measured mass density

in the universe gives constraints on the

N parameters of the physical system we
. examine. We discuss in detail
‘ different configurations for the couplings

. among these fermions; in particular in
't the case of large mixing we obtain
restrictive bounds on both masses. Our

study is relevant to supersymmet:ic

grand unified models which predict Lthe

occurence of light interactjng neutral

fermions,particulariy Higgsinos.
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t:Introduction

Modern cosmology 2nd the standard Big Bong model [1} provide
us with an efficient framework to constrain proposed
theories in high energy physics which are difficult to test
in the laboratory [2]. In particular,this approach proved to
be very fruitful concerning weakly interacting
particles,sucn as neutrinos [3] and axions {4]: to say the
least ,in some occasion , cosmology sirongly influenced a
new approaach to the problems [5].

Recentlly a very intense activily has been devoted to
supersymmetry which,for aesthetical and technical reasons
,appears to bY%e & possible way to unify all interactions
including gravity. Unification models based on
supers;ymmetry POSSESS a new rich spectrum of
particles,which may not be out of resach of the forthcoming
accelerators. In al) models, each usual particle is
expected to have 2 supersymmetric partner. Among all
these newly proposed states, some are charged and/or
colored (scalar partners of leptons and/or quarks),others
are neuiral colorless fermions (gauge and/or Higgs
fermions) . These gauginos and Higgsinos are
similar to neutrincs, except perhaps for the photino,and as
such may be submitied to a cosmological analysis.

In this paper we shall be concerned with the study of a
coupled system of two massive neutra! fermions which
interact via the exchange of the neulral weak boson %Zg
(sometimes, we shall =onlso use the name lepton for them).We
shall try to obtain information on the parameters of this
physicel system,like wmixing parameters and masses, using
cosmological informaiion. Let us first set the stage and
bricefly recall the analysis done by Lee and VYeinberg [6] in
tre case of a stable heavy lepton.

Following the standard model, at wvery. early times, the
universe was very hot and dense so Lhat most of the energy
wis carried by radiation and that matter appeared under Lthe
form of 1its fundomental constituents-leptons and quarks-.
Contrary to wusual physical systems which relax to
equilibrium if cuae woits long enough,in the universe the
shorter the time the larger the number of particle species
which are in equflibrium.Under the extreme condilions
described above,recactions rates are Llarge and chemical
equilibrium is achieved. However, as time (flows the
universe is expanding and its temperature drops,so that a
particle of mass M ,whose dersity is further diluted by the
Boltzmarn factor exp-(K/KT), becomes so rare that it ceases
to interact and annihilate.¥hatever the interaction cross
section is,reaction rates are virtually vanishing because of
the ditution.From this time on,the population of the
conrerned particle in a covolume is frozen to a given anount
and contributes to the mass density in the  universe.This
freezing (quenching) phenomenon £5,7) has been studied and
used to derive lower bounds on the masses of neutral
leptons (6,8} .

Consider,for instance, N to be such a particle which is

coupled to the Z¢ and stoble. The only reaction_which can
make the poputation evolve is annihilation N+N-{+[,where
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and f are light fermions coupled ic the Zo as usual.As long
as_the_temperature of the universe T>M the inverse reaction
f+T+N+N can occur at a sufficient rate to maintain the
number of N's,which behave like a relativistic _ 8as
of particles. ¥hen T is below M, the process f+f-N+N
slows down because of the decline of the available
energy for the f's. Then one would expect that the N and
the N continue to annihilate, leading then to
extinction,along their equilibrium curve. In fact the N's
will not completely disappear due to different phenomena:
First as T > Gy1/2 the interaction cross section ¢ =~ T -2,
therefore the reactions are very rapid and maintain the
equilibrium despite fast expansion. At a lower temperature,
the production rates of N cannot compete with expansion and
the mean free path of the N's becomes larger than the
typical expansion length ¢/H (H is the Hubble constant).
Then the universe is transparent for these particles which
begin free expansion. Staudard calculations [1] give for
light weakly interacting particles a decoupling temperature
Tya: 0(1 Mev).

Second,if M » Ta the N's will decouple much earlier than
expected from the calculation of Ta.Indeed ,in addition to
the effect of expansion,their density is damped by the
Boltzmann factor exp-(M/T) once T < M.They are now so rare
that annihilation will eventually stop. This freezing does
not happen suddenly, at some point Tq < T < M,the population
of N’'s 1leaves the equilibrium curve (this is the freezing
point) and little by littie becomes stabilized at its frozen
value. This wvalue is much higher than if they had decoupled
at Ta.The density number in a covolume stays constant, but
the density is stili ailuted by expansion.

This illustrates the quenching which <can happen to heavy
neutrinos as was used by Lee and Weinberg [6]. They found
that the present mass density of these particles depends on
their mass M in the following way:

pnat C [ M(Gev) ] -te3 {1-1)

We observe that the higher the mass M the lower the density
of the fossilized N's,Thus a lower bound on M can be
obtained if we require that pn cannot exceed the presentiy
measured mass density p. Using 0=2.10-28 g/cm3 it was found
that a lower limit on M is 2 to 4 Gev.However, Gunn et al.
[8] argued that such massive particles should bind around
galaxies into halos,.This can reduce the upper limit on pn by
an order of magnitude and raise the lower limit on M to 7-15
Gev.

We shall follow closely such an analysis in the case of two
ncutral weakly interacting fermions,one of Lthem being
unstable.in the next section we derive from general grounds
the kinetic equations describing this physieal system and

we discuss in which approximation detailed balance
applies. Section 3 1is devoted to the solution of the
obtained differential equa‘ions.VWe study different
configurations for the couplings between our two fermions

Ny and Nz .This detailed discussion allows us to
derive interesting constraints on the Higgsino sector of
supersymmetric models in Section 4.Qur conclusions are given
in Section 5.
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2:EVOLUTION EQUATIONS FOR A BINARY SYSTEM

In this section we derive the evolution equations for a
system of two massive -neutral fermions whiech interact among
themselves and also with a2 thermal bath of light or
massless fermions (quarks and ieptons).

On general grounds [9-1C] ,the problem of density number
evolution of a particle spegcies in the early wuniverse~hot
and dense- can be tackled using the transport equation of
the kinetic theory of goses. For instance if we are
interested in the evolution of the distribulion of particle
as we have:

df et 1
——=——3 [ fp1.{1=Fay).|M(bs,..,bm »a1,..,2n)]|2-
gt 2E.4 i, e

-0 fag{t-fo1).|M{ay .oo,anbg, 0 0,bm)|2 ]

i,1] .
(2-1)

where the f's are the energy distribution functions of the
fermions involved in the physical process. ¥{be—>a) is the
transition amplitude for the reaction b —3 a and the sum B
runs over all processes which can create or destroy a; and
also includes phase space integrals for all the particles
except ay. The factors (1~f.;) and ({-fb1) account for the
exclusjon principle in the final state for the fermions aj
and bi. In eq{(2-1) we have assumed that particle momenta
are uncorrelated , 350 that mulliparticle distributions
factorize and also that there are no spatial inhomogeneities
i.e. no x dependence in Lthese distributions. At
equilibrium the distribution funetion for a fermion is the
usual Fermi-Dirac distributlon:

eq FD -1
f (B/kT)=rf (E/KT)=[1+exp(E/KT)] (2-2)

¥e shall ossume that the out of equilibrium distribution is
still only a function of esE/KT.
The number density is defined for one helicity state as:

n(T)=s d3p/(27)3 f(E/KT) (2-3)

From (2-~1) one easily obtains the kinetic equation for nt(T)
by integratier,

- dn(T) dR(T) n(T) -
$3,—— = B fdLIPS(~,b)}{M fos{1=fa,).
dt gt T3 a,b i,d

CIMCbsa)f2 - M (1-fui)f.g. |M{a~b)]2 ] (2-4)
B, J

.
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In (2-4) dLIPS(a,b) denotes the Lorentz invariant phase
space volume element for ALL particles.

d3p, d3

¢ulPS(a,b)=n (2mr)¢ 64(Tpi-Ipy)
i,j (2m)32E, (2mw)32E;

(2-5)

The right hand side of (2-4) ,usually termed as the
collision integral,simplifies greatly if we consider only
2-body and 3-~body processes. Indeed it can then be
expressed in terms of annihilation or scattering cross
sections and decay rates.

Having presented the general framework,let us now describe
in more details the .collision integrals relevant to our
case. ULet Ny and Nz denate two heavy neutral fermions such
that M:>M2 and f be a generic notation for light fermions in
thermal and chemical equilibrium. For the time being ,we do
not refer to any specific model ,as we shall do in the next

sections,but only assume that Lthe interaction proceeds

through the neutral weak current. Under this assumption,
the reactions which change the number of Ni and/or Nz are
the following:

Ny Ns —> (T , Ny Na — [T, Nz N2 —> : (2-6a)

Ni N3 —> N2 N; , Ny Ny —> Nz N2 , Ny Nz —> Nz Ne

(2-6b)
Ny Ny —> Nz Nt , Ny Ny => N2 N2 , Ny Na — Nz N2
Ny f =—> Naf , Ny f —> N2 T , {2-6¢c)
Nt —> N2 £ T . (2-8d)

¥e have grouped the reactlons into four cotegories which we
discuss separately in the order given above. As long as
equilibrium is maintained , the inverse reactions (T or CP
tronsformed of (2-6)) occur at the same rate as the direct
ones (2-6):we shall denote them by a bar aver the label of
the direct reaction label.

a/ Ny Ny -=> T (i.i=t,2)
Since we consider our particle system in a regime where the
universe temperature T 1s such that

My >> kT > My (i=1,2) (2-7)

the light fermions (f) sare well abave their decoupling
temperature and are in thermal equilibrium. Then their
energy levels are distributed following (2-2) .However as
fong as they participate to the interaction with N, and N»
their energy is , in average, of the order of M;.In such a
circumsiance the Fermi-Dirae distribution is ,to a goecd
approximation , equivalent to the Maxweli-Boltzmann
distrlbution i.e.
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eq FD B
f (e)=f (e) = f (e) =exp(-E¢/KT) <<1 (2-8)

In the same way because of (2-7) and because the N;'s go out
of equjlibrium 2l a rather low temperature we can guess that
f{es)<<t., Therefore we can forget the [final state factor
f1-f{(e;)} and obtain for the collision integral ,denoted
A(iT=—2>(T)

A(IT+fT)=faLIPS(iT, 1) . [N N3fT) | 2. [r0(er )ro(eT)~
- fler)r(e;)] (2-9)

In this eguation we have explicitly assumed that the
transition amplitudes are Ltime K reversal invariant ,which
would not be the case if we had CP violating interactions.
If we use energy conservation {10] :

eq 2q B B
f (er).r (eT)=exP-(Br+BT/kT)=exP-(El+51/kT)=f(eL)-r(eiz N
2=10

we obtain:
_ _ o B B
ACiT==>fT)= fdLIPS. |M(NNyj=>CT)[2.ir(e).f(e g).f(e1}.fle )t

==v. o iT=>fT)>. [n0 1 (T).n0{T)-n(T).ny(T)] {(2-11)

P T

where
<v.o(iT=>rT)>= 1/4E{. B . SALIPS(pr,pT) . {M(N N> ) [2  (2-12)

The brackets indicate that we have taken an average over the
distributions of N; and Nj,this enables us to exhibit the
number densities n{(T) and ny(T). We keep an index i and j
on these quantities to remember their mass dependence. Note
that we assume that all chemical potentials are =zero
t.e.,ni(T)=n(T).

From now on we shaol) use the superscript 0 to label physizal
quantities at their equflibrium value. In the present case
aad unless specified ,in the sequel of this paper ,the
quantity <v,o> will be evaluated for heavy particles N; at
rest. Ye have calculated the <collision integral! for
one channel ff,ultimately we shall sum over all open
channels and take Z: A(1j~>fT) .

b/ Ny Wy —> N Wy (Ny M —~> Nj Ni)
In this subsection we consider the processes which

participate to the evolution of the neutral fermion Ni,which
heavier than Nz will decouple earlier, that is, at higher
temperature. The collision integral reads:
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B{1T=> jK)=fdLIPS. [N(N N 1=->N;N) |2 . [r(ex). f(eg)=f(er).r{es)]
(2-13)

This expression cen be simplified to a form similar to
(2-11) . Indeed since Mi+Mi R M;+My the direct channel b is
always open ,whereas the inverse one is not. As the
temperature of the universe drops reaction rates are slowing
down because of the density dilution and the decline of the
available energy. At some stage they will eventually stlop
and ,for instance the reaction (b) will stop later than the
reaction (b) [21] .In other words (b) ceases at a
temperature T=@y<03 , where-Or denotes the temperature at
which the reaction (r) stops.For T < ©7 the equilibrium is
no longer maintained in the channel under concern,lherefore
the temperature Ty at which N;i goes out of equilibrium
should be lower than Inf(@y) where T runs over all inverse
reactions under concern.

Let us examine how the-system evolves as the time goes on.

i) As T > T1 ail particles are still on their equilibrium
distributions including the heaviest one,Nt,so we can write:

fley) . flex)=t0(ey).ro(ex)=ro(er).r0(ey) (2-14)

which following the lines of subsection (a) gives for the
collision integral:

BT jB)= <v.a{1T=>iR)>. [0 (T).n0;(T)=n i (T).ne{T)]
(2-15)

ii) As T < T1 2!l inverse reactions are virtually stopped
and their contribution to (2-13) is negligible,

rlej).t(ex)-f(ey).f(er)e =r(er1).f(ey) (2-186)

In addition we expect that the number density of N3 will not
decrease very fast because of the slowdown of the direct
reactions, In particular we can safely say that ni{(T<Ty) >>
no4(T) since the equilibrium density is steeply decreasing.
For these reasons we have to a good approximation

=f{eg).f(et) a rofes).fo(er)=-r(er).rley) (2-17)

This allows us to keep the same expression for B{iT->jK)
given in (2~t5) in all the temperalture range.

¢/ Ny f «=> Na f , Ny T => N2 T

These reactions represent the scattering of Ni's on the
light fermions which, in the temperaturc domain of interest
do not go out of equitibrium.

if the line of reasoning used in the previous case is still
valid we cannot ,without care, factor out the cross
section,Rather one should calculate the integral of v.o over
the f0 of the light fermions, WYe prove in appendix A that
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it is a very good approximation to use <v.o> calculated for
an incoming energy squared s=M,.{(Mi1+27kT),where 1=3.15
corresponds to the average energy for a fermion

Be>=7/2.¢(4)/¢(3) . kT = kT =~ 3.15.KT {(2-18)
d/ Ny ~—> N2 (T

The contribution of this decay channel can be derived as
above.Here as scon as T<T; the 3-body fusion N2 [ T—>N;
becomes very unlixely and we can write for all temperatures
with the same approximation as in (2-17) the collision
integral:

D{1—>2rT)= <P(N1—=>NzfT)> . [n0¢(T) - ns(T)] {2-19)
We note that this conf;ibution .is linear in the number
density contrary to all others.

Let us finally conslder the reaction which concerns
Nz ,name'ly;

e/ N2 Ng —> T

As T is below T« the population of Nz is maintained in
equilibrium® by Lthis reaction. The freezing temperature T2
of the N2's is then close to the stopping temperature .
We ,once again ,can write for this aannihilation channel:
A(2Z=[T)= <vo(22->1T)> . [ n0.(T)2 - na2(T)2 1 (2-20)
This is just a particular case of (2-11).

Collecting all the terms we can oblain the kinetic equation
for nt{T) and n2(T) :

dn(T) dR(t) nye(T) _ - - _
+3. =3 [ A(T=>rD+A(1Z>(T)+D{(1>2rT)]
dt dt T3
+2 B{li=»jk) +3 B(if—>2r) (2-21a)

dnz(T) dR(t) n2(T) — - — - —-
43, e mmeee =8 [ A(ZZ= (T )+A(12=IT)-D(1-21T)]
dt dt TS

-3 B(1i—>jk) ~-% B(1f->2f1) (2-21b)

where the sums arec over particle and antiparticle labels.
The second term in the left hand side of the equations is
related to the expansion of the universe;if instead of n(T)
we define f{(T)=n{T)/T3 -not to be confused with f{e)- ,which
corresponds to the number density for a covolume ,this term
disappears, We obtain :
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1 df(T)

=L §<v.o(4T=T)> [f9(T)2~M(T)R] +

Ta dt
+ V.o {(1B=T)>. [£04(T).r02(T)-rs(T).T2(T)1}
{2-222)

+2'2' v e(1i=jR)>. [£01(T). Lo (T)=F1(T).r(T)]
+1 S <r(1=>2rT)+2<v.o(1r=>2r)>.n0(T)}. (191 (T)~r(T)1/T3

1 dra(T)

—_—————— =F {<v,0(2B->(T)> [02(T)2~r2(T)2] +

T2 dt
+ <V (12> IT)>. (101 (T) . 0 (T)~L¢(T).La(T)1}
(2-22bh)

=E2'2' <v.a(1i=ik)>. [0 (T). Lo (T)~-C1(T).L1(T)]
~f B <P(1=2fT)+8<v.o{10=20)>.n0(T)E.[£9¢(T)~L¢{(T)1/T3

where no(T) is the equilisrium density of the light
fermions which is

1 3
no(T)s— — ¢(3).T2 {2-23)
™ 4

for each helicity state if we neglect the mass.Let wus note
that in this case f9(T)=no(T)/T3 is a constant. The factor
'2' takes into account the fact that reaction N;N,—N:N2
suppresses 2 Ny's at once.

3.SOLUTION OF THE KINETIC EQUATIONS AND DISCUSSION.

[n this Section,we will  solve the system of equations
established in Section 2.In order to do that,we first have
to calculate the cross-sections associated Lo processes
(2.6).Let us assume that the coupling of our binary system
to the Zo gauge boson takes the general following form :

—_— — b ¢ Ny
M NG /2y . (N Nz).vu(l-‘ls).[ ] [ ] 2
e b N2
(3-1)

We will first review the different reactions arising from
such a Lagrangian whereas the corresponding cross-sections
are given in Appendix B.

A first cisas of processes couples the system to the 1Iight
fermion motter.More precisely,we have :

-= annihilation ( Figs.la~b~c)

M Ny — (a)
Ny Nz —> T and N2 Ty — (T (b)

NzN—z—>('T (c)
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These are Lhe only ones present in the case of stable
neutrinoes ({6,B).They are consequently the only reactions
responsible for the violation of the total number ni+ne .

-- decay ( Fig.1d)
Ng —> N2 (T (d)

that leaves Nz as the only stable particle of the binary
system.

-~ the scattering of heavy "neutrinos' upon light matter
( Fig.le)

Ni f{or T) —> N2 f{or T) (e)
which will prove to introduce noticeable modifications with
Lhe ane lepton case.

A second class is provided by processes internal to the
binary system :

-- annihilation ( Fig.1f-g=-h)

Ny Ny —> N2 Nz (r)
Ny N{ —> N2 Wy (g)
Ny Nz —> Nz W2 (h)

-~ scattering ( Fig.li-j-k)

N: Ny ~—>.N: N2 (i)
Nt Ny —» Nz Na- (i)
Ni Nz —> Nz Ng ' (k)

We did not compute the exact behaviour of Lhe cross-section
for the decay process Ny —>N2 Na N2 assuming that we could
take it into account in the effective number of decay
channels for process {d).
The evolution equations lfor ny; and nz have been derived in
Section 2 { egs.2-22).Processes {a) to {c¢)} and (f) to (k)
yield terms quadratic in the number densities n{ or n2
whereas the presence of the decay (d) and the scattering
upen light matter (e) gives rise to linear terms which
will prove to play an important role in the evelulion of the
number densities.We prefer to use in egs{(2-22) the
variable

x= T/My (3-2)

where the temperature T is related to the time by the
following relation ,valid in the radialtion dominated era:

[ 45 1 1 | S
t= f —m— T —— (3-3)
32r3G YNT T2 VAT T2
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In (3-3) G is the gravitationnal constant ,Nf counts the
number of degrees of freedom effective at the temperature T
(if nF [nB] is the fermionic [bosonic] number of helicity
states, Nf=7/16.nF+1/2.nB). Finally ,if temperatures and
masses are expressed in Mev,K=0.268 1022 Mev (m=c=k=1).
Using the notations defined in the appendix B for cross
sections ,the evolution equations now read : .

df, 2KM,
—_—m e [ {X)2L0((X)2I[<Ta VI vILT g VIHL T  vI+RLT VD)
dx NT

I (x)Fa(x)=f01(x)M02(x)I[<onVv> + <Onv> + <dxv>]

+ [Fa(x)=r0 1 (x)IIT + nO¢(x).<0ev>]/ (My.x)3} (3-4a)

dfz2  2KM: B
— 2 e J[F1(x)2-701(x)2][~ <OLV> = <opv> = <o1V> = 2<0jv>]

dx vNT
+[f2(x)2=-r02(x)2].<0cv> +
FIre(x)fa()-rfo (x)f02(x)1[<ouv> - <onv> = <oxv>]
- [Fe(x)=fos(x)IIT + nor(x).<oev>]/ (My.x)3}) (3-4b)

where no¢(x) is given in eq(2-23).

We emphasize the fact that f{ refers to the population of N,
fermions (and not to the antifermions Ni). Since we assumed
‘CP gonservation and that the chemical potentials vanish:

f =f =f3 ;0 =T =fa (3-5)
Ny Nt Nz N2

As already mentionned, the only processes that violate the
total number ni+nz are the annihilations into light
matter{a=-b=c). Therefore ,as one can check

d{rs+fa2) 2K.Mi
— JIfs(x)2-104(x)2]<oav> + [fa(x)2-r02(x)2]<a.v>

dx T
+2. 001 (x)f2(x)-19:(x)r02(x)].<ouv> 1} (3-6)

We will now discuss the solutions of the system (3-4) going
all the way from a diagonal type of coupling (b=1,c=0) to an
antidiagonal coupling (b=0,c=1) and investigating
intermediate possibilities. The discussion will therefore
be based on the values for the b and ¢ parameters and on the
mass gap between the two heavy fermions:

AM = My = M2 = My.(1 - @) (3-7)
3-1: The quasi diagonal coupling
In the diagonal case (e=0,b=1), we are Jef} with two stable
particles which interact with light matter through

annihilation proecesses a) and e¢). The analysis of Lee and
Weinoerg [B] can therefore be readily generalised to this
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mixture of two heavy neutrinos to give a bound on the lower
mass Ma. These ©bounds still depend on the mass gap. Ve
have two extraume solutions:

-if My >> Mz the present mass density is mainly due to N»
and is equal to [6] :

p2 = (4.2 10 =28 g/em3),(Mz Gev)=u83 (N,/VNr)-oes (3-8)

where N, is the number of annihilation channels(Na =14.8 for
a mass of 5 Gev). We obtain a lower bound on Ma from the
requirement that

p2 < Q.pc.(H/Ho)2 (3-8)

where Hgo = 50. Xm/s/Mpc and p. = 5. 10-30 g/cm?® is the
critical density [2] ...Taking Q=1 gives an absolute lower
bound on Mz since it assumes that the Nz fermions (fill the
whole missing mass in the universe.We can also,following
Gunn et al. [B]l,consider that the heavy neutrinos collapsed
around galaxies forming the so-called galactic halo,in which
case Q=0.1.The limits on Mz reads

Mz > 4.5 Gev, (Q-1)034 _(Ho/H)LOS® (3-10)
that is for 0=0.1
My >> M2 > 15 GQev .(Ho/H)n08 (3-11)

-if My = Mz,the present energy . of these leptons is just
twice Lthat of each particle.Therefore (See eq{(3-8)) the
lower bound is ruised by a factor Zmﬂf and we obtain for
Q=0.1,

Mi= Mz > 22 Gev. (Ho/H)wo8 (3-12)

We now allow for a small departure from this diagonal case
by giving the non diagonal term a small value £ << 1.The
decay process d) and the scattering process e) on the light
fermions play now a crucial role in the evolution and will
lead to a rather different situation. If the mass gap is
important,the scattering I5 suppressed but Lthe decay is
determinant.This situation has been studied in detail in ref
[12],where we have derived limits on the mass M: and on the
lifetime T (which is related to the parameter &).In Fig.2-a
we give the evolution of n; and nz for AM=500 Mev , and
£2=10-¢ .Clearly N; leptons disappear completely after.some
time of the order of their lifetime 7.

For a much smaller mass gap {(aM=10 Mev) ,the lifetime
becomes larger than the age of tne universe at the time of
quenching and tre decay does not play a significant role.For
£2=210-0 (Fig.2-b),we are still in a case similar to the pure
diagonal one :each heavy lepton bchaves as if it was alone
and we recover the 1limit (3-12).But aiready for «¢2=10-5§
(rig.3~a),the scattering process e) starts playing an
important role.Basically,as long as there are important
amounts of light fermions and of N: leptons,the
transformation of Ny into Nz occurs.But the expansion of the
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universe and the decrease of the number density ny generate
the freezing of ni.After some time and before the decay
becomes important {(for AM=10 Mev,T=20 minutes),both N, and
N2 populaticns are fossilized.¥hen we increase ¢ , the role
of the scattering process e) becomes more and more crucial
and the frozen value &f nt/T3 decreases.Fron Fig.3-b for
example we see that the frozen value is down by more than
one order of magnitude when €2 is changed from 10 =6 to
4.10-6.

Therefore as soon as one departs from the diagonal case with
equal masses (AM#O or ¢#0),we have the elimination of the Ny
leptons and we recover the limit of Lee and Weinberg(3-11):

Mz > 15 Gev . (Ho/H)Lros (3-13)

Due to the relaxation ,when the decay or the scattering
becomes important, the ny curve is pushed toward its
equilibrium value n%;.When these processes piay a crucial
role ,N;y remains in chemical equilibrium because very fast
reactions connect it with light matter.

3-2:The "democratic" coupling

¥e consider the intermediate cnse where b=c=1, If Mi=M2,the
cross sections of reactions (a),(b) and (c) turn out to be
equal.We therefore obtain from (3-6) the evolutiecn equation
for the total number density.

d(fi+fa) 2K
= Mo, v [(f4f2)2-(fo4r0)2]

dx VNy {3~14)
Clearly the solution is
ridx) = f2(x) = f{x)/2 (3-15)

where f{(x) is the solution given by Lee and Weinberg.
Despite the fact that we have two stable heavy neutrinos the
present mass density is the same as if we had only one
particle,and we still have the lower bound (3-11). On  the
other hand when M;2Mz2,even for a very small mass gap the
decay d) and the scaottering e) wil] play a crucial role and
quicken dromaticnlly the disapearance of Ny .¥We are thus
rapidly left with o unique stable heavy lepton Nz and the
Lee-¥einberg analysis still applies.Thus in bolh cases

Mz > 15 Gev . (Ho/H)u03 (3-186)
3-3:The anti-diagona) coupling

Ye finally study the c¢ase c¢=! ond b=g'<<l, Since the
coupling of Nt to N2 is the stronyg one,the decay d) and the
scattering on light fermions €¢) will play the proeminent
role and tend t« ¢'iminate N, as the temperature drops below
My .Therefore,eve.. =zfter the decoupling of the N: population,
the number dcnsity of N; will stay close to its equilibrium
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value because every excess would decay or be scattered off.
During the aquenching of the N: population,we can therefore
assume that :

ni = nog << ngz (3-17)

Under these conditions, eq{(3-6) supplies us with an
evolution equation for f2 :

dfra 2K

dx VN¢

My jIfalx)2=f02{x)2]<o v>+2f 0 {x)[f2(x)
~rop{x)I<opv> ¥ (3-18)
Thus only annihilation processes influence the evolution of

nz2:a slow one (proportionnal to £'2) involving only Nz and a
fast one annihilating Nz cn Np.

" We first discuss the case £'=0.Resulls are shown in Fig.4,

for Mz=5Gev and various mass gaps{aM=0.5,1,2,5,10 Gev). Ve
observe that the larger the mass gap the mcre numerous the
present Nz population is. Moreover,as compared to the
previous cases discussed above ,the Nz density (even for a
rather low mass gap of AM=500 Mev) is miuch higher and
actuaily exceeds the wupper limit wilowed b, eq(3-9).The
physical interpretation of this phenomenon is rather simple:
the only reaction that will allow N2 to disappear is the
annihilation process b) (N:N{~fT) but ai the time of
quenching there are so few N1 leptons left (because of decay
and scottering) that this annihilation is slowed down
noticeably and even stopped for large enough mass gaps. We
can therefore not only put a limit upon the mass of the N2
lepton but also on t%e mass gap,.The upper bound on AM is
estimated very corservatively to be :

AM = My -~ M2 § 0.1 M2 (3-19)

As for the limit upon.Mz.since we have a mixture of quasi
degenerate heavy leptons,we recover the limit (3-12).

M2 > 22 Gev . (Ho/MH)wu?® (3-20)

We then turn to the case £'20.Examples are shown Tfor Mz=5
Gev and for various mass gaps in Fig.5 .For mass guops up to
2 Gev nothing is changed.The mixing interaction b) dominates
and the wupper limit upon the mass density of the Nz
population is exceeded even for AM=500 Mev, For very
large mass gaps (AM=10 Gev),we observe that the present mass
density of the surviving N2 does not depend on AM and
decreases as ¢£' increases;physically,for a large mass gap,
annihilation b) is suppressed whereas annihilation c)
(N2N2+fT) acts with an extra factor £'? exactly as if the
mass M2z was renormalised to £'2/3 . Ma.
Finally we give the mass bounds that arise from our
analysis.
Either

Mz > 15 Gev . ' =2f3 ,(Ho/H)108 (3-21)

and the mass M; is unconstrasined (M, > Mz2),or Mz is smaller
than this !imit and the mass gap is also bounded

Mz > 22 Gev . (Ho/H) o8 H AM/M2 < 0,1 (3~22)
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4.A PHENOMENOLOGICAL MODEL.

The supersymmetric grand unified theories pravide us
with model: where the above results apply in a vuiry direct
way.In a simple SU(5) model for example,il is  necessary
[13] to “oulhile the 5 of Higgs scalars and iatroduce a 3
and » 5 scalar superfields (respectively _}: and Hz).
Their spin 1/2 components,the Higgsinos H| and Haz,
therefore form a binary system of tke kind studied
in the previous section.Realistic theories are
somewhat more intricate . In the model of J.Ellis,
L.E.Ilbanez and G.G.Ross [14] , in the case where the
photino is not the lightest particle,ye _have to

consider a system pof three particles : Hi, Hz and the
fermionic component 27 of an extra chiral superfield
which transforms as -~ a singlet under SUY(5).The mass

eigenstates are [14] (neglecting a small admixturz of
gauginos ): - .
viH{0-vaHa?

Zu = -
Vo - (4.1)
- 1 vaHi04+v Ha0 -
0 T eum { ce—— T )
N
- vz v

where vy and va are the vacuum expectation vilues of
superfields H; and Hz (v2svi?+va?),

These three neutral fermions couple to the 2 through the
coupling

F va2=vi2[ 1 1 ] 2vyva| 1
— Zu(S£S°A°) - yull-vs

vz V2 2va 11 v2 1
2vyve vi2-vp2

L1113

2 U 0,
Ot '0 +G
-

3
n©
~—

ve

Let us suppose that the A® fermion is the heaviest : the §g
is the lightest and , unless forbidden by a suitabie choice
of parameters Lhe A® and S8 will decay into it . Following
the results of Section 3,we can outline twe different
situations :

4~1: The asymmetric vacuum.
¥e set for example
vaav and vi=.v (4-3)
1f €20 , A0 and S" will decay ropidly into S® and we recover
the bound (3-13) of Lee and Weinberg ( accounting for a
difference of a factor 2VZ betwecen couplings in Eq(3-1) and
Eq{(4~2) and the fact that we deal with Maojorana spinars )
mass of S0 > 30 Gev . ( Ho/H )n0» (4~4)
This certainly_is a fairly high volue for the mass of S8 .

If ¢=0, the AS does not decay and its presence would still
raise the bound .
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4-2: The symmetric vacuum.
¥e now study the case
vimve and (va=vy)/v=e'<<1 (4-5)

The coupling matrix in Eq(4-2) now reads :

e [ 1] [ 1] j
7z [1 1 1 (4-8)
C11] -e'vE

This is preeisely a coupling of the antidiagonal form
(Sect.3-3) . Because the SO fermions can annihiiate only on
the A9 still present at the time of their quenching , their
number density is untolerably high unless A9 is almost
degenerate to them . We therefore can bound all the masses
of the system :

mass of A® ~ mass of S9
~ < 0.1 (4-7)

mass of §E

and ( extrapolating the result of Eq(3-20) to the case cf
three Majorana particles )

mass of S92 > 27 Gev (Ho/H)to02 (4-8)

As thke masses can be expressed in terms of several
parameters of the model [%4], £qs{(4-7) and (4-8) put rather
stringent bounds on these parameters . In particular,
Bq(4-7) which .relates a priori uncorrelated parameters
constrains them in a somewhat unnaturaj way .

One should finally note that the situation of a
symmetric vacuum , where our study gives the most severe
constraints , is the one encountered ¢« when grand unified
theories are coupled to N=i supergravity [15].

5.CONCLUSION.

We think that it is important to study the evolution of ‘he

densities of a heavy stable neutral fermion and an heavier
one that decays into it os the evolution of a coupled
system. In that respect, not only the decay but
also the scattering upon light particles prove to play an
important role , becauss bGoth of them yield linear

terms in the evc'ution equations . Thanks to them,
as soon as one departs from a diagonesl coupling (Sect.3-1
and 3-2), one Trecovers for the lighter one the
well-known limit given by Lee and Weinbarg. However, we
showed that in the case of a (quasi-)antidiagonal
coupling (Sect.3-3), we can constrain the masses of the
whole system. fn particular the masses of the two neulral
fermions must be equal within 10%, This enabled us
to give constraints on the Higgsino masses of

supersymmetric grand unified models (or modeis couplied to
N=1 supergravity).
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Appendix A

In this appendix, we justify our assumption made in secltion
2 where for reactions (2-8c) we stated

F d3pe/(2mw)a.fo(er).vo(N (LNal) =<ve>.n0¢(T) {A-1)

where <ve> js calculated for an uverage energy of the light
fermion <B¢> -~ 3.15.kT .

¥e prove our assumption in the case where Tfo(ef) 1is a
Maxwell~Boltzmann distr.bution to do the calculation
analytically.We have:

Ge2 Mz2 (MiM2)? Mi2+Ma2
s.(1- )2.[ 8 + + 3 (a-2)
24w s s? 8

{o.v>=
where s=M;2 +2.M:.Er =M:2.t i.e. t=1+2Er/M,.In this caose the
left-hand side of (A-1) takes tke Tollowing form:

I =A.exp(u) . fdt.exp-{pt)(t-1)2t-3(t-a2)2[Bt2+2a2+t(1+a2)]
where A= Gr2/(48w2).M.13.A(T)/8 ,a(T) is defined in
appendix B , a=M2/M; and u=1/2x=M,/2T.The integrals in (A&-2)
can obe rerformed analytically, the result contains the
exp nential integral function

Ei{p) = f dt/t exp~(nt) (a-3)

However we are in a regime where T < M; i.e. u# is large,so
thet we con use the following expansion:

Bi{p) = exp-{(p)/n.[1-1/u+2/p2-6/u3 ,..] (a-4)

Coliecting all the terms we find that the terins in n-1! and
u=2 vanish ,30 we are left with . .

1 = 6.4.[8.(1-a6)/us +(3-Ba2+as+aé)/u3 1+0(n-3) (a-5)
This expression has to be compared with the right-hand side
?; g:;lgase of a Maxwell~-Bollzmann distribution,

no(T) =T3/m2 = 1/(8x3) M(3/n3 (a-8)
<E> = 3T i.e. 5 = My2. (1+3/n) (a-7)

Then if one calcuiates :

<ov>no(T) = 2.A/u3.(1+3/u)=3(1-a2+2/2)2[8(1+3/n)2+2a2+
+(1+a2)(143/1)1

(a-8)
which expanded in u# coincides with (A-~5).
One can check that
I = <ov>, no{T).01+ O{u-2)] . (a-0)

Let us mention that higher order terms are all proportional
to a¢ so that the accuracy improves for M; >> Mz and the
two expressions coincide analytically for a=0.
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Appendix B

In this appendix we give the cross secltions for all the
processes which are discussed in the paper. The relevant
graphs are given in Fig.!.We first review the notations that
we use.

¥Ye toke the couplings of the light fermions to the neutral Zo
gauge boson to be of the form

Lere = Mo /V2.V(Gr/VR) . T. 7. (ve-acya) f. 20 (B-1)

The number of channels open for a specific process where the
available energy is vs, will be denoted by:

a(Vs/2) = Br (ve2 + nc2)/2 (B-2)
where the sum runs  over particles {not their
antiparticies) for which me<Vs/2 . Finally we will use

a = M2/M; . {(B~3)

The cross sections for the annihilation into light matter
are :

a) N Ni=fT <oav> =0c2/(27)M,<b2a(Mq) (B~4)
b) N Na-fT <opv>sGr2/(BaIMe2(1+a)2c2a (M (1+a)/8)  (B~5)
£) NegNg-ff <ocv>=Gr2/(2m)M2a2b2alaMs) (B~6)

The decay width for the process d) N¢<NzfT is :
F=7-1=Gr?/(3B473).M13c2a(Ms(1~-a)/2).r(a) (B~7)

where .
f(a)=1-8n2-12a4lna2+Bab~as (B-8)

Let us note that for MiaM:z
r(a)=2/5.(1-a2)3 + 0[(1-a2)s5] (B-9)

whose effect is to slow down the decay in a drastic way.
For the scattering on light matter, we have

e) N; for F) » N2 r{or T)

<oev>=Gr2/(12x)My2c2(1~a2+2nx)2[{ 1+280x ) (9+1679x ) +a? (3+21x )]
[A{M1x)~3/2]1/[1+2nx]3 (B-10)

where 4T is the avernage energy of the light fermions (7 is

defined in eq(2-18)).

The cross sections for processes that involve only heavy

fields read :

£) NiNp-NaNz <orv>=Gr2/a{b2c2)2M 2V 1-aZ) (B-11)
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N W -N2Ng
<a,v>=G;2/(an)ch2M1i(3+u?)(5-a2)4(9—u2)(1-a2)
NiNa=N2WN2 Lonv>=Gr2/ab2c2M 2 {1+a)V{1-a)(1+3a)

NiN NNz

<e1v>=Gr2/(2m)b2c2M 2(3-az W (1-az)(9-a?)
NiNg=NaN2 <agv>=Gt2/ﬂc4H1ZZ(Z-GZ)J?T:;;S
NaN(-NaN2a

€oRv>=Gr2/mb2c2N, 2(1+2a~a2 )V{i-a) (1+3a)/{1+a)

(B-12)

(B-13)

(B~14)

(B-15)

(B-16)
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FIGURE CAPTIONS

Fig.1 @ Processes leading to a change in the number of N,
and Nz via the exchange of a neutral weak gauge boson.
a)b)c) annihilation into light fermions
d) decay e) scaltering upon light matter
f)g)h) annihilation inte Ny or Na
i)j)k) scattering of N; upon Ny or Na.

Fig.2 : EBvolulion of Lhe densilies n{ and n2 in tHhe
quasi-diagonal case for Mz2=5.0 Gev,£2=10-8 pnd a) AM=500Mev

b) AM=tQ0 Mev . The steep curves ( which are placed on
top of each other in case b)) are the equilibrium
densities, v is the lifetime of fermion Ng.

Fig.3 : Bvolution of the densities ny and nz in the
quasi-diagonal case for Mz2=5.0 Gev , AM=10Q Mev and
a) g2={Q-¢ b) z£2=4,10-%,

Fig.4 ¢ Evolution of the densily na2 in the case of an
antidiagonal coupling (£'=0) for Mz2=5 Gev ard M;=5.5,6,7,10
and 15 Gev.

Fig.5 : Bvolution of the density n2 in_the case of a
quasi-antidiagona: coupling (e'2={0-4) for Mz=5 Gev and
M3=5.5,6,7,10 and 15 Gev.
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