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ABSTRACT 

This paper surveys recent advances in the application of multiple 
time-scale methods to particle simulation of collective phenomena in plasmas. 
These methods dramatically improve the efficiency of simulating low-frequency 
kinetic behavior by allowing the use of a large timestep, while retaining 
accuracy. The numerical schemes surveyed proviue selective damping of 
unwanted high-frequency waves and preserve numerical stability in a variety of 
physics models: electrostatic, magneto-inductive, Darwin and fully 
electromagnetic. The paper reviews hybrid simulation models, the implicit-
moment- equation method, the direct implicit method, orbit averaging, and 
subcycling. 
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1. INTRODUCTION 

Particle cooes are the most versatile and reliable tools for the stuay of 
complex kinetic plasma behavior. These codes follow the trajectories of 
thousanas of sample particles in electromagnetic fields calculated 
self-consistently from Maxwell's equations. The numerical stability.of these 
cooes previously required resolution of the fast time scales associated with 
high-frequency waves. This was a significant limitation when the phenomena of 
interest occurred on much longer time scales. The recent introduction of 

1 2 3 implicit time integration schemes ' ' has partially removed these 

restrictions. 
It has long been recognized that implicit time integration was needed to 

4 5 relax timestep constraints in particle codes. ' The major inhibition had 
been the very large number of nonlinear equations to be solved simultaneously. 
In 1981 three groups independently formulated practical implicit particle 

1-3 codes. They exhibited the dependence of the plasma response (the charge 
and current densities p and JJ on the electric field, linearized, and 
obtained a sparse matrix equation of rank equal to the number of electric and 
magnetic fi3ld quantities defined on the spatial grid. Solution was then 
achieved by standard methods. 

Currently there are two principal approaches to implicit particle 
1 2 simulation. Mason and Denavit introduced fluid moment equations 

describing charge and momentum conservation as intermediaries between the 
particle and field equations. Brackbill and Forslund extended this method 

to two-dimensional electromagnetic simulation. The implicit moment equation 
approach (Sec. II) can be viewed as a kinetic extension of a class of 
fluid-particle hybrid simulation techniques in which a fluid rpe'iies is 

7 8 advanced implicitly. ' 
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A more direct implicit approach (Sec. Ill) has been introduced ana 
3 9 refined by Friedman, Langdon, and Cohen, ' in which n_o auxiliary equations 

are introduced. In an electrostatic model, the charge density at the advanced 

time level is linearized about an explicit approximate density; and an 

increment is computed that is linear in the advanced field. The resulting 
field equation is elliptic, with coefficients depending on particle data 
accumulated on the spatial grid in the form of a susceptibility. The 
particles are advanced serially in a conventional manner. The direct implicit 

g 
particle method has been formulated in two dimensions and for electro­
magnetic simulation. 

Another class of methods that improves particle code efficiency takes 
advantage of multiple time scales in selecting timesteps (Sec. IV). In an 
orbit-averaged magneto-inductive algorithm, particles are advanced with a 
small timestep to resolve their orbits. An explicit solution for the fields, 
omitting electrostatic fields, is obtained using currents accumulated from the 
particles and temporally averaged. This reduces the number of particles and 
permits a large timestep for the field advance. Orbit averaging in an 
electrostatic model requires an implicit field solution if a long timestep is 
desired. In an explicit algorithm using electron subcycling, ions are 
advanced with a large timestep much less often than the electrons are advanced 
and Poisson's equation is solved, making the cost of the ions negligible. 
Application of the gyrokinetic formalism employing analytical gyrophase 

13 averaging has also extended explicit codes to longer timesteps. 

An overview of design criteria, limitations, and current research 
14 activity is presented in Sec. V. This paper updates an earlier survey. 
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2. HYBRID SIMULATION MODELS AND IMPLICIT MOMENT EQUATIONS 

2.1 Hybrid Models 

Implicit time integration schemes have been applied to models in which 
fluid equations are used to represent one species and a particle description 
is taken for another. Two representative models are described here that were 
used to study magnetically confined plasmas that exhibit strong diamagnetic 
effects. 7' 8 

Hewett formulatea a two-dimensional (r-z) hybrid simulation code to study 
magnetic pinches, whereas Cohen and Brengle performed one-dimensional (r) 
hybrid simulations of (magnetic) field-reversed plasmas. In both schemes, 
ions are simulated as particles and advanced explicitly; the electrons are an 
inertialess fluid with equation of motion, 

Vn T u xB m v. 
o = . E . - - i i . i i t i i y u z ( U - u ) (i) — en c n e £—* s s —s — e e e s s 

where T and u are the electron temperature and drift velocity, E and B 
are the electric and magnetic fields, ± is the total current, n is the 
electron number density, v(- is the electron-ion collision frequency, u is the 
average ion drift velocity, and z is the ion charge state. The plasma is 
quasi-neutral, n x I z n . The electron current is J = -en u . ^ e s s s -e e-e 
In Hewett's model, the last term in Eq. (1) is replaced by ̂  • Ĵ , where n 
is the resistivity. 

By evaluating £ in Eq. (1) at the advanced time and combining with the 
equation of magnetostatics, 

V x B = 4TTJ/C , (2) 
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and Faraday's law, 

V x E = - 3j5/c8t , (3) 

Hewett obtained implicit fielo equations. The ion charge and current 
densities are gathered explicitly from the particles. At very low densities, 
Hewett set n. equal to a large value to force V x B = 0. He solved the 
field equations globally by using a non-iterative alternating-direction 
implicit algorithm. 

7 & 
In contrast to Hewett, who solved Eq. (1) for E_, Cohen and Brengle. 

solved for u and hence, J . Then —e ' —e 

e . V 2 A = - p - Je(Ae,4.) (4) 

globally, and 

JS!T£*"W*> - ^ * J = 0 ( 5> 
A A A 

on closea magnetic field lines, where E = -98A„/c3t - ra^/ar and B = V x A„6. 
Line tying on open field lines justifies 3(j)/3r = 0. Canonical angular momentum 
relates the ion current in Eq. (4) to the vector potential A., <£. • a m.rvQ 

v o i 1 0 
+ z.erA„. Equations (4) and (5) are solved iteratively (< 5 iterations) after 

1 9 — linearizing J with respect to Afl. Temporally averaging J . over past data v y r i 
reduces statistical noise. 

7 O 
Both Hewett's and Cohen and Brengle's algorithms avoided potential 

numerical difficulties arising from the infinite phase velocity of Alfve'n 
2 1/2 waves as the mass density approaches zero, to/k = vft = (B /4unmi) + •*>. 

In these implicit hybrid codes, the stability condition Ax/At > v* is relaxed. 
Timestep constraints are set instead by accuracy considerations and stability 

7 8 of the ion orbits. ' 

„„ - ^..™ r TMf-.l W I (» 



-6-

k.2 Implicit Moment Equations 

Mason and Denavit independently synthesized simulation schemes 
whose implicitness is derived from the introduction of fluid moment 
equations. This improves the hybrid models in that all species are now 
kinetic ano implicitly coupled to the fields. The implicit moment method has 
good stability properties ana is broadly applicable. 

In a one-dimensional electrostatic model, the fluid equations in 
difference form are 

n +l n A. n -,n+l/2, ,,, 
n s = n s - AtD x J $ /q $ ; (6) 
j n + l / 2 = n-1/i!+ t (. D ptn + pn } ( ? ) 

s s s x s s s ' s 

+ _i r 2 where P = Ax \-m v. is the kinetic stress summed over the particles, 
D is the difference form u f 8/8x, n and J are implicit predictions of the 
fluid number and current densities, n and J are the explicit densities 
accumulated from the particles, and 

E* = 6 E n + 1
 + i ] ^ I ( E

n t l
+ 2 E n

+ E n - 1 ) ; 0 < 9 < 1 . (8) 

The electr ic f i e l d is calculated from Gauss' law 

D/+1 = 4, I V f 1 . (9, 

rendered implicit by use of Eqs. (6) and (7). Particles ere then advanced 

individually with the implicitly predicted electric field, and the necessary 

particle data are gathered. 



An iteration can be performed to better time-center P* whose 
2 convergence requires 

kvAt < 1 , (10) 

where v is a characteristic particle velocity and k is the largest wave number 
retained. This is also the condition for accurate particle trajectories and 

5 9 plasma dielectric response. ' The implicit field solution relaxes the 
stability constraint set by plasma waves, allowing At > m" , the inverse 
plasma frequency. With ID it > 1, Eq. (10) restricts wavelengths to be long 
compared to the Oebye length, 

o V2 
kX D 5 k(T/47ine ) = kvtAt/w At « 1 , (11) 

1/2 where v. = (T/m) . An implicit prediction of the kinetic stress 
relaxes the kvAt stability constraint, ' but does not remove it as an 

5 9 accuracy constraint. ' 
15 For u At « 1 and Ax > X n, there can be a grid-aliasing instability, 

5 which results in heating until Xn ^ Ax. However, implicitness, dissipation, 
15 ana use of to At > 1, or a change of the force law, control the grid 

p c 

instability. ' Thus, for Ax » X n, the timestep in the implicit moment 
algorithm is bounded from above by Eq. (10) and from below by the finite-grid 

1 ? h 
instability. These limits are not a serious hindrance. ' ' 

1 2 
Mason and Denavit have successfully applied this scheme to a number 

of problems. Of particular importance are simulations of electron transport 
in inertial-confinement fusion. Brackbill and Forslund have extended 
the implicit moment method to impressive two-dimensional electro-magnetic 
simulations of the Weibel and lower-hybrid-drift instabilities, shocks, and 
collisionless electron transport in laser fusion. The implicit moment 



method has been applied by Barnes and Kamimura to two-dimensional, 
electrostatic simulations of low-frequency phenomena in magnetized plasma 
using both guiding-center and Newton-Lorentz particle equations. J. A. Byers 
has applied the moment method to linearized electrostatic simulations of 
unstable Bernstein waves (unpublished). 

3. DIRECT IMPLICIT PARTICLE METHODS 

3 9 In the direct implicit particle method, ' an implicit solution of the 
field equations is achieved by relating linear increments to the charge and 
current aensity directly to the change in the particle motion induced by the 
fields or their increments at the advanced time. This differs markedly from 
the implicit moment method, but the two methods possess similar stability and 

5 9 accuracy properties. ' 
3 In a simple one-dimensional electrostatic model, the direct implicit 

method has the following form. The particle position x at time t is 

x ^ - U A t ^ 1 ^ 1 , (12) 

where 0 < 3 < 1 and "xn is the position with a n + suppressed in the 

equation of motion. Thus, x = K + Sx, where 6x = BAt a ; and the 

charge density is p n = 'p ( x n + ) + 6p, where 

6p = - V • L P " + 1 ( X ) «x(x)] (13) 

is the linearized increment to the charge density. Poisson's equation gives 

-7 . (1 + X)V<t) n + 1 = % p n + 1 , d«) 

where the effective suscept ib i l i ty is 

X(x) = 4 l r B(qp n + 1 /m)At 2 = B <i32(x)At2 . (15) 



-9-

The charge density is related to the particle positions by 

Pj' + 1 = (q/Ax) £ S(x£ + 1 - X j ) , (16) 

where j is the grid index, k is the particle index, q is the charge, and S is 
the "shape function" for particle-mesh interpolation. Expanding S gives 

c, n+1 , ...ji+l . ̂  , n+1 ~ - n + l . 8 S ( x k ' x j ^ ,,,. 
S(x k -Xj) = S(xk - X j ) + (xk -x k ) n + 1 (17) 

3X k 

and from Eq. (12) 
n+1 -n+1 „, , ...2 V * r /~n+l % rn+l ,10\ 

xk " *k ~6(q/m)At L J S(xk -x.)Ei (18) 

2 2 2 with relative error of order w t rAt = qEAt /mL^ < 1, where 
oit is the particle trapping frequency and L^ is the length scale over 
which E varies. 

W.th the use of Eqs. (14), (17), and (18), Poisson's equation becomes 

,n+l , n+1^ n + l w , 2 /, ~-n+l. V , , r n + 1 n.,\ 
" (*j-l *j *j+l ) / A x = * pj A-^i/i ' ( 1 9 ) 

where "p" is the conventional charge density given by Eq. (17) with 
x k

n + 1 ^ and 

w = 6 W A t 2 £ S(^ + 1-x ) 3 S ( ^ J X J )
 ( 2 0) 

wij mAx *Z l k v ^n+1 • ( 2 0 > 

For "i .near splines, U.. = 0 whenever i-j > 1 and aS/axIT' = + 1 or 0. IJ K 
No additional particle data beyond that needed for "p". are needed for W ^ , and 
the field equation is a linear penta-diagonal system solved by direct Gaussian 
inversion. 
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The direct method has been tested in simulations of wave propagation, 
two-stream instability, and free expansion of a plasma slab; and the implicit 

c 10 
difference scheme has been varied. • If the plasma is nearly uniform so 
that x U ) approximately equals its spatial average, Fourier transform 

19 methods can be used. 
g Langdon, et al. have formulated the direct implicit, method with a 

magnetic field and in two dimensions. The spatial differencing of Eq. (14) 
can be simplified to reduce the handedness of the matrix equation for the 

Q 

field. Langdon, et al. address the subtle problem of self-consistent 
spatial filtering and also prove that the implicit field-particle matrix 
equation is positive and in some cases symmetric, useful properties for 
iterative solutions. Reference (9) also outlines a simple iteration scheme to 
obtain a more exact solution of Poisson's equation. The convergence of the 
iterations, the influence of electric field extrapolation on convergence, and 
the influences of spatial smoothing on linear aispersion and convergence have 
been analyzed in Ref. 20. 

Langdon and Barnes describe the implementation of the direct implicit 
method in an electromagnetic code in Ref. 21. The implicit increment to the 
current density in the direct implicit electromagnetic code is analogous to 
the increment to the charge density given in Eq. (13), 

6^ = ̂ S_v - (1/2) V x (Jx 6x) (21) 

where J,- = £qvS(x.j - x, ) and 6x and 6v are the linearized -j |< — —J — * — — 

increments to * and v_ due to the electric field E_ at the advanced time 
step. In a leap-frog algorithm with positions and velocities known At/2 
apart, a time average of successive position time levels achieves time 
centering in the current density. Reference (21) provides a detailed 
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discussion of the differencing and the properties of the direct impl ic i t 

electromagnetic code. 

The airect method relaxes the usual s tab i l i t y constraints on w At 

and cAt/Ax. Where kv.At < 1 is a s tab i l i t y constraint in the 

imp l ic i t moment method, u t r A t < 1 is required in the direct method. 

However, kv.At < 1 remains as an accuracy constraint; and the 

gr id-al iasing ins tab i l i t y must be controlled. Final ly , the direct method 

avoids the possible d i f f i c u l t y in the impl ic i t moment method that the f l u i d 

number and current densities are inconsistent with those accumulated from the 

par t ic les. 

4 . ORBIT-AVERAGED IMPLICIT CODES 

Orbit averaging ' and subcycling take a multiple time-scale 

approach to selecting timesteps in part ic le simulation. Independent time 

scales are selected for advancing particles and f ie lds according to natural 

separations that exist . '. ;ie subcycling method succeeds in making the ions a 

negligible factor in the cost of simulating ions and electrons. However, 

the algorithm described in Ref. (12) is exp l i c i t and therefore does not allow 

the use of a large ID i t . 

Orbit averaging ' ^ d i f fers from subcycling and is more complicated. 

In i t s original magneto-inductive form, a part ic le species gyrating in a 

magnetic f i e ld is exp l i c i t l y advanced with a small timestep, u At < 1 

where ui = qB/mc. Currents are accumulated on a spatial grid after each 

small timestep and are temporally averaged over AT, wcAT » 1, for 

use in Ampere's law to determine the vector potential and magnetic f i e l d . An 

inauctive electr ic f i e l d is calculated from Faraday's law, and electrostatics 

are ignored. The f ie lds are advanced with the large timestep. A corrector 
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iteration through the particle and field equations is performed to improve the 
time centering. Biasing OT the field equations to the fiela amplitudes at the 
advanced time level introduces dissipation. 

Analysis ana simulations show that the orbit-averaged magneto-inductive 
scheme, although explicit, is numerically stable with use of large AT: AT ,> At, 
u^AT » 1, and kv„AT » 1. However, this scheme is unstable for 
kv.AT <_ & { 1 ) . The real triumph of orbit averaging is how it significantly reduces 
the number of particles and total operations; the averaged contributions from 
a single particle can substitute for those from many particles in a conven­
tional code. This increased efficiency has allowed realistic two-dimensional 
simulations of mirror experiments at Lawrence Livermore National 
Laboratory. 

In contrast to the magneto-inductive algorithm, stability of an orbit-
averaged electrostatic algorithm for to AT > 1 requires implicit 
solution of Poisson's equation. The combination of orbit averaging with 
the direct implicit ana implicit moment methoas can produce algorithms that 
are stable for u AT > 1. Orbit averaging in this application 
achieves a reduction of particles and allows the particles to be advanced 
serially over many timesteps before incurring inp^;/output penalties, an r 

advantage for large simulations using disk storage. Even greater gains in 
efficiency can be achieved with a better separation of particle and fiela time-
steps, by using an implicit prediction of the kinetic stress or when wave 
propagation is perpendicular to j3. 

5. GENERAL CONSIDERATIONS 

In developing new implicit difference schemes for particle simulation, 

design criteria have evolved: 
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Accurate reproduction of low-frequency phenomena, u < At" , with 
minimal damping. 
Substantial damping of modes with u > At . 
Minimal collection and storage of particle data. 

5 Minimal numerical cooling and heating . 
Galilean invariance so as not to destabilize fast or slow space-charge 

5 waves. 

Robust stability and accuracy properties with respect to approximate 
solution for the fields. 

Analyses of wave dispersion properties in Refs. (2), (5), (6), and (20) 
have led to a number of important conclusions. With proper choice of 
coefficients in the differencing schemes," damping of high-frequency 
oscillations uAt ^ l can be enhanced, while the damping of low-frequency 
waves can be removed to high order in uAt < 1. The wave dissipation 
properties and unphysical secular particle acceleration are directly 

5 related. 

Both implicit moment and direct implicit algorithms have proven 

successful in performing simulations with large timestep. Magnetic fields 
have been incorporated, ' ' ' and iterative refinement of the solution of 
the implicit field-particle equations has been studied. ' ' ' The two 
methods share residual constraints on the timestep that generally coinciae 
with those required to resolve physical processes, e.g., kx D < 1, 

? R fi y kv.j.At < 1. ' * * Some merging of the two methods have 
6 9 21 22 2? 

occurred, ' ' ' and collisional effects have been included. 
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Research on advanced particle code techniques continues. Areas of 
interest are numerous. It would be desirable to relax residual constraints. 

q The problem of self-consistent spatial smoothing has been resolved 
20 recently. The potential for (and limitations of) simplified spatial 

differencing is being examined. More simulation experience is needed, 
especially with direct implicit and orbit-averaged algorithms. A two-
dimensional electromagnetic direct implicit simulation code has oeen built ana 
relativity should be added. More needs to be done on how to best realize 
additional computational savings by combining orbit-averaging or sub-cycling 
with implicit methods and by taking advantage of multi-tasking capabilities on 
the new supercomputers. Research continues, motivated by the impressive 

successes of these new techniques in dramatically extending the applicability 
ft in ifi ?n ?? of particle simulations and greatly improving their realism. ' ' ' ' 
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