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J INTRODUCTION
In non-Abelian gange theories.the word “symmetry”

has two meanings:on the one hand, it means a transformation
which changes the Lagrangean to an gguivalent one . This is
what we call a symmetry of the theory., On the other
hand,this same word is used to refer to a transformation
which leaves a specific field configuration invariant.it is
in this .sense that we talk, for example, of spherically
symmetric monopoles, etc.

Space-time symmetries of gauge field configurations
have been studied extensively in the literature [1-7]. The
aim of this paper ie to carry out a similar analysis for
internal transformacions.iore exactly.we are concerned with
the gquestion:which gauge transformatfon are symmetries for
a_given non-Abelian gauge field configuration?

This problem is closely related to that of "global
solor® which arose recently in monopole theory [8,9): The
first step in defining a symmetry of a given field
configuration is, in fact, the jimplemepntation of this
transformation. The a=gument used for monopoles shows
however,that, in topologically non-trivial situations, a
topological obstryction may prevent us from doing so.

Next, an implementable transformation may fail to
be a symmetry.Those which are symmetriss form a subgroup H
of the full gauge group.Since H acts trivially on space-time
we shall call H an jpternal symmetry group. That H may be
actually smaller then ¢ has first been advocated,at a
conceptual level, by Filecher ([7).

f.et us consider, for example,a monopole (A4,.9) (10-12]
created in a Grand Unified Gauge Theory (GUT) {13] when the
original gauge group Tis spontanecusly broken to a subgroup
C by the vacuum expectation values of the Higgs field . G -
the so-called residual “symmetry”® group - is the gauge group
tor the new (spontaneocusly broken) theory. The actual
symmetry group of the monopole configuration is however not
G. To see thie conaider two monopole states in a given
topological sector labelled by the the "Higgs charge® [®] ¢
w, (3’/6). Semiclassically, the path integral which expresses
ih. transition amplitude betwesn the two states, splits


http://invariant.lt

- [ el Lcl,, &

1.1 K = S(A;", @ K .

- te} clnE-lenl oxp { x 8( N Ko
solutions

where (Ajel.oﬂ-) is » classical solution to the field
equations and 'i'cl deiotes the reduced propagator;

t
2
sagtie®h) « - [[i} @51.rMd) 4 Lpje.nte) + vio)1a’xat
t r?
1

(1.2)

is the classical action for the configuration (A4¢l,ecl).

(1.1) shows clearly,that the actual symmetry group is
not merely G, the stability group of the Higgs field alone,
tather H & G, determired by the whole classical field
conf iguration. This has first been noticed in the study of
dyonic excitations of a monopole [14-16].

To identify the associated conserved quantities,
observe that, for a test particle moving in our non-~Abelian
background, the internal symmetry group H of the given
configuration becomes a symmetry for the particle Lag-
rangean. So,by the Noether thesorem ([6,17), we have a
conserved current associated to each genetrator. In par-
ticular, we can get consexved electxic chaxge. So internal
Bymmetries generate “electric® electric charge just like
xotations genorate angulaxr momentuml

~ This sheds a new light on the role of internal sym-

metries: while the total YN current is merely covariantly

rved, th components parallel to internal symmotry
generators are already ordinarily conserved.

The main application of our theory is to the "color
problem® ([8,9] in monopole theory. We show first that a
subgroup K of C is implemontable if and only if the standard
transition function [10-12,18] h(t) = exp +2Qt ,0 ¢ t ¢ 1 -
where Q is the “"non-Abelian charge® of Goddard,Nuyte and
Olive [18] - is homotopic to a loop in

(1.3) Zo(K) = (g €« G | gk = kg, Vk « K},

the gontralizer of K _in O.In particular,G itself is



implementable Lff h(t) is homotopic to a loop in Z(G),the
gentre of G [19]). This condition ie expressed in terms of
the non-Abelian charge as

(1.4) oxpawz(Q) = 1,

where z: 5—-» Z(E) is the projection onto the centre Z(§) of
the Lie algebra % of G. (1.4) i» a constrajnt on tho Higgs
charge (see Section 6).

Next we show that K is a gymmetry if and only if it
is a subgroup of :

(1.5) Zg(Q) -~ {g € 6 1 g7Qg ~ Q). ’

the cenkyalizoxr of the non-Akelisn chaxge Q.The whele ¢ is a
symmetry if and only if Q helongs to the centre.

From a mathematical viewpoint, implementability and
symmetry are thus very different notions.Are they physi-
cally different? Observe first that K is or is not
implementable simultancouzly for all monopoles in a chosen
topological sector. However,in sach topoclogical sector,
there is only one stable ronropole [12,20,21]. On the other
hand,the main contrubution to the path integral (1.1) comes
from the neighbourhood of this stable monopole which has the
least energy. We show below that, for the unique stable
monopcle of a given topological sectoxr, G is implementable
exactly when ¢ is an internal symmetry (fox & subgroup K of G
the situation is more complicated).

A second illustzation is provided by the non-
abeltan Aharonov-Bohit experiment, proposed by Wu and Yang
to test the existence of gauge fields ([22,23].No topo-
logical obstruction arises in this case for implementing
SU(2) - gaugs transformntions.Thers is however an ambi-
guity: SU(2) admits two ineguivalent _implementations.Even
worse.for a given field configuration,none of the imp-
lementations is a symmetry in general. This explaine why the
electric charge of a nucleon moving in such a backgrounc
field is not consecved in gnneral [22,23].
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Let ¢ denote a compact and connected Lie group and
let us consider a gauge theory with gauge group G over
(possibly a portion of) sepace-time M.Let us choose a
covering of M by contractible open sets Vg.In each V4 the
Yang-Mills field is given by a gauge potential A,%,which
satisfy, with the transition functions hgg: VaaVg --» G, the
conajstency relation

(2.1) A %(x)=(hgg)=3 (X)AuR(XINag(X) ¢ (hag)™?(x) Ouhaa(x)

for all x € VanVs. .

Similarly.a matter field & is specified by giving,
in each Va,a local reprecentative &2 which transforms
according to a unitary representation & --» g-® of G.The
®2's gsatiafy the consistency relation

(2.2) ©%(x) = hgg(x)-08(x)

Let K be a group and consider a fixed field
conf iguration (A,,®). Let us assume that
(i) K acts on M, x ~-> k-x;
(ii) in each Vg a G-valued function 7x2@ is asso-
ciated to each x ¢ K such that

(2.3) 2 (x) = 22 (k_ -x)7T (x)
klka kl a k’
and which satisty the consistency condition
-3 8

(2.4)  7)(x) = (hpa(c-x)) " 1y (x) hyg(x)

(2.3) = (2.4) imply that K is iaplementable.i.e.for

sach xeVg

(2.5) (XA )%(x) = LRI OAT(X) [73(x)) '~ D rpa)lrg(x) ]!

where Qc“"(x)) ie the matrix of the linear map on TyM --> T).y M
induced by x ~—> k-x, and '
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(2.6)  (x®)%x) -  7(x)0%x) '

are well-defired,i.e. have the correct ttanstoinntton rules’
(2.1)-(2.2), and k --» k-A,; (respectively k ~-> k-®) is a
group action.

(iii) Pollowing Schwarz {1) X is called a symmetry
aceup Cor the conliqyration (A,.®) with respect to this

implementation if, furthermore,

a a
(2.7) A (kex) = (k-A)“(x)
and
(2.8) o%(x-x) =~ (x-0)%x)

We want to apply this general definition to a suhgroup K of
G,acting grivially on M: x —=> k-x = x, ¥k € K.

Notice that the conditions above are trivially
satisfied by 7 %(x) = 1 ¥ «,x,x.This is however a trivial
action.To have a sensible theory, somo regularity conditon
has to be imposed. In this paper we consider a very strong
one:we shall require that,for each x, 7( )¥(x) is the
restriction to ¥ of an automorphism of ¢. (8,9,19].50 K<G
implementable means now the existence of a family of G-
automorphisms 7%(x) such that

(2.3" 7% ) e« 1% () 72 (x
) kxka( kI. k) )

satisfying the consistency condition

b

(2.4°) TRX) = (Bge(x)) T 7R(x) hyg(x)

Such an action is an internal symmetry if,additionally.
(2.7) Af(x) = 7j(x) AZRTR(0)™Y - B rpcalvgea ™

and
(2.8) o%x) = 7R(x)-0%x)



We study first implementabiliy. Following the pattern
in monopolie theory,we show that a fopologjical obstruction
may prevent. uc from implementing K [8,9,19].

Indeed, let us assume that K is implementable, and lst x,
¢ M be an arbitrary reference point.There is no loas of
generality in assuming 7ik%(xg) = k since this can always be
achieved by replacing 7( )%(x) by 7(_%(x).[7(.)%(xo)172-
7#(x) belongs then,for each x, to (22t G),,the connected
component of the group of automorphisms of G.(Aut G), is
known however to consist of inner automorphisms for any
compact ahd connected G [24,25]. It follows that,for each x
€ Vyu, there exists an ha(x) ¢ G such that

TR(X) = hy(x) Kk hgl(x)

The hg's can be chosen to be smooth since the Va's are
contractible by assumption. The hy define hence a gauge
transformation in each Vg.In the new gauge (we still denote

it by @) the action (2.5%) - (2.8) of k becomes rjgid,i.e.
position-independent:

(2.9)  (k-Ay)%(x) = KA,%(x)k™}
and
(2.10)  (k-®)%(x) = k-0%(x).

The consistency condition (2.4) requires now
(2.11) k~3hgg(x)k « hgg(x). ¥k € K, x € VgnVg

where the hgg are the pow transition functions between the
rigid gauges in Vg and Vg.By reversing the argument we see

that,by (2.11), K_is Jimplementable if and only if there
exist gauges such that all transition functions hgg(x) take

their valyes in
(2.12) 2g(K) = (g € G | g~kg = k, Vk ¢ K},
the centralizex of K in G. In particular, 8 _{tselfl is

implementable if and only If all transitlon functions
belong to Z(G),the gentre of ¢,



3. INTERNAL BYMMETRIES

Let K be a connected Lie group with Lie algebra 5, and
assume that K is inplementable.Let its internal action be
given by a family 74. We can work infinitesimally:set

(3.1) &%(x) - ﬁ y(®) ke R.x eV,

@
7(e:l:[: -tx
t=g,

The infinitesimal action of ¥ ¢ R corresponding to
the considered internal action of K< G is given by

(3.2) (x-Ay) = Dywy
(3.3) (2-®) = @y
(to kesp the notation simple, we dropped the indice a.)

(2.4') implies that wy(x) is a "Higgs" field of the
adjoint type.The property (2.3) requirss now

(3.4) uul"’](x) - [u‘(:).u'ix)]. Vu‘,u: € ﬁ. x e M.

so,taking into account our regularity- and normalization
conditions, ¥ --> w,(x) is,for each x, the restriction to R

of a ; tomorphism § —> g satisfying wy(x,) =K.

By (3.3) and (3.4), if the action of K {s an internal
sysmetzy, then

(3.5) Dywy = O .
and
(3-6) U". - D,

Conversely.any normalized solution of (3.5)-(3.6)
provides us with an internal action of keexp~awx. Indeed,
(3.5) is solved by parallel transporxt,

(3.7) wye(x) = gix)x g~2(x)



where g(x) is the non-integrable phase factor

X
(3.8) g(x) = rP(.xp-I A, ax)
x .

]

(3.8) is in general path-dependent. Let « ¢ 6 such that
(3.7) is nevertheless path-independent. Let us assume (3.6)
is also satisfied (this is automatic if D,® = O, since in
this case ®(x) = g(x)®og(x)~? and so

We(x) +B(x) = g(x)xg(x)"1g(x)Deg(x)~! = x-®o = 0
since x e R ‘6).
k = exp~2wx is now implementable:

(3.9) T(x) = exp(-wy(x))

admits, as one proves easily, the properties (2.3') -
(2.4°).The corresponding action of k on the fiolds is
plainly a symmetry:it eatisfies (2.7') and (2.8°).

Those 7 ¢ 5 for which (3.7) is path-independent
and also (3.6) is satisfied generate a connected subgroup H
of €. (By (3.7) the group-property (3.4) is now automatic.)
Some differential geometry shows that H is in €fact the
centralizexr of the holonomy algebra of the Yang-Mills
potential [7.25).

H is the maximal internal symmetry qroup of the YMH

configuration we consider: the argument above shows plainly
that any subgroup K of G which is a symmetry group is
necessarily a subgroup of H.



4.CONSERVED CHARGES

it we have syonotries.we expect to tind conser—
vation lsws. What are the conserved guantities generated by
internal symmetries? Charges! To see this,consider a test

pacrticle ¥ moving in a background YMH field (&,,®). For the
sake of simplicity we consider only a spin-i1/2 Dirac
particle, with Lagzangean :

(4.1) - £ aP(¥hD, + cd + m)YP

wheze ¢ is a group-independent constant.and ¢ is assumed to
transform according to a unitary representation U of G. ¥ is
just another matter field, so, as explained in Section 2, in
each Vq it is described by a local representative 92 which
transforms according to U. The consistency condition (2.2)
becomes now

(4.2) ¥3(x) = U(hgg))¥8(x), X € VgnVgs-

Let us assume that K is a connected group of internal
symmetries for the giver background YMH configuration
(Ay,®). Lot K be implemented by T®(x) € AutGIK (restriction
of an automorphism of G to K). According to (2.6),Kacts on ¥
as

(4.3) (k-9)®(x) = B(7®(x))¥E(x);
the infinitesimal action xeads
(4.8 (k-?IF(x) = (wy(x)-v¥(x).

The point is that the implementation (4.3) leaves
invariant the Lagrangean (4.1). This follows by straight-
forward calculation. Hence the jnternal. symmetry of the
background fijeld becomes a Noethex symmetry for the Lest
particle, This is furthermore an internal symmetry, since
the action on space-time is trivial. Conssquently ,for each
generator x € £ the current
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(x¥) = F o ¥ .

(4.5) )k - 0
. X aa®m

ie ordinacily conserved [17]: ,
(4.8) Duik = 0.
Let us consider the non-Abelian current

(4.7) Jak = F vETaew , ae 1,...4im .

where the 7,'s are a basis of the Lie algebra.
The gauge-invariance of the Lagrangean (4.1) implies

that (4.7) is covariantly conserved:
(4.9) DyI& = O,
However, the w,- component

(4.9) Ju# = Tr(wydK)

I}
is already gordinarxily consexrved slhce Dywy = 0 by assump-
tion. 1t is straightforward to verify that (4.9) is just
(4.5), as anticipated by the notation.

Interestingly.the formula (4.9) hae already been
proposed to define conserved electric charge [26).Now we
understand its origin :it is the (orxdinarily) conserved
current associated to an internal symmetry generator.This
sheds a new light on the role of internal symmetries.

It is instructive to pursue this direction.lLet us
assume in fact that D,® ~ 0 and so the YM fisld satisfies the
vacuum field equations

(4.10) Dy PAY = 0 , Dy(ekVPOP,,)/2 = O

and identify ths glectromagnetijc field as the wy -component

of '“y H

(4.11) '?”(x) - (1/0) Tr(F,, 0 /10, ))



whezre e is a coupling constant. (4.10) implies that '3:“,
satisfiss the yvacuum Maxwcll eguations

(4.12) DuThY = 0, u(e#¥P0F 5)/1 = 0.

Let us define the (semiclassical) alsctric charge operator
by

(4.13) Qem(Xx) = ewyp(x)/lwg(x)!.

The electric charge of any particle in the theory is an
elgenvalue of (4.13). As demonstrated in [27,28], these
efgenvalues are gyantized if and only if x generates a U(1)
(rather then merely a torus-) subgroup of G.If so, all

electric charges are integer multiples of
(4.14) dmin = 8/lxgl,

where xp, is a "minimal®™ U(l) generator (i.e. such that
expawkt= 1 the first time for t=l) parallel to «x.

Let us assume that ¢ is an eigenstate of Qgy with
eigenvalue ngpin. The particle's electric charge i. hence

(4.15) q = | Ig0a’s - ¥ ACLED * T [#Fr- n9.in
]’ r? r?

as expected. If the background field is that of monopole,vwe
have futther properties (see Section 7).
\



The principal application of the general theory
outlined in the preceeding sections (s to pon-Abelian
monopoles. Here we resume briefly those properties we need
in the sequel.(For reviews ses,e.g..[10-12]).

Let us consider a YMH theory with a compact, connected
and simply connected (and hence semisimple) “unifying"
gauge group T. At some energy scale (0(l0l4) GeV) the E’-
symmetry is spontaneously broken to a subgroup G of '(‘:’by the
v.e.v. of the Higgs field ®. Consequently, the nympl:ottc'
values of the Higgs field provide us with a map

(5.1)  @:82-~> .04 = G/G.

Magnetic monopoles are everywhere-regular, static, finite-
energy, purely- magnetic solutions to the YMH equations,
satisfying (5.1) and the “"finite-energy” condition

(5.2) Dy® = 0 on S2.

The map (5.1) providee us with the fyndamental
topological invariant

(5.3) [®1 < #,(8/6)

we call the Higgs chaxge.

The injective homomorphiem o:n,(a’/G) -=> #,(G) is
now an isomorphism since T ie acsumed to be eimply
connected.

In a previous paper [29] we studied the Higgs charge
in somes detail.We have shown that,for any compact and
connected Lie group G, '

(5.4) #3(6) = #,(C)frge + ¥1(Ggn)

(direct sum).Here »,(C)g¢ree = ZP, where p is the dimension
of the centre Z(f) of the Lie algebra §ot ¢, and Ggy is the
subgroup of G generated by the derived algebra [§,§). Gyy is
semieimple, 80 ¥,(Cyg) is a finite Abelian grxoup.



ia

The inomorphism ¥;(C)gree = 2P is established
explicitly as follows: let I' ={ ¢ ¢ §! exp iw¢t = 1 ) denocte
the unit lattice of G,and consider the imags z(I') of T' under
the projection map z: § -—> 2(§). z(T) is a p-dimensional
lattice in z(T'),and, as we have shown in (29],

(5.5) ol ~ 3 [z (97'@) 2.
r

where 7 is a loop in G, is an jsomorphism between #;(G)gree
and z(rr). 1¢ C;.--.Cp is a Z-basis for the lattice z(TI'),

then
£

(5.6) p((7]) = E myiys
R

{r] -=-» (nl...,np) is the aformentioned isomorphism.

It is a known fact that any loop in G is homotopic to
one of the form y(t) = exp aw¢t, £ ¢ g The image of such a
loop is simply

(5.7) pl7) = z(¢).

(5.2) implies that on.82 the YMH equations de-
couple and we ave left with a pure G-valued Yang-¥ills
theory .0On 82 the fisld equation is simply

(5.8) D,rjk =0

The general solution of (5.7) has been found by Goddard,
Nuyts and Olive [18]: let us cover 82 with the contractible
open sets V; = 83 \ {(south pole} and V, = 82 \ { north pole}.
Thete exist gauges over V, ; - the so-called U-gauge- such
that ® = ®, and the solution of (5.8) is

(5.9) Alcdg =« 0 , Al12, = £ Q(1 F cos 0)

Q - the non-Abelian charga- is a constant vector in the Lie

algebra. @ can be chosen, with no loss of generality, in
any given Cartan subalgebra. To have a well-defined theory,

Q must be guantized:



(5.10) exp 4¥Q) = 1 .

A loop in 8[®] representing the Higges charge is then
sxpressed as

(5.11) h(t) = exp emgt ,0 ¢ t ¢ 1.

(5.11) is in fact the tranaition function between the U-
gauges over V, and V,. By (5.7)

(5.12) P(®) (= p(O[®]) ) = 22(Q).

Let us decompose ( as

(5.13) Q= z(Q) +Q°

whete Q° beiongn to the derived algebra. The result of Brand
and Neri {20] tells us that the gtabjlity of the monopole
depends only on Q':the monopole is stable if and only if,
for any root a of the semisimple Lie algebra [tj,s‘],

(5.14) 2a(Q') = 0 or 1 for any root a of [g,(j],

cf. {[21].In each topological sector there exists hence

exactly one stable monopole ([12].




Let us now consider a non-Abeliar, monopole (Aj,o),
and let G denote the little group of the Higgs field at
infinity. Let K be a subgroup of 6. According to the general
theorxy of Section 2, K is implementable if and only if, in V;
(e = 1,2), there exist G-automnzphisms r&(x) which satisfy
the consistency condition (2.4') with the transition func-
tion (5.11). Both Vv, and V, are contractible,so we can go to
rigid gauges so that the consistency condition reads:

(6.1) k h(x) » h(x)k, Yk ¢ K,x € V;AV,.

where h is the transition function for the new (rigid)
gauges.

The homotopy class of the transition function is
however independent of the choice of a gauge,sc (6.1) holds
it and only if any transition functjor - in particular
(5.11) - is homotopic to one in

(6.2) 2G(K) = {g € G | gkg=3 = k, ¥X € K},

the centraljzer jin ¢ of K. The full "residual® group G is
implementable if and only if (5.11) is homotopic to a loop

in the centxe of ¢ [19]. .
Reguiring the implementability of a subgroup K 18 a
topological constraint on the Higgs chaxrge.Indeed,(5.11)

homotopic to a curve in 2Zg(K) means exactly that
(6.3) 8[(®) = [h(t)) « Im i,

where ia is the homomorphism is: w,(Zg(K)) —> #,;(C) induced
by the inclusion map { : 2g(K) &> 6. (8Such a condition
has been encountered before in the study of the tate of
Grand Unified monopoles under subseguent symmetry breakings
{33,34]).

To translate (6.3) to more down-to-earth tsrms, let
us study first the case K =« G. 1aw;(Z(G)) 1ies in the free
pact,so




(1) 4t G is implementable,d([®] ¢ 7,(Clrree-

This implies at once that if »,(G) is f£inite (as it happens
in some GUTs - see Section 8 - ) then C 1is pever
impilementabie for topologically non-trivial Higgs fields.

Let ‘l""‘ll be a 2-basis of z(F). For each j =
1,...p there exists a least positive integer My such that
exp :tcjllj = 1 {29). The loops

(6.4) v3(t) = exp amiyMyt, 3 - l,...P

generate »;(2(G)) ~and thus also its image under ia. [1:'] €
7,(C)free = 2P has “quantum® numbers (O,..,Mj,..,0). The
parameter space of Im i: consists hence of integer. com-
vinations of these p-tuples. (6.3) means thus that

(ii) (@] = (my,...mp) must satisfy

(6.5) my = ny I(j for some integer nj,j- 1,...p.

Conversely, (i) and (ii) imply (6.3).
The physically most interesting situation is when
ztg) is l-dimensional.In this case (6.5) is simply

(6.6) m =~ n.M,

where M labels the homotopy class of the central U(l).

The condition of implementability has a nice expression
in terms of the non-Abelian charge Q.Indeed. if Z(Y) ¢ O,
(6.3} is equivalent to

(6.7) exp «wQ't, 0 ¢ t ¢ 1, is gcontractible in Ggg:
and
(6.8) oxp «v 2(Q) - 1.

Fixst, (6.7) is exactly (i) above.On the other hand, (5.1l1)
homotopic to a curve 7(t) in 2(C) means that (5.11) and ¥(t)
have the same image under p.But a ¥(t) in 2(G) is homotopic
to a loop of the form y(t) = exp awlt, with ¢ ¢ 2(§"). whose
image under o is { itself. Hence p(¥(t)) = (by (5.7)) = az(Q)
= {. However, exp am{ = 1 ,proving (6.8).

’
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Conversely.if (6.7) and (6.8) are satisfied, then
(5.11) is homotopic to ¥(t) = exp «¥z(Q)t & Z(G) since they
have the same image under p.

1t § has no centre, 2(G) is a discrets subgrcup of
] and thus #,(G) is finite,so that the conatrunt (6.3) 1is
viclated.

Similaz,although slightly more complicated,resulte
hold for a general K. Let us assume, for unbucity, that
#;(C) is free,ZP. (This happens,for example, if ® is in the
adjoint representation). pl[ix(¥;(2g(K))] is a eublattice
in z(T) ,s0 it is generated by elements £y « 2(5).j-1, cesX €
p. There is no losa of generality in assuming that each ¢y i
parallel to a suitable $3: &5 = ¢4{§.The coefficient ¢y here
i3 an integexr, since the {x's form a Z-basis in z(I). Denote
Ly the least common multiple Ly ~ [c5,M3] ,3=1,..,r with M5
as above,and let

- |, =
cl cl

be the least common multiple of the Lj/cj'a.t implementable

means nuw the guantization condition
(6.9) oxp asM z(Q) = 1.

Alternatively,the implemsntability condition (6.3)
is also expressed as

‘eyny for some integer ny, 3=l,...r

(6.10) my =
Q tor j=r+l,..,p.

Por K= G cy~ My so M= 1 and (6.9) reduces to (6.8)
Having settled the problem of implementablity.let
us ask if K is a symmetry group. Using the infinitesimal
approach of Section 3 we see that this happens if and only if
(3.7) is path-independent for each generator k of K (eince
D,® = 0 and thus (3.6) ic automatically satisfied).This is
however a gauge-invariant condition so we can work in the U-
gauge (5.8),where w, = «,in V, and in V, so path-
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independence means simply
6.11) «x¢ A = zg(o) =ty ef1 (nQl = 0).

We conclﬁdo that any symmetry group K must belong to
the gentralizer of O in G, Notice that 2(§) is always In '
(6.11) ' :

In particular,the whole of G ig a symmetry with’
respact to the internal action defined by (3.2)-(3.3) if and
only Aif Q ja _in the centre of the Lie algebra.

From a mathematical viewpoint, to be a symmstry is
thus a much stronger condition then to be merely imp-
lementable. What is the physical difference between the two
requirements?

Consider firet the case K= G. ¢ is simultaneously
implementable or not implementable for an entire topo-
logical sector. Let us assume [®) satisfies (6.7) and (6.8)
and thus G is implementable for all monopoles in thie
homotopy class. In particular, [®]) belongs to ths free part
of 7, ('é'/c) .However ,there is exactly one stable monopole in
this homotopy sector, namely the one with Q'~ 0. But thie
implies that Q@ = 2(Q) is in the centre -so,for the unique
stable monopole.symnetry and implementability axe the same.
For the other (unstable) monopoles the twec statements are
different.

The main contribution to the path integral (1.1)
comes howesver from the neighbourhood of the stable so-
lution, and thus, semiclassically, implementability and
symmetry are essentialy the same.

The genetral situation when K $ 6 is more complicated
and the conclusion is different. Again,the full topological
sector is simultaneously implementepble or not. The non-
Abelian charge of the unigque stable monopole of our homotopy
class may however not belong to z‘(ﬁ.) . and thus K may fail to
be a symmetry for the stable monopole. If, on the other
hand, we choose Q in zg(ﬁ). K is a symmetr; — but the
corresponding monopole is generally unstable (see Section 8
for examples).



Let us consider now a spin 1/2 Dirac field ¥ coupled
to a background monopole field (Ay.®).A8 explained in
Section 4, to any symmetry generator % - i.e.,.to any n which
cormutes with the non-Abelian charge vector Q@ - is asso-
ciated a conserved current.In the U-gauge this curxent is

simply
(7.1)  3p" < efriyr.

In particular, a generator { of the gentre ie an internal
symmetry direction for all monopoles created when the
symmetry is spontaneously broken to 6. in other words, ¢ is
an admissible electromagnetic direction for all monopoles
in the theory.(Thie is the choice made in [29]-the genera-
lization of the standard approach [27] valid when @ is in
the adjoint representation and 2(5) is l1-dimensional).

for a fixed monopole configuration however, we have
slightly more freedom: any vector which commutes with the
non-Abelian charge ie admissible.

Monopoles carry also a magnetic charge. This is

def ined by the flux integral :

(7.2) 9= [Tur -
s)

where the electromagnetic field 3’;‘, is defined by (4.11).
in the U-gauge (7.2) is calculated at once:

(7.3) g= ;;7,. e (Qn)

Obeearve,that the magnetic charge ies guantized: indeed, Q =
(n/2)Q, for some integer n, where Q, is a minimal U(1l)-
generator parallel to Q. Conesguently g is an integer
multiple of

7.4 %ain " :o‘n. Te (Q,7,)




where 7, is a minimal U(l)-generator parallel to 7.

The compariaion of (7.4) with (4.14) shows now that
the alectjic-respectively magnetic charges satisfy the gene
xalized Dirac condition

Tr(2Q »,)
2
17l
Notice that the value of (7.5) depende in general on
Q and riot only on the Higgs charge. In other words, it ie not a

topolougical invariant. If however, 7 is in the centra, 7 ¢
2(3). then the r.h.s. of (7.5) satisfies

(1.5) 24,9

(7.6) Te(2QC) = Tr(2z(Q){) = Tr(p(®)(),

0 (7.5) becomes rather
TICD(O)TIO)
]
171

which ja already a topologijcal invarijiant:it depends only on
p(®) ,the froee part of the Higgs charge cf. [29].
Let us consider the particular case when 7,(G) =

®3(C)rree = Z. Lot [D] = m. (7.7) is simply

(1.7) 3Gp 09 =

(7.8) Guing = m/M,

where the integer M labels the homotopy class of the central
U(l).

on the other hand, G implementable wmeans now that m
«n.M (cf. (6.6)). We conclude that, in this special case, C
is jmplementable exactly when the genegralized Dirac con-

dition (7.7) reduces to the original (integer) Dirac
condition., (If 2(5) ie not one-dimensional,this conclusion

is however false, see the SO(10)-example below).
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S.EXAMPLE:GRAND UNIFIED MONOPOLES

As a first illustration, we consider wonopoles in
A
the G = SU(5) GUT [13,30]. Following the general pattern,let

ua assume @ is in the 24 (adjoint) representation;the
choice

(8.1) ®, = »i diag (32,2,2,-3,-3)
ylelds the little group
(8.2) G = 3{U(3)xD(2)) = [SU(3) xSU(2)uxU(1)y]/2,

2(§) is generated by (8.1) itself.and w,(G) = Z.The "quantum
number® [&] = m is calculated by

(8.3) m = Try(p(®))/1 = 2 TrQ/1i.

(trace on the upper 3x3 block, ¢f. [28,29]). The generating
loop exp 27l ,t = exp(1w®y/vt) of the centre of C has quantum
number M =« 6, so, according to (6.6), & _is jmplementable if

and only if m is an jnteger multiple of 6.m w6n. This ia seen
alternatively from (6.8),observing that z{(Q) = (m/s)M.

G contains the c¢olox subgroup

A
(8.4) su(3), = ["ln"] . A € SU0(3)
2

whose centralizer is

(det a)"’n,
(8.5) Zg(80(3) ) = O(2)g = |- - - - - 2|~ s~ » B € U(2)

®,(U(2)wg) = 2 is generated, e.g., by

(8.6) y(t) = exp awi -=-1=5~ k. 0t



whose homotopy class is labelled by ¢ = 3. Hence,by (6.9),

S5U(3)c is implementable if and only if p = _3n. (Alter-.

natively, this follows from (6.9) noting that ¥ = 2 now).
Similarly,considex

b ]
(8.7) Su(2), ~ [.’-'.n.] . B & 8U(2)

the subgroup of weak interactione.Zg(SU(2)y) is just

A | i
(8.8) 0(3a) = N '(dot A)-:/a l] + A € 0(3)
2

l i

#,(U(3)) = Z is generated,e.g.,by

(8.9) ¥(t) = expawitdiag(-2,s,0,1,1)

whose class in #;(G) is c = 2.Thue SU(2)y is implementable
if and only if m=20.

Purthermore, ¢ is an internal symmetxy group only
for the gtable charge-6 monopole [32] given by

(8.10) Q = {/2 = i diag(a,1,1,~3/2,-3/2).

SU(3)c is a symmetry if and only if Q € U(2)yg.This is
realized by two different charge-3 monopoles:

(8.11) Q, = (i/2) diag (1,1,1,0,-3),

and
(8.12) Qa2 = (1/2) diag (31,1,2.-3,-3),

only (8.12] satis€iles the BN_condltlon (5.14) and is thus
stable (32]. SU(3)c is hence a symmetry group simul-
taneocusly for a stable and an unstable wmonopole.
Similarly, SU(2)y is a symmetry if an only if Q ¢ U(3) in
(8.8).This condition is met by two charge-2 monopoles:

(8.13) Q- (1/2) diag (2,e,0,~1,-1),
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and
(8.14) Qa2 = (i/2) diag (1,3,8,-2,-2).

Both monopoles are hence SU(2)y-symmetric, but only (8.14)
is stable.

For the "elementary® monopole 2Q = i diag (1,0.e,0,-1),
so the maximal symmetry group is

(8.15) B |=-l-== ui1j

At much lower =nergies (0(l00 GeV)) the symmetry is
further broken to G = U(3) (~ [SU(3.x0(1)en]}/Z; ) by a Higgs
5. 7,(U(3))>%, and the quantum number m is still calculated
by (8.2) [29]).Z2(u(3)) is generated by

(8.16) Qem = 1 diag (2,2,1,-3,0),

(a minimal generator). (8.16) is the usual choice for the
electromagnetic direction.

The central U(l) has quantum number 3,so0 GaU(3) is
implmentable for the U(3)-monopole if aud only if m =_3n
[19]. This is seen alternatively from (6.6) since 2z(Q) =
m.Qem/3 in this case.

The color subgroup SU(3), belongs to U(3);its
centralizex in U(3) is

(8.17)  Zgy(3)(SU(3)c)= U(l)em = U(l)centre:

80 SU(3), is implementable if and only if m_= 3n (alter-
natively, in (6.9 ) N = 1).

G=U(3) is an internal symmetry iff Q € Z(U(3)),i.e.
if€ Q = (mn/2)Qen. But this is simultaneocusly the centralizer
For SU(3)o,80 Lhey are simultaneously symmetries or not.

The charge-3 monopole given by 2Q = Qun is stable by
the BN condition.and is thus U(3)-symmetric.

The "alementary” S(U(3xU(2)) monopole survives the
“phase transition® 8(U(3)xU(2)) =--> U(3) [34].The maximal



symmetry group (8.15) is reduced however to
(8.18) H' = U(2)cxU(1l)gn

since U(2)yg is broken to U(l)em in this process.
Let us consider the SU(S) §-plet

(8.19) ¥ = (dr,dp.dg,0" ,¥g)L.-

where R,B,C refer to the guark colors.The internal symmetry
group (8.18) is generated by

8 —]— of—. 0|— —}—
1 i -1
°o'—-l"z— . °1'—1 o~ 'o’--.'l.__
0 0 0
(8.20)
[ J — . i
i i
o= ._-.16__ v Qeln' .'I._: B
0 0

All these generators are internal symmetries for ¥
- considered as a test particle in the field of an SU(5)~-GUT

monopole.

Qem 1# the standard choice for the electromagnetic
dizection.The corresponding electric charge is quantized in
units of

(8.21) dagin =~ /2 =~ q/3.
The electromagnetic current is thue expressed as

(8.22) 35 = aiil @pr*a s apta, + artay) - S ).

(8.22) is conserved in all background monopol fislds,not
only for the elementary one.The other four currents,



4%

(8.23a) 3% = cig(dgr’ay + GyyMay) - a8 Ve,
& . a ok a8
(8.23b) I, ci{ 49" a; + dzr"ay 3.
(8.23¢) 3% = c (-dpr¥a; + Gvtay),
| . S als 3L
(8.234) j, cif dnv clB d¢7 dG].
(where ¢ =~ e/N2)., are however conserved only for the
elementary monopole.

The corresponding "magnetic" charges - defined as
the flux integral of the corresponding “electromagnetic"
fields axe
(8.2‘)_ gOm = 3/28, Cg = 1/s8¢, gl- 93- gl = g,

80 the genetralized Dirac conditions read

(8.25a) 1qOT, 1 (g™ =« 3 /3,

(8.25b) 2q°ing® = 1/3,
(8.25¢) 2qigingd <= ¢ ,3 = 1,2,3.
As a second example,consider w (the double

covering of souh)) broken to

(8.26) ‘G = [Spin6xSpind]/2,

by a Higgs 54 (10x10 symmetric matrices) with basepoint
(8.27) Oy = diag (2,2:2,32,2,2,-3,-3,-3,-3)

[31,35]. #,(0) = Z,. The Lie algebra 5 = go(6)xeo(4) hae

trivial centre so G is nevexr implementable.
Let us consider the (stable} elementary monopole

given by
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(8.28) Q= (Jgg =~ Jpa)/2

where the J,n are the ususal rotation generators (anti-
symmexic, imaginary, 10x10 matrices, (Jap) 13 = - 1(0.1053 -

8,3%p1) )- »
The only vactors in § which commute with Q are the

multiples of Q , so the maximal symmetry algebra is the one
generated by Q. This is the only choice of electromagnetic

direction.
Blectric charge is quantized in units

(8.29) Amin = ©/1Q1 = o/a2,
The magnetic charge is
(8.30) g = IQ)/2e = 2/e,

so the original Dirac condition is satisfied. Imple-
mentability and integer Dirac condition are hence different
in this case.

o i



Another tricky example is provided by the non-
Abellan Aharonov=Bohm experiment proposed by Wu and Yang in
theix celebrated paper on the non-integrable phase factorx
{22). They suggeat in fact to set up an SU(2)-gauge field
confined to a cylinderx.[f a nucleon beam is scattered around
this flux line, a non-trivial interference would prove the
existence of Yang-Mills fields.

It fe not Aifficult to show [(23,36] that there
existe a gauge- znalogous to the U-gauge (5.9) for monopolee
~ where the gauge field with ;3 = 0 in N = R? \ (cylinder)
is simply

.

(9.1) Ay = 0, Ag = 0, Ap = ao,/i.

a here is a real parameter,defined modulo integers.

Let as try to implement ¢~S0U{2) by an AutG, -valued
"Higgs" field 7(_j(x) on M.As explained in Section 3,we can
gauge any such rg(x) to identically g simultaneously in Vv, =«
((z,0,0) 1 ¢ £ 8 < wte )} end vV, = ((x,0,0) | m-€ < & Law)
since both v, and V, are contractible.The price to pay for
this is that we introduce a transition function h ~ which is
now just a constant element of SU(2).Consistsncy requires
now

(9.2) g.-h = h.g,

i.e. h must be in the gentxe of SU(2). So we have two
solutions: h = 1 or h = (-1).We concludes that., although
there is po obstructjon Lo implement G=SU(2).there js an
ambiguity. In the U-gauge (9.1) the two implementations are
found explicitly as

either
(9.3) Tiglx) = g
or
expip/2 0 oxp—-ie/2
r;(x) - g
] exp-ip/3 1] expio/s




<0

(9.4)

95 expie/ag, ,

exp-is9,, L P

where x = (x,8,»s) and g ~ (gtj) a matrix.
Are these implementations symmetries? The cor-
responding local expressions read

(9.5) Wy, = ®.mesou2j),
and
" "'"“"'u
(9.6) ol e r 9 € su(2).
» exp-ion LR

To be an internal symmetry,w, must be covariantly constant.
Howsver,

1 0 2an
1 - = -l 12
(9.7} DU.(!) 1 [o,.01 ~ 1 [ aey,, 0 ]
and
0 (2a-2)n
(9.8) Du;(x) - 3
-(aa—x)'” 0

respectively. We conclude that
either

Li) 20 ie nejthex s nor i, and then 9,3~ 73, = o so the
only symmetry-direction is the one given by the field (9.1)
iteelf;
or

£31) 2a=¢ oxr 2g¢=31.The whole SU(2) is then a symmetry.
However., for a=s only the implementation (9.7) ,for a=1 only
the implementation (5.8) is a symmetry.

Theae,at first sight rather abstract, statements

“ "ae @
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have however a fundanmental importance. Indeed,the nucleons
in the generalized Aharonov-Bohm experiment can be viewed
as test particles moving in a background YM vacuum [23]. How
can we tell which of the nucleons is a proton, which is a
nentron? As emphasissd by Yang and Nills in the very first
paper on gauge theory ([37],this can be done only by
measuting the electric charge.The particle's charge alone
is conserved however only if the background field has
symmetries. Indeed,the cases (i) and (ii) are exactly those
when the nucleon's charge is conserved.ln other cases - for
a= 1/2 e.g. -protons can be turned to neutrons {22,23].

REMARKS

Using the same technique as for monopoles, one can
show (38] that, for an SU(2)-instanton, G = SU(2) is never
implementable.The physical consequences of this fact are
not entirely clear however.

The theory outlined in this paper admits a nice

fibre-bundle interpretation. This is explained in a com-
panion paper [25].
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