ВЛИЯНИЕ ЛИГАНДОВ НА РЕАКЦИОННУЮ СПОСОБНОСТЬ Б-КОМПЛЕКСОВ ТИТАНА И ВАНАЛИЯ

Г.А.РАЗУВАЕВ, Л.И.ВЫШИНСКАЯ, В.Н.ЛАТЯЕВА-Институт химии АН СССР, г.Горький, ул. Тропинина, 49, 603600, СССР

В данной работе проведено сравнение реакционной способности б-комплексов титана и ванадия, содержащих б-заместители: ме, CH₂Ph, CH₂SiMe₃, Mes, C₆P₅.

На примере соединений R_{n} м, R_{n-m} мх_m, R_{n-m} мср_m (X=Hal, OR, acao; n=4,3,2; m=1,2,3) изучены реакции комплексообразования и энедрения малых молекул (CO_{2} , S, Se).

Всем исследованным G-производным независимо от валентности переходного металла присуща способность к комплексообразованию, в процессе которого происходит расширение координационной сферы атома металла. Рассмотрены особенности превращений получающихся комплексов в зависимости от природы
моно- и полидентатных лигандов.

Изучено постадийное внедрение оксида и диокоида углерода по С-связи М-С, а также элементарных серы и селена по С-связи М-С, а также элементарных серы и селена по С-связи V-С. Показано, что на механизм реакций внедрения оказывают большое влияние электронная конфигурация, координационные возможности центрального атома, природа С- и Т-ли-гандов. Легкость карбоксилирования по С-связи М-С в зависимости от электронной и пространственной конфигурации С-заместителей увеличивается в ряду: мез < C₆F₅ < CH₂Sime₃ < CH₂Ph < ме. Проведено сравнение селективного внедрения диоксида углерода по С-свяви М-С и М-О.

На основании проведенного исследования было установлено, что для большинства реакций б-комплексов титана и ванадия характерно наличие двух принципиально противоположных тенденций: первоначальное расширение координационной сферы за счет вомплексообразования с последующим сокращением её путем адиминирования различных лигандов. Эти взаимосвязанные процесси являются основой каталитической активности б-комплексов титана в ванадия.