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l.tNTROBaeTÎCM 
In non-Abellan gauge theories,the word "symmetry" 

has two meanings:OR the one hand,it means a transformation 
which changes the Laaranaean to an egujvalent gno . This is 
what we call a symmetry of the theory. On the other 
hand,this sane word is used to refer to a transformation 
which leaves a specific field configuration invariant.lt is 
in this,sense that we talk, for example, of spherically 
symmetric monopoles, etc. 

Space-time symmetries of gauge field configurations 
have been studied extensively in the literature [1-7]. The 
aim of this paper is to carry out a similar analysis for 
internal transformations.More exactly,we are concerned with 
the questlontwhlch aaune transformation are symmetries for 
a given non-Abellan qauoe field configuration? 

This problem is closely related to that of •global 
color» which arose recently in monopole theory [8,9]: The 
first step in defining a symmetry of a given field 
configuration is, in fact, the implementation of this 
transformation. The argument used tor monopoles shows 
however,that, in topologically non-trivial situations, a 
topological obstruction may prevent us from doing so. 

Next, an implementable transformation may fail to 
be a symmetry.Those which are symmetries form a subgroup H 
of the full gauge group.Since H acts trivially on apace-time 
we shall call H an Internal symmetry group. That H may be 
actually smaller then G has first been advocated,at a 
conceptual level, by Fischer [7). 

Let us consider, for example,a monopole (Aj,«) [10-12] 
created in a Grand Unified Gauge Theory (GOT) [13] when the 
original gauge group G is spontaneously broken to a subgroup 
C by the vacuum expectation valuee of the Hlggs field *. G -
the so-called residual •symmetry1' group - is the gauge group 
for the new (spontaneously broken) theory. The actual 
symmetry group of the monopole configuration is however flffifc 
C. To see this consider two monopole states in a given 
topological sector labelled by the the "Higgs charge* [•] < 
a-2(0/G). Semiclaes Ically, the path integral which expresses 
the transition amplitude between the two states, splits 

http://invariant.lt
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(1.1) K f e l * E axp ( ««(A» 1, «>el)) i , • 
w classical » 3 el 

solutions 

whara (AjCl,»cl) * a » classical aolution to tha flald 
aquations and K cx denotes tha reduced propagator; 

t a 

SCA^1,»"1) « - J J(I (P?*,-c11*) + i ^ . D 1 * ) + V(»))dJxdt 
t R* 

(1.2) * 

is tha classical action for tha configuration (Aj c l,« c l). 
(1.1) shows clearly,that the actual symmetry group is 

not merely C, the stability group of the Higgs field alone, 
rather H C G, determined by the whole classical field 
configuration. This has first baan noticed in the study of 
dyonic excitations of a monopole [14-16]. 

To identify the associated conserved quantities, 
observa that, for a test particle moving in our non-Abellan 
background, the Internal symmetry group H of the given 
configuration becomes a symmetry for the particle Lag-
rangaan. So,by the Noether theorem [6,17], we have a 
conserved current associated to each generator. In par­
ticular, we can gat conaerved electric charge. So internal 
symmetries generate «electric» electric charge lust like 
rotations generate angular momentum1 

This sheds a new light on the role of internal sym­
metries: while the total YM current is merely covariantly 
conserved, those components parallel to internal symmetry 
generators are already ordinarily conserved. 

The main application of our theory is to the "color 
problem" [8,9] in monopole theory. We show first that a 
subgroup X of O is lmnlementable if and only it the standard 
transition function [10-12,18] h(t) - exp «vQt ,0 <. t < 1 -
where Q la the "non-Abellan charge" of Goddard,Huyta and 
Olive [18] - is homotonic to a loop in 

(1.3) Zo(K) - (g c G I gk » kg, Vk c K), 

Use eantrell«»r of T In O.ln particular,G i t s e l f i s 
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implementable Iff h(t) is homotopic to a loop in Z(G),tho 

centre of G [19]. This condition ia expressed in terns of 

the non-Abelian charge as 

(1.4) exp4*z(Q) - 1, 

where z: {J—> 2(C) is the projection onto the centre Z(§) of 

the Lie algebra 1} of G. (1.4) is a constraint on the Hioos 

charge (see Section 6). 

Next we show that K is a symmetry if and only if it 

ia a subgroup of 

(1.8) Zc(Q) - {g e G i g-*gg - Q), 

the centralize* of the non-Abelian charge O.The who^e G is a 

symmetry if and only if 0 belongs to the centre. 

Prom a mathematical viewpoint, implemer.tability and 

symmetry are thus very different notions.Are they physi­

cally different? Observe first that K is or is not 

implementable simultaneously for all monopoles in a chosen 

topological sector. However,in each topological sector, 

there is only one stable monopole [12,20,21]. On the other 

hand,the main contrubution to the path integral (1.1) comes 

from the neighbourhood of this stable monopole which has the 

least energy. We show below that, for the unique stable 

monopole of a given topological sector, C is implementable 

exactly when G is an Internal symmetry (for a subgroup K of C 

the situation is more complicated). 

A second illustration is provided by the non-

Abel ian Aharonov-Bohm experiment, proposed by Wu and rang 

to test the existence of gauge fields (22.231.Mo topo­

logical obstruction arises in this case for implementing 

SU(2) - gauge transformat Ions. Ther s is however an ajnfei-

gulfcv: SU(2) admlta £wo inegulvalent implementations.Even 

worse,for a given field configuration,nous of the Imp­

lementations is a symmetry in general. This explains why the 

electric charge of a nucléon moving in such a background 

field is not conserved in general [22,23]. 
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2.1MPrjBHnn«BK.ITT OF CAOCK TOAHSFOMOWIOMfl 

Let C denote a compact and,connected Lie group and 
let us consider a gauge theory with gauge group C over 
(possibly a portion of) apace-time M.Let us choose a 
covering of M by contractible open sets V a.In each V a the 
Yang-Hills field is given by a gauge potential A^",which 
satisfy, with the transition functions ha0i VaflVg — > a, the 
consistency relation 

(2.1) A„«(x)-(ha;8)-i(x)AM*(x)hntf(x) * ( h ^ r ^ x ) \hafilx) 

for all x « Vat\V0. 
Similarly,a matter field * is specified by giving, 

in each V a,a local representative *" which transforms 
according to a unitary representation • — > g-» of G.The 
• a , s satisfy the consistency relation 

(2.2) ««(x) - hai,<x) **(x) 

Let K be a group and consider a fixed field 
configuration (A M,*)- Let us assume that 

(i) K acts on H, x — > k-x; 
(li) in each V a a C-valued function r^o is asso­

ciated to each k c K such that 

(2-3) T£ k (x) - T£ (k,.x)r£ (x) 

and which satisfy the consistency condition 

(2.4) T£(X) - (hajg(k-x))"Ir*(x) h - t f(x) 

(2.3) - (2.4) imply that K la implamentable.i.e.for 
•ach K€Va 

(2.5) ( k - A ^ X ) - Tj(X)k*(X)Aj(X)tTj(X))"1- 3|(Tj(X)tT^(x)]"1 

where$cM
w(x)) Is the matrix of the linear map on T XM —> T)j.xM 

induced by x — > k-x, and 

file:///hafilx
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(2.6) (k'»)"(X) - TJ(X).*"(X) v • 

are well*-def ined, i.e. have the correct transformation rales' 
(2.1)-(2.2), and k — > k-A^ (respectively k —> k-«) is a 
group action. 

(iii) Following Schwarz [1] X is called a symmetry 
group for the configuration fA^.»» with respect to this 
implementation if, furthermore, 

(2.7) A"(k-K) - (k-A)J|<x) 

and 

(2.8) •"(k-x) - (k-*)a(x) 

Wo want to apply this general definition to a subgroup R of 
G,acting trivially on M: x — > k-x - x,Vk e K. 

Notice that the conditions above are trivially 
satisfied by T^"(K) •* 1 Va,k,x.Thls is however a trivial 
act Ion.To have a sensible theory, somo regularity condlton 
has to be imposed. In this paper we consider a very strong 
one:we shall require that,for each x, r(.)a(x) is the 
restriction to g of aq automorphism of O. [8,9,19].So K«G 
implementable means now the existence of a family of G-
automorphiams T"(X) such that 

(2.3') T" k (x) - T ? (x) T? (x) 

satisfying the consistency condition 

(2.4*) r'ix) - (h a -(x))" 1T*(x) h w 8(x) 

Such an action is an Internal symmetry if.additionally, 

(2.7«) *JJ(x) - r*(x) A"(X)[T^(X)J~ 1 - 3 MT*(x)trJ(x)] - 1 

and 
(2.8-) «"(x) - T£(X).•*(*) 
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We study first lmplementabilly. Following the pattern 
in Monopole theory,we show that a topological obstruction 
nay prevent ut from implementing K [8,9,19]. 

Indeed, let us assume that K is implamentable, and let xa 

c N be an arbitrary reference point.There is no loss of 
generality in assuming T^a(x0) « k since this can always be 
achieved by replacing r(.)«(x) by T(.)a(x).[T(.)«(x0)]~l-
ra(x) belongs then,for each x, to (Fit G)0,the connected 
component of the group of automorphisms of G.(Aut G)„ is 
known however to consist of inner automorphisms for any 
compact and connscted G [24,25]. It follows that,for each x 
€ Va, there exists an h a(x) c G such that 

T$!<X) - h a(x) k h^(x) 

The h a's can be chosen to be smooth since the V„"s are 
contractible by assumption. The h a define hence a gauge 
transformation In each V„. In the new gauge (we still denote 
it by «) the action (2.5) - (2.6) of k becomes rigid.i.e. 
pos i t ion-independent: 

(2.9) (k-Atf)«(x) - kV»(x)k-i 
and 

(2.10) (k-»)«(x) - k-««(x). 

The consistency condition (2.4) requires now 

(2.11) k-ih«0(x)k - h a 0(x), Vk « K. x c Vaf\Vg 

where the h^g are the Qfiw. transition functions between the 
rigid gauges in V a and Vg.By reversing the argument we see 
that,by (2.11), It la iinplomentablo if and only if there 
exist gauges such that all transition functions haig(x) take 
their values in 

(2.12) 2 G(K) - [g c O I g-*kg - k. l/k c K), 

ths centraltzar of K In G. In particular, O itself is 
implemantable if and only if all transition functions 
belong to Z(C),the centre of O. 



3.TMTEHKAL BYWMETRIE3 

Let K be a connected Lie group with Lie algebra R, and 

assume that K la ltaplenentable.Let Its internal action be 

given by a family r a . We can work infinitesimally:set 

(3.1) *£(x) - -1 j r f e x p _ t j ( )(x) , K c £ ,x « Vtf. 
d t It-a. 

The infinitesimal action of K c fi corresponding to 
the considered Internal action of KCG ie given by 

(3.2) <<c*AM) - D M w K 

(3.3) (it-*) - «i K-* 

(to keep the notation simple, we dropped the indice a.) 

(2.4') Implies that u K(x) is a "Higgs" field of the 

adjoint type.The property (2.3) requires now 

(3.4) « r .(x) - [w (x),w (x)], Vie ,« « 6, x c M. 
1 i' j 1 l a * * 

so,taking into account our regularity- and normalization 

conditions, K —> w K(x) is,for each x, the restriction to (i 
of a Lie algebra automorphism g — > ÎJ satisfying w K(x 0) - < 

By (3.3) and (3.4), If the action of K is an internal 

symmetry, then 

(3.5) D*"K " ° 
and 

(3.6) <•»«•• - 0. 

Conversely,any normalized eolution of (3.5)-(3.6) 

provides us with an internal action of k«exp-avic. Indeed, 

(3.5) la solved by parallel transport, 

(3.7) ««(x) - g(x)« g"»(x) 



where g(x) Is ths non-integrable phase factor 

(3.8) g(x) - \r(exp-J » M dJf*) 

(3.8) Is in general path-dependent. Let K C R. such that 
(3.7) is nevertheless path-Independent. Let us assume (3.6) 
is also satisfied (this is automatic if D M» - 0, since in 
this caea »(x) - g(x)*og(x) - 1 and so 

<J K(X)-»(X) - g(x)Kg(x)" 1g(x)» ig(x) - 1 - u-«o - 0 
since K C 6 c § ) . 
k - exp-2*K is now implementable: 

(3.9) Tjc(x) - exp(-uK(x)) 

admits, as one proves easily» the properties (2.3') -
(2.4*).The corresponding action of k on the fields is 
plainly a symmetry:it satisfies (2.7*) and (2.8*). 

Those ij e 8 for which (3.7) is path-independent 
and also (3.6) is satisfied generate a connected subgroup H 
of G. (By (3.7) the group-property (3.4) is now automatic.) 
Some differential geometry shows that H is in fact the 
centraliser of the holonomy algebra of the Yang-Milis 
potential (7 :25). 

H is the maximal Internal symmetry group of the YMH 
configuration we consider: the argument above shows plainly 
that any subgroup X of C which is a symmetry group is 
necessarily a subgroup of H. 
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a.CMMMW-P CHABOga 

tt we have «y—tries.we expect to find conser­

vation lam. What are the conserved quantities generated by 

internal symmetries? Charges! To see this,considsr a £es£ 

narfclcla «• moving in a background ÏMH field (A M,«). For the 

sake of simplicity we consider only a spln-i/a Oirac 

particle, with Lagrangean : 

(4.1) - fi - »(»«»« + c« + m)f 

where e is a group-independent constant, and *• is assumed to 

transform according to a unitary representation U of B. f is 

just another matter field, so, as explained in Section 2, in 

each V a it is described by a local representative •* which 

transforms according to O- The consistency condition iZ.Z) 
becomes now 

(4.2) *«(x) - U(havJ))v*(x), x c VaYtVj. 

Lst us assuma that K is a connected group of internal 

symmetries for the given background YHH configuration 

(A M,«). Let K be implemented by *"{*) « AutGIK (restriction 

of an automorphism of G to K). According to (2.6) ,K acta on t 

as 

(4.3) (k-»)«Cx) - U(T«K(X))*«(X)? 

the infinitesimal action reads 

(4.4) («-#)a(x) - (ulc(x)J.#«(x). 

The point ie that the implementation (4.3) leaves 

invariant the f-Agriinaaan (4.1). This follows by straight­

forward calculation. Hence the internal symmetry of the 

background field becomes a poether «vmmetry f o r th» test 

partiels. This is furthermore an internal symmetry, since 

the action on space-time is trivial. Consequently .for each 

generator « c R the current 
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is ordinarily conserved [17]: 

(4.6) fyijjt* * 0 . 

Let as consider the non-Abellan current 

(4.7) J»* " * »*Ta** • •• l.-..dim 

where the T a's are a basis of the Lie algebra. 
The gauge-Invar lance of the Lagrangean (4.1) implies 

that (4.7) is covarlantly conserved: 

(4.8) DjtJ" - 0. 

However, the uK- component 

(4.9) JK« - Tt(uKJ*) 
i 

is already ordinarily conserved since D^u K • 0 by assump­
tion. It is straightforward to verify that (4.9) is just 
(4.5)> as anticipated by the notation. 

Interestingly,the formula (4.9) has already been 
proposed to define conserved electric charge [26).Now we 
understand its origin :it is the (ordinarily) conserved 
current associated to an internal symmetry generator.This 
sheds a new light on the role of internal symmetries. 

It is instructive to pursue this direction.Let us 
assume in fact that D M * - 0 and so the IM field satisfies the 
vacuum field equations 

(4.10) D MP*v - o , D u(c*»POp p o)/a - 0-

and Identify ths plectromaanetic f i e ld as the «^-component 
Of tfit>s 

(4.11) **,„,<*> " «»/•> ""W^v « W * 



where e is a coupling constant. (4.10) implies that 

satisfies the vacuum Maxwell equations 

(4.12) ^ M T " " - 0 . "JM<«'»''
,0<ï:pa>/ï - 0. 

Let us define the (aemiclassical) electric charge operator 

by 

(4.13) Qem<*) - euK(x)/lulc(x) I. 

The electric charge of any particle in the theory is an 

eigenvalue of (4.13). As demonstrated in [27,28], these 

eigenvalues are Quantized if and only if K generates a (1(1) 

(rather then merely a torus-) subgroup of 8. If so, all 

electric charges are integer multiples of 

(4.14) q mi„ - e/l«t„l, 

where K 0 IS a "minimal" (1(1) generator (i.e. such that 

expivict- i the first time for t-1) parallel to *. 

Let us assume that t is an eigenstate of Q e m with 

eigenvalue n q B l n . The particle's electric charge lb hence 

(4.15) q - / ili*)à>* - J f y \ . f - n g ^ ; f »• - „g B i n 

R R ST 

as expected. If the background field is that of monopole,we 

have further properties (see Section 7). 



5.ASTMTTOTIC P M P M W I M OF MMMPOfJt COHTfOnBATIOMS 

The principal application of the general theory 

outlined in the proceeding sections is to non-AbelIan 

monopole». Here we résume briefly thoae pzopertiea we need 

In the sequel.(For reviews see,e.g.,[10-ia]). 

Let us consider a YMH theory with a compact, connected 

and simply connected (and hence semiaimpie) "unifying" 

gauge group O. At some energy scale (0(10") CeV) the G-

symmetry is spontaneously broken to a subgroup G of G by the 

v.e.v. of the Higgs field *. Consequently, the asymptotic 

values of the Higgs field provide us with a map 

(5.1) «:S*--> '£••, s G/G. 

Magnetic monopoles are everywhere-regular, static, finite-

energy, purely- magnetic solutions to the YMH equations, 

satisfying (S.l) and the "finite-energy" condition 

(5.2) D„* - 0 on S>. 

The map (5.1) provides us with the fundamental 

topological Invariant 

(5.3) [•] c »2(G/G) 

we call the Hloas charge. 

The infective homomorphlsm o:w2(G/G) — > » 1(C) Is 

now an isomorphism since G is assumsd to be simply 

connected. 

In a previous paper 129) we studied the Higgs charge 

in some detail.He have shown that,for any compact and 

connected Lie group G, 

(5.4) » a(G) - *ilG)ti*e + »i(C»s> 

(direct sum).Here *i(G)free " z P> where p Is the dimension 

of the centre Z(tj) of the Lie algebra Ç of G, and G a s is the 

subgroup of G generated by the derived algebra [$,$). G S B is 

semisimpie, so **(G a a) Is a finite Abelian group. 
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The isomorphism *i(G)free - ZP la aatabllahad 
explicitly as follows: let I* -( ( c §1 exp *w( « 1 ) denote 
the unit lattice of 6,and consider the image z(I") of r under 
the projection map z: § — > Z(§). z(r) is a p-dimensional 
lattice in z(r),and, as we have shown in [29], 

(5.5) p([rl) - ji J x (g"*dg) « 2(§). 

where y is a loop in 6, Is an isomorphism between " i ( 0 ) f r e e 

and z(r). If <!,..,<£ la a Z-basis for the lattice z(D, 
then 

-P 
(5.6) P([»l) - E "jtjf 

l»] — > (n,t..iiip) la the aformentioned isomorphism. 
It is a known fact that any loop in G is homo topic to 

one of the form v(t) - exp iv{t, t e 8 . The image of such a 
loop is simply 

(5.7) p(») - z(€). 

(5.2) implies that on.3* the not equations de­
couple and we are left with a pure G-valued Yang-Mi lis 
theory .On S 3 the field equation is simply 

(5.8) DjP3 k " ° 

The general solution of (5.7) has been found by Goddard, 
Nuyts and Olive [18]: let us cover S 2 with the contractible 
open aets Vz - S* \ (south pole} and V 2 - S 2 \ { north pole). 
There exist gauges over V l f 3 - the so-called O-gauge- such 
that » « »„ and ths solution of (5.8) is 

(5.9) A*' 2
0 • 0 , A*'2*, ' i g i l T cos s) 

Q - the non-Abelian charaa- is a eonatant vector In the Lie 
algebra. Q can be chosen, with no loss of generality. In 
any given Cartan subalgebra. To have a well-defined theory, 
g must bo quantized; 



(S. 10) ejcp 4WQ - 1 . 

A loop in «[•] representing the Higgs charge is then 
expressed as 

(5.11) h(t) - exp «wgt , 0 < t < 1. 

(5.11) is In fact the transition function between the 0-
gaugea over V, and V,. By (5.7) 

(5.12) p(») (- p(o(»]) ) - J2(Q). 

Let us décompose Q as 

(5.13) Q - z(8) * Q* 

where Q* belongs to the derived algebra. The result of Brand 
and Neri (20) tells us that the stability of the monopole 
depends only on Q':the monopole is stable if and only if, 
for any root a of the semis impie Lie algebra [cj.tj], 

(5.14) aa(Q') - 0 or 1 for any coot a of (<J,<j], 

cf. [21].In each topological sector there exists hence 
exactly one stable monopole [12]. 



S.THE PROBLEM OP CLONAL COLO» FOR MOMOPOLK8 

Let us now consider a non-Abeliar, monopole (Aj,$), 

and let 6 denote the little group of the Hlggs field at 

infinity. Let K be a subgroup of 6. according to the general 

theory of Section 2, K is lmolementable if and only If, in V a 

(a - 1,2), there exist G-automnrphisms T a(x) which satisfy 

the consistency condition (2.4') with bhe transition func­

tion (5.11). Both V t and V a are contractible,so we can go to 

rigid gauges so that the consistency condition reads: 

(6.1) k h(x) - h(x)k, V k e K,x c V lr>V 2. 

where h is the transition function for the new (rigid) 

gauges. 

The homotopy class of the transition function Is 

however independent of the choice of a gauge,so (6.1) holds 

if and only if any transition function - In particular 

(5.11) - is homotoplc to one in 

(6.2) 2 6(K) - (9 £ C I gkg-» - k, Vk e K), 

the centralize* in c of K. The full "residual" group G is 
lmplenentabla if and only if (5.11) is homotoplc to a loop 

in the centre of O [19]. 

Requiring the lmplementability of a subgroup K le a 

topological constraint on the Hlggs charge.Indeed,(5.11) 

homotoplc to a curve in Zc(K) means exactly that 

(6.3) of*) - (h(t)J c la 1», 

where 1* is the homomorphism i*: wliZ0(K)) — > » l(C) Induced 

by the inclusion map i : Zç(K) «—> G. (Such a condition 

has been encountered before In the study of the fate of 

Grand Unified monopoles under subsequent symmetry breakings 

[33,34]). 

To translate (6.3) to more down-to-earth terms, let 

us study first the case X - G. 1*«1(Z(0)) lies in the free 

part,so 



(i) il G is implementabls,S[*] c ^(Ofree-

This implies at once that if ir1(0) is finite (ae it happens 
In some GCJTa - see Section 8 - ) then C is never 
lnmlementable for topologlcally non-trivial Higgs fields. 

Let Cir.-fCp be a 2-basis of z(r). For each j » 
l,..,p there exists a least positive integer M-j such that 
exp airCjMj - 1 [29]. The loops 

(6.4) *;j(t) - exp JiKjMjt. J - l,..,p 

generate »j(Z(G)) -and thus also ita image under i*. [*-)] e 
xr 1(G)f t a a - ZP has "quantum" numbers (0, .. ,Mj , .. ,0) . The 
parameter space of Ira i* consists hence of integer, com­
binations of these p-t.uples. (6.3) means thus that 

(ii) (»1 ~ (m 1,.. rm p) must satisfy 

(6.5) mj - nj Mj for some integer nj,j- l,-.,p. 

Conversely,(1) and (ii) imply (6.3). 
The physically moat interesting situation is when 

Z(Sj) is 1-diaenslonal. In this case (6.S) is simply 

(6.6) m - n.tt, 

where H labels the homotopy class of the central «(1). 
The condition of implementability has a nice expression 

in terms of the non-Abellan charge Q. Indeed, if Z(tj) f 0, 
(6.3) is equivalent to 

(6.7) exp 4»Q't, 0 < t «. 1, ia contractible in G B 8; 
and 
(6.8) exp •* z(Q) - 1. 

First, (6.7) is exactly (i) above.On the other hand, (5.11) 
nomotopic to a curve y(t) in Z(C) means that (5.11) and y(t) 
have the same image under p.But a y(t) in Z(C) is homotopic 
to a loop of the form v(t) - exp iwtt, with C « Z(6), whose 
image under pit ( itself. Hence p(v(t)) - (by (5.7)) - az(Q) 
» C- However, exp awe - 1 .proving (6.8). 
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Conversely, tf (6.7) and (6.8) are satisfied, than 
(S.ll) la nomotopic to v(t) - exp «»z(Q)t C Z(C) aince they 
have the same image under p. 

tC ^ has no centre, Z(0) la a diserste subgrc-ip of 
6 and thua # 1(G) is finite,so that the constraint (6.3) la 
violated. 

Similar,although slightly mors complicated,résulte 
hold for a general K. Let us assume, for simplicity, that 
»i(G) ia free,ZP. (This happens,for ejcample, if * is in the 
adjoint representation). p[i«('1(Zc(K))] la a eublattice 
in z(r) ,so it is generated by elements tj « Z(8), j-1,.. ,r < 
p. There is no loss of generality in assuming that each t j is 
parallel to a suitable {j, {-* • Cjtj.The coefficient Cj here 
ia an integer, since the tfc's form a Z-basis in z(r). Denote 
Lj the least common multiple Lj - [CJ.MJ] ,j-l,..,r with Mj 
as above,and let 

[ U i Lr 

be the least common multiple of the LJ/CJ'S.K imp lamentable 
means i.cw the quantization condition 

(6.9) eitp 4wM z(Q) - 1. 

Alternatively,the implementability condition (6.3) 
is also expressed as 

Icjnj tor some integer nj, j-1,,.,r 

0 foe j«r+l,..,p. 

Por » 6 cj- K) N K « 1 and (6.9) reduces to (6.8) 
Having settled the problem of lmplementabllty,let 

US ask if K is a symmetry group. Using ths infinitesimal 
approach of Section 3 we see that this happens if and only If 
(3.7) is oath-independent for each generator « of K (since 
Dp* - 0 and thua (3.6) lo automatically satisfied).This is 
however a gauge-invar lent condition so we can work in ths U-
gaugs (5.8),where uK - K, in V x ajjd. in V 2 so path-



independence means simply 

(6.11) K « A - 2^(0) - (a cjl f«,QJ - 0 ). 

He conclude that any symmetry group X must belong to 
the centraliser of Q In C. Notice that Z(&) is always in 
(6.11) 

In particular,the whole of C la a symmetry with' 
respect to the internal action defined by (3.2)-(3.3) if and 
only if O la In the centre of the Lie algebra. 

Prom a mathematical viewpoint, to be a symmetry is 
thus a much stronger condition then to be merely imp-
lementable. What is the physical difference between the two 
requirements? 

Consider first the case *> 6. 6 is simultaneously 
imp lamentable or not implementable for an entire topo­
logical sector. Let us assume [*) satisfies (6.7) and (6.8) 
and thus G is implementable for all monopoles in this 
homotopy class. In particular, £#J belongs to ths free part 
of ir3(G/G) .However,there is exactly one stable monopole in 
this homotopy sector, namely the one with £'- 0. But this 
Implies that Q • z(Q) is in the centre -so,for the unique 
stable monoDOle.avmnctrv and lnrolementabilifcy are tha same. 
For the other (unstable) monopoles the two statements are 
different. 

The main contribution to the path integral (1.1) 
comes however from tha neighbourhood of the stab? 4 so­
lution, and thus, semiclassIcally, implementability and 
symmetry are essentialy the same. 

The general situation when K ^ G is more complicated 
and the conclusion is different. Again,the full topological 
sector Is simultaneously implementAOle or not. The non-
Abellan charge of the unique stable monopole of our homotopy 
class may however flflfc belong to Z.(fc), and thus K may fail to 
be a symmetry for the stable monopole. If, on the other 
hand, we choose Q in 2*(£), X is a symmetry - but the 
corresponding monopole is generally unstable (see Section 8 
for examples). 



Let us considsr now a spin i/a Dirac field t coupled 
to a background monopole field (AJ,*).AB explained in 
Section 4, to any symmetry generator if - i.e.,to any JJ which 
coumtes with the non-Abelian charge vector Q - is asso­
ciated a conserved current.In the U-gauge this current is 
simply 

(7.1) j„* - err*»*. 

In particular! a generator < of the centre is an internal 
symmetry direction for all monopoles created when the 
symmetry is spontaneously broken to 6. In other words, ( is 
an admissible electromagnetic direction for all monopoles 
in the theory.(This la the choice made in [29]-the genera­
lization of the standard approach [27] valid when * is in 
the adjoint representation and Z(g) is 1-dimensional). 

For a fixed, monopole configuration however, we have 
slightly mors freedom: any vector which commutes with the 
non-Abelian charge is admissible. 

Monopoles carry also a maonatic charge. This is 
defined by the flux integral 

(7. 2 , g . - ! - f y M ( , , 

where the electromagnetic field TViV is defined by (4.11). 
In the O-gauge (7.2) la calculated at once: 

(7-3) g - j ^ - Tr <Qi») 

Observe,that the magnetic charge is quantized: indeed, 0 • 
(n/2)Q0 for some Integer n, where Q a is a minimal U(l)-
generator parallel to Q. Consequently g is an integer 
multiple of 



where i>, is a minimal 0(1) -generator parallel to v-
The comparlaion of (7.4) with (4.14) shows now that 

the electlc-rasnectivalv magnetic charges satisfy the gfins 
rallied Oitac condition 

Tr(2Q - ) 
(7.5) 2 0 ^ - ' . 

Notice that the value of (7.5) depends in general on 
Q and not only on the Higgs charge. In other words, it is not a 
topological invariant. If,however, y is in the centre, T> e 
Z(^), then the r.h.a. of (7.5) satisfies 

(7.6) Tr(jgC) - Tr(iz(Q)C) - Tr(p(«)C), 

so (7.5) becomes rather 
Tr(p(«)jj ) 

which is. already a topological Invariant: it depends only on 
p(*),the free part of the Higgs charge cf. [29]. 

Let us consider the particular case when ffj(G) -
*i(°)fres - z- L e t t»] = m. (7.7) is simply 

(7.8) >gmln9 - »/M. 

where the Integer M labels the homotopy class of the central 

On the other hand, 6 implementable means now that m 
- n.H (cf. (6.6)). He conclude that, in this special case, G 
is lmolementahle exactly when the generalised Oirac con­
dition (7.7) reduces to the original iInteger) Dlrac 
condition, (if z(|}) is not one-dimensional,this conclusion 
is however Cllsa., see the SO(10)-example below). 
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j faajl—afcJ—jjKMMat y n f > j M M „ M M M E M M M M f c 

As a first Illustration, we consider Monopôles in 

the 6 » 30(5) GOT [13,30]. Following the general pattern,let 

us assume * is in the 24 (adjoint) representation;the 
choice 

(8-1) *, - vl diag (a,a,2,-i.-i) 

yields the little group 

(8.2) O - S(0(3)xU(2)] - [S0(3)cxS0(2)HxU(l)Y]/Zs 

2($) i* generated by (8.1) itself,and ir1(G) - Z.The 'quantum 

number" [•] - m is calculated by 

(8.3) m - Tr,(p(»))/i - a TrQ/i. 

(trace on the upper 3x3 block, cf. [28,29]). The generating 

loop exp 2ffC,t - exp(a*»0/vt) of the centre of C has quantum 

number K - 6, so, according to (6.6), G is inrolemenfcable if 

and only if m is an Integer multiple of 6.m -6n. This la seen 

alternatively from (6.8),observing that z(Q) - (m/*)M. 

G contains the £filflx subgroup 

(8.4) 90(3), • N • K c 30(3) 

whose centraliser is 

(8.5) Z G(30(3) C) - 0(2),^ -[(det B ) " 1 ! ! 

-I-B-J » B « 0(2) 

»i(0(2) w s) s 2 is generated, e.g., by 

1 

(8.6) r(t) « exp avl 
•3 t , 0 « t < 1, 



TT 

whose homotopy class is labelled by c - 3. Hence,by (6.9), 
SU(3) C is lmplementable if and only if m - 3n. (Alter­
natively, this follows from (6.9) noting that H - 2 now). 

Slmilarly,conslder 

(8.7) S0(2) w Nv , B C SO(2) 

the subgroup of weak Interactions.2^3(1(2^1 Is just 

(8.8) 0(3) - — ' .,-1/1 , * « 0(3) i ((det A.) l / * l a 

* L ( U ( 3 ) ) - 2 is generated,e.g.,by 

(8.9) v(t) - expairltdlag(-a,«,«,i,i) 

whose class in r 1(C) is c » 2.Thus 50(2) H is Imp Ionian table 
if and only if g±2a< 

Furthermore, C la an internal symmetry oroup only 
for the atable charge-6 monopole (32] given by 

(8.10) 0 - C/a - i diag(i,i,i,-a/a.-»/a). 

S0(3) c is a symmetry if and only if Q c U(2)W3.Thi8 is 
realized by two different charoe-3 monopol.it 

(8.11) Qi - (l/a) dlag (i, i,i,o,-a). 
and 
(8.12) Q a - (i/a) diag (i,i,l.-i.-a). 

Only fa.121 satisfies the BN condition (5.14) and is thus 
stable [32]. SO(3) e is hence a symmetry group simul­
taneously for a stable and an unstable monopole. 

Similarly, SO(2)u is a symmetry if an only if Q « D(3) in 
(8.8).This condition is met by two charge-2 monopole»: 

(8.13) Qj - (i/a) dlag (a -1,-1), 

http://monopol.it


and 

(8.14) OÏ - (i/a) «>iag (», »,».-i,-i). 

Both monopoles are hence S0(2)H-synMtric, but only la.lAt 

ii_afeabJla-
For the "elementary" monopole aQ « 1 dlag (1,o,t,o,-i), 

eo the maximal syanetxy group is 

(8.IS) 

U(l) - - -
"Vie 

U(l) 

At much lower energies (0(100 GeV)) the symmetry is 

further broken to C - U(3) (- [SU(3cxU(l)enl]/Zs ) by a Higgs 

£. >r1(U(3))-Z> and the quantum number m is still calculated 

by (8.2) [29].2(u(3)) ia generated by 

(8.16) Q«m ' i diag (l,i,i,-J,o), 

(a minimal generator). (8.16) is the usual choice for the 

electromagnetic direction. 

The central 0(1) has quantum number 3,so C«0(3) is 

impImentable for the U( 3)-monopole if and only if m - 3n 

[19]. This is seen alternatively from (6.6) alnce az(Q) -

m.Qam/i in this case. 

The color subgroup 8U(3) e belongs to U(3);its 

centraliser In 0(3) is 

(8.17) Z a ( 3 )(SU(3) c)- 0(1)6», - U(Dcentre. 

so SU(3) C is implement able if and only it m - 3n (alter­

natively, in (6.9 ) N - 1). 

G- a m is an internal symmetry iff Q e Z(U(3)),i.e. 

iff 0 - (m/2)0 e m. But this is simultaneously the centraliser 

for SU(3)c,so they are simultaneously symmetries or not. 

The charae-3 monopole given by 2Q » Q e B is stable by 

the BN condition.and is thus Uf 3)-symmetric 

The "elementary" 8(0(3x0(2)) monopole survives the 

•phase transition" S(U(3)xO(2)) — > 0(3) [34].The maximal 



symmetry group (8.15) is reduced however to 

(8.18) H' - U(2) cxU(l) B m 

since U ( 2 ) w s la broken to a(l)em in this process. 

Let us consider the SU(S) £-plet 

(8.19) «• - (dR,dBtdc,e-,ve)i.. 

where R.B.G refer to the quark colors.The Internal symmetry 

group (8.18) is generated by 

0. 
1 

- I - 1 
-li 

(8.20) 

0 
i 
_T.l 

0 
0 

Q — -
=ïT 

~-l ~ 

~' ~ Ô 
0 

All these generators are internal symmetries for •> 

- considered as a test particle in the field of an SO(S)-GUT 
monopole. 

Com *•• t h o standard choice for the electromagnetic 

direction.The corresponding electric charge is quantized in 

units of 

(8.21) q m i n - e/ï-* - q/i. 

The electromagnetic current is thue expressed as 

(8.22) £ - qui (V*V ****d

B

 + V ^ V - " »*•»• 
(8.22) Is conserved in Ali background aonopol fields,not 

only for the elementary one.The other four currents. 



2b 

(8.23a) j£ - ci{(d B» Md B + d G»*d c) - a* * M e ) , 

(8.23b) j* - cl| 3 B»*d 0 + d^**,, 1. 

(8.23c) 3* - c l-Sgl^d,, + d 0v*d B), 

(8.23d) j* - ci{ d BT*d B - 5 cy*d G>, 

(where c • e/>|a), ara however conserved only for the 
elementary monopole. 

The corresponding "magnetic' charges - defined as 
the flux integral of the corresponding "electromagnetic" 
fields are 

(8.24) g e m - i/ae, g t - i/*c, g 1- g*- g» - o, 

ao the generalized Dirac conditions read 

(8.25a) aq«"\singe" • »/». 

(8.25b) sq'ming" " »/»-

(8.25c) aqJ ai ng3 - • ,J • 1,1,1. 

As a second example,consider c - spinin (the doable 
covering of SO(10)) broken to 

(8.26) G - [Spin6xSpln4]/Z2 

by a Higgs 5JL (10x10 symmetric matrices) with basepolnt 

(8.27) *, - diag (a,a.a,a,a,a,-»,-a,-i,-i) 

[31,35]. »,(O) = Z a. The Lie algebra 8 - so(6)xso(4) has 
trivial centre so G is never lmplemantable. 

Let us consider the (stable) elementary monopole 
given by 
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(8.28) Q - (J„ - J„)/a 

where the Ĵ t, are the nsusal rotation generators (antl-
synuasrlc, imaginary, 10x10 matrices, (J«b)ij " ~ A( 0ai 6bj ~ 
•aj«bi) )• 

The only vectors in fj which commute with Q are the 
multiples of Q , so the maximal symmstry algebra is the one 
generated by Q. This is the only choice of electromagnetic 
direction. 

Electric charge Is quantized in units 

(8.29) q m i n - e/IQI - e/a. 

The magnetic charge Is 

(8.30) g - IQl/ae - x/m. 

so the original Dlrac condition is satisfied. Imple-
mentablllty and integer Dirac condition are hence different 
in this case. 



9.THB WQW-MBMWI AHMM 

Another tricky example is provided by the non-

Abel Ian Aharonav-Bohm experiment proposed by Hu and Yang In 

theic celebrated paper on the non-integrable phase factor 

[22]. They suggest in fact to set up an SU(2)-gauge field 

confined to a cylinder. If a nucléon beam is scattered around 

this flux line, a non-trivial interference would prove the 

existence of Yang-Mills fields. 

It is not difficult to show [23,36] that there 

exists a gauge- analogous to the U-gauge (5.9) for monopoles 

- where the gauge field with *t-j - 0 in M - R» \ (cylinder) 

Is simply 

(9.1) A x - 0, AQ « 0, hp - ŒOj/i. 

a here is a real parameter,defined modulo integers. 
Let us try to implement G»S0(2) by an AutG0 -valued 

"Higgs" field T(.)(x) on M.As explained in Section 3,we can 

gauge any such Tg(x) to identically g simultaneously in Vj « 

((r,e,o) I c < B < »+e ) and V 4 « ((r,G,o) I ir-e < 6 <»w) 
since both V t and V, are contract lble.The price to pay for 

this is that we introduce a transition function h - which is 

now just a constant element of SU(2).Consistency requires 

now 

(9.2) g.h - h.g, 

i.e. h must be in the £fintts of SU(2). So we have £w£ 

solutions: h » 1 or h » (-1) .He conclude that, although 

there is no obstruction to implement O-SUf 21 .there is an 

ambj£Ui£y.> In the O-gauge (9.1) the two Implementations are 

found explicitly as 

either 

(9.3) T»g(x) - g 

or 

*£<*> 
expl*/i 0 1 fexp-i#/i 

0 exp-i^/ij \^ 0 explo/3 



(9-4) 

•*P-i#S a l 

where x - (r,e,4>) and g - (9ij) a matrix. 
Are these implementations symmetries? The cor­

responding local expressions read 

(9.5) 
and 

w^ - n , n c au(2), 

(9.6) u* -
"n «P*<" 1 2 

•xp-i*»al «»„ 
, s c su(2). 

To be an internal symmetry,wg must bs covariantly constant. 
However, 

(9.7) 

and 

(9.B) 

»*;}<*> - f to,.*} - | 0 
2<n " ° J 

r o «•«>-„] 
D«»(*) - i 

respectively. We conclude that 
either 

m aaii neither «nor i. and then ? „ • n M - « so the 
only symmetry-direction i* the one given by the field (9.1) 
itselft 
or ' 

fill »a-i or ia-i.Th» whole SU(2) is then a symmetry. 
However, for a-» only the implementation (9.7) .for a-i only 
the implementation (9.8) is a symmetry. 

These,at first sight rather abstract, statements 
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have however a fundamental importance. Indeed,the nucléons 

in the generalized Aharonov-Bohm experiment can be viewed 

as teat particles moving In a background ÏM vacuum [23]. How 

can we tell which of the nucléons le a proton, which la a 

neutron? As emphasised by Yang and Mills in the very first 

paper on gauge theory [37],this can be done only by 

measuring the electric charoa.Thn narttela's charge alone 

is conserved however only if the background field has 

symmetries. Indeed,the cases (i) and (li) are exactly those 

when the nucleon's charge is conserved.In other cases - for 

a» i/a e.g. -protons can be turned to neutrons [22,23]. 

Using the same technique as for monopoles, one can 

show [38] that, for an SO(2)-lnstanton, C - SU(2) is navar 

implamentable.The physical consequences of this fact are 

not entirely clear however. 

The theory outlined in this paper admits a nice 

fibre-bundle interpretation. This is explained in a com­

panion paper [25], 
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