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ABSTRACT In the first order approximation therucleons are moving
into a collective well extracted from the two-body N-N interaction.
The nuclear shell model is explained by the structure of the first
order solution of the Schridinger equation. In the next step the
two-body correlations gemerated by the N-N potential are introduced
in the wave function.

The standard nuclear shell model emerged in the fifties from
the study of the properties of the ground state of nuclei such as
the discontinuities in binding energies, the palringenergy between
two nucleons, the spin of odd nuclei ..., leading to the concept of
"Magic Numoers®.

It appeared soon that the ground and low lying excited states
can be constructed, in the first approximation, from the Harmonic
Oscillator (H.0.) states when a suitable spin-orbit interaction is
introduced. As the harmonic oscillator is a2n independent particle
model it has been concluded that each nuclegn is moving into a
common average field generated by the interaction of one particle
with the others (1). It is an independent particle mode) (IPM).
But the H.0. is a confining potential preventing any nucleon to
escape from the nucleus. Therefore another potential, like the
Wood-Saxon well, vanishing at infinity has been substituted for
the H.0. potential in order to allow nucleons to be separated from
nuclei and generate a better charge density. Ultimatelly the
IPNO-TH 84/77 DECEMBER 1984

¥La%oratcire assecid au C.N.R.S



Hartree-Fock method has been used for generating an average field
from a potential (e.g. Skyrme), adapted to the method, yielding
good binding energies and densities fur nuclei 2 .

Our approach starts also from the H.0. Model but leads to ano-
ther conclusion,

-
Let 'ii(i=1, «+«s A) be the nucleon coordinates and X the
center of mass, the H.0. potential is proportional to

§o %, - M
%= 1(xi-if)z + AX
Introducing the collective coordinate
A
RIS B RL TR A (2)

one deduces that the H.0. interaction is either a sum of indepen-
dent particle interactions (the orthodoxe-interpretation) or a col-
Tective interaction of the collective translationally invariante
coordinate r.~

Here we investigate the consequence of this last interpretation.
Let us consider the motions in which r is preserved, it can be the
rotation of one particle around the center of mass f. or the rota-
tion of two particles around their own c.m. combined with the ro-
tation of this two-body c.m., more over it can be the one of three
particles around their c.m. and so one.

Assume that the part Vy(r) of V(rij). the N-N potential, inva-
riant for such motions is predominante,then it can be written as :



Virgy) = Volr) + [¥(ryg) = Yolr)l (%)

where the last termi the residual interaction which contains the
two-body correlations, is small, It vanishes identically for a H.O.
according to (2). Using a decomposition of the wave function by
pairs we write
eX) = I w.X (4)
1,051 ) .

&>
vwhere x stands for the set of particle coordinates (;1 ,;2. ...,;A).
We require that each partial wave {s a solution of

'”*A—(gi)' Volr) = EX gy = -(Vryy)=Yo(r)) 12>k Wl )

where T is the kinetic energy operator.
This equation is equivalent to the Schriidinger equation

(T+ I V(ri:].) -E)W @) =0 (6)
1,31

In the first order approximation, where one neglects the residual
interaction, the solution is the product

- o —(E41)
w-ij(x) = H[L](X) r Un(l") (7)

of a {homogeneous) harmonic polynomial H[ L] ('x*) and a function of
the collective coordinate 8). The polynomial is characterized by
a set of {quantum) numbers [L] and n is the number of nodes of
un(r), the eigenfunction of the "hyper” radial equation



h2pde . .c(.r.'+1)) + A(A-ll Vg(r) = Epup(r) =0
m dr2 r

peLeB. (8)
where L is the degree of the harmonic polynomial. In this solution
the state is defined by the harmonic polynomial H[L](?) which must
exhibit the symmetry required by the particle statistic (bosons or
fermions) in any exchange of two particles. It is independent on
the collective potential Vo(r), which determines only the shape of
un(r). The ground state is reached when £, i.e. the degree L of the
polynomial is the smallest =~ (then the repulsive centrifugal barrier
is the weakest) and when u(r) has not node (n=0).

For nucleons H[L](x) must be an antisymmetric polynomial. In
order to construct harmonic polynomials of low degree corresponding
efther to ground or Tow lying excited states we introduce the
homogeneous polynomials of degree 2n+%

2n+2

nng(x ) ngm(w-i)- ;i(xi""i) s (9)

where ¢1jm(mi) stands, as usual, for the spherical harmonics
g(wi) coupled to the nucleon spin to produce an individual to-
tal angular momentum j with projection m.

Then we construct the Slater determinant

I"[ vl (x) = {... 'Po!,jm(;i) 'plﬁjm(xi) ”.'pnkjmzjm(xi).“l (10)

%



where for any fixed £jm the number n is uséd without any hole from
0 to the maximal value n L im chosen independently for each set &jm,
A homogeneous polynomial constructed according to this ru'le_is a

harmopic polx)r(lgmia'l 4) . hen 1t is multiplied by i#=1 e'(l‘E‘—) =
e'(fﬁz -—Ef » one gbtains a H.0. Slater determinant cons-

tructed with the individual H.0. eigenstates d;ijA(ii) . The
harmonic polynomials of low degree are constructed with the ntjm
quantum numbers in following the rule used for filling the ground
or low lying states H.0. Slater determinants.

The discontinuities in separation energy of the last particle-
after a closed shell is generated by a sudden increase in kinetic
energy. When one more nucleon {s introduced in the Towest unfilled
shell of a nucleus the increase of ¢ s Lo+ %- (see eq.(6))
where 2, is the highest orbital allowed in the shell {e.g. 2, =0
in 15, &, = 1 n 1p, &, = 2 in 25, 1d shel1s)(#),

The increase in the centrifugal barrier is then
[(28#3)E + (em#3) (i) o/me?

where %, conserves the same value in ashell. But %, becomes

fm + 1 for the next nucleon included after the closure of a shell
and the kinetic energy endergoes a sudden increase which is not
balanced by a similar decrease in potential energy then generating
a drop in the separation energy of the last particle, hence explai-
ning the discontinuities after 4He, 169 and 40Ca. This mecanism

is mixed up beyond the (2s, 1d) shell by the spin-orbit effect of
the nuclear force. The spin orbit operator I&i..(&’,i +3.)

does not change the degree of the polynomial H[L](x) but selects
which one of the harmonic polynomials brings the largest binding and
must be chosen. to describe the ground state.

It favorises the high spins and is mainly responsible for the
feature of the sequence of the nuclear ground states after the (2s,1d)



shells . At least two collective motions are explained by our mo-
del : i) the breathing mode which is exactly described by the exci-
ted states of the radial motion (see eq.(8)) (6), (7) 3 11) the
giant dipole resonancewhich originates from the translational in-
variance of the harmonic polynomial describing the ground state.
Indeed the degree of the antisymmetric polynomial H[Lml(x) descri-
bing the ground state is minimal, therefore any symmetric diffe-
rential operator decreasing the degree of a homogeneous polynomial
gives zero on H[Lml {x). In particular

A
1z (i)VH, ((X) =0
1)::1( T, (i)) if Lml (x)

shows the translational {nvariance of H[Lmﬂ(x) for any motion of
either the neutrons or the protons center of mass. The relative
motion of the neutrons versus protons center of masses can be fac-
torized in agreement with the Goldhaber and Teller picture of the

giant dipole resonance (8).

The potential between the two center of mass can be calculated
from the charge form factors and leads tc dipole excitation energies

in agreement with experimental data (9). The collective potential
in eq.(8)

r=

is the average taken ever the unit hypersphere (r = 1) of the N-N

potential. It takes into account the effect of the exchange opera-
tors on the harmonic polynomial describing the state. To illustrate
the first order approximation we have drawn in fig.l the effective
potential U(r), including the kinetic centrifugical barrier, obtai-

ned with the Brink-8oeker Bl potentia'l(w) for 40(:a.
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Then a look at U(r) provides an easy estimate of both the total
binding energy and the size of the nucleus.

For introducing the two-body correlations we assume that the
residual interaction in (5) is small. We substitute the first order
solution H (;) ¢(r) for ¥ in (5) generating the right member
A(A—l)IZ(V(r ) = Yo(r)) Hy 1(X)¢ (r). The partial wave L P ; becomes
the product 1)

wij(;) = H (X)F (rijor) (12)



(7

of a harmonic polynomial characterizing the state and a function
F(ri :,7) describing the correlations generated by the two-body po-
tential V(r”). This function is a solution of

(T + AlA-1) Vo(r) - g}um(I)r(r”;r)

Y (13)
. -(V(r,-j)-vocr))H[L,(x)kE’Q_,kr(rm r)

For solving this equation we introduce, beside the collective coor-
dinate r, a “correlation " coordinate z related to the relative
coordinate ry j by

2 .2 '
ryj =rcos, z-c052¢=2rij/r' -1 (14)

{u
Then we define the set of polynomials PI( (z) such that the product

by (¥ AT @) = 2 ey ) )

be a harmonic polynomia® of degree L + 2K (12). It must fulfill the
orthonormal condition
-2L x 2 LU 51U
r /H[Ll (x) PK(z) H[ L] (x) Py (z) d@ = Sk
(r=1)
(16)



where the integral is taken over the surface of the hypersphere
(r = 1). The surface element over the hypersphere (r = 1) d@ is

separated in two terms :
3A.4 1/2
@ =27 020252 (142)

where Q;stands for all the surface coordinates but z. Integrating

(16) over all variables®; -  leads to the orthonormal condi-
tions
1
{1} L) (17)
W“](z)PK (2) PK.(z) dz = ¢ KK?
-1
where P[L](z) are polynomials associated with the weight function
-z 3By 2L
Wyylz) =2 (1-z) 1+z) r |H[ (%) dﬂl
(r=1)
The wéight function is the product (12)
£-22,m-1 172
Wy (2) = (1-2) (142) oy (2) (18)

where o is the largest orbital in the last shell and p“_](z) is
a polynomial of degree Zlm with zeroes out of the range -1€z<1.
The polynomials associated with such a weight function are obtai-
ned from the Christoffel's formula (1). We reduce eq.(13) to a two
variables integro-differential equation by operating a projection
of this equation on the space spanred by rij For this purpose we
introduce the projection function



Frup(z2') =¥ (2 ko [k.lf(i.J)‘ Lkl L@

(- u
x Py (2) Py(z')

(19) -

where the sum over the pairs occurs for (k.1 ) * (i.3). The bra-
kets stand for the cverlapping of polynomials related to different
pairs. The sum over k,] decreases as (A-2)/22K'1 {(K»2) for in-
creasing K (13) so that only a few terms (e.g. K<7) are suffi-
cient to obtain a very accurate projection function even for large
A (e.g9. A<10%). The two first terms are A(A-1)/2-1 for K = 0 and
=lfor K = 1. We write F(rij,r) as a function of the two indepen-
dent vuriables z and r :

..F(r-ijsr) = P(Z,I") (20)
The wave function for fermions is the antisymmetric combination
={L+1)
¥ ) =H (O)r 1 P(zr33/r2-1.r)
i I 151 (21)
(14)

where P(z,r) is a solution of the integro differential equation
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S

(-2 L) 41 3 1,y

m ar? r2 r? H[L](z) %z

+A0L) y (r) - E1P(zor)

2
Z

-1

= ~{¥(r/ %5)- Vo(r}1{P(z,r) +Lu(z,z') P(z’,r)dz'}

-1
(22)

This equation has been solved by using the polynomial expansion

74U ! (23)
P(z,r) = Koo Py (2) ug(r)
and by projecting (22) on the P(Ku (z) basis. The partial waves
uK(r) are a solution of a system of coupled second order diffe-
rential equations in r. When the two-body potential \I(r.i j) con-
tains exchange operators, the weight functions generated by these
operators must be taken into account. Essentially the Ly {z)
polynomial is modified and.eq.(22) must be changed accordingly.

For bosons in the ground state the symmetrical harmonic
polynamial Hyy (X) describing the state is constructed with all
particles in the 1s state, therefore it is a constant (L =2 =0)
and the polynomials PK ](z) associated with the weight funct'lon
{18) are the suitably normalized Jacobi polynomials PaA, 2-4.% (2).
The ground state of the trinucleon system and “He are conmstruc-
ted as for a bosons system when the potential is purely central
and the mixed symmetry state generated by the difference between
triplet and singlet even potentials is disregarded.



In Table 1 is shown a comparison between the binding energies
obtained by integrating (22) for various nuclear potentia]s(ls'la)
and by the best variatfonal calculations taking the two-body corre-
Tations into account with Jastrow cores (19) eventually combined
with a Montecarlo method (20) and with Yakubovsky equations

The potentials contain a repulsive core which can be strong
asin the S3 Afnan-Tang (20) and 54 Eikemeier-Hachenbroich (21) .
potentials for which the ratio between the strenght of repulsion
and attraction is ten. The soft core Volkov (22) potential is also
used for comparison .

Table 1 Ground state binding energies in MeV.

Potential v $4 $3
we (14)(15) | 8.47 | 7.03 6.66
Var. (9) 8.45 7.03 6.61
MonteCario(20) 7.00 6.56
Yak.(37) 8.44 | - 6.40
%He (17) 30.4 27.9 26.0
Yariational(9 )} 30.3 28.2 26.5
MonteCarlo (20)] 30:.1 27.7+.1 | 26.4%,1.
Yak. (37} [ 30.2 | 25.5

From the values displayed in Table 1 it turns out that our results
are as good as those obtained with the best variational calcula-
tions and therefore that the wave function (21} contains a good
description of the two-body correlations.

Calculations with realistic interactions for the same nuclei
are also in agreement with other calculations performed by sdlving
Fadeev or Yakubovsky equations (23'25).



Eq.(22) is general and can be applied to any nucleus as soon
as the "state" H {x) {s defined. In order to estimate the contr1-
bution of the two-body correlations in the ground states of 0

and *%a we solved (22) with the Brink-Boeker Bl potential (10) and
compared our results (e7) with those obtained applying the Hartree-
Fock method (28)

o |Efr] Eir {2Eur| Eur} Enr |Eexp.| Enm
169 1106.5|113|152.1] 6.5 45.6] 99.6]127.7]138.3

“Ocal323.4(337(468.1]13.6]|144.7]264.4|342 |388.1

AE

In Table 2, EO’ EﬁF and EﬁH are respectively the first order,
Hartree-Fock and Harmonic polynomial binding energies without
Coulomb in Mev.AEHF and AEHH are the corresponding increase in
binding energy with respect to the first order. Eyp and Ey, contain
the effect of the coulomb potential and are compared with Eexp

the experimental binding energy.

The tentla B which already overbind 3He (29) has the same ef-
fect on 0 and °Ca The 1n&5ease of binding energy originating from
the correlations in 1 60 and are respectively 7 and 10 times larger
than the one obtained app]y1ng the Hartree-Fock method. The overlap
<¢HH | YHF> betweep H.F. and H.H. solutions are respectivelly .9
and .85 for 160 and %0Ca, The H.F. solution cannot be a reliable so-
lution if one believes that the Rayleigh-Ritz variational principle
provides a test for the quality of a ground state wave function

We assumed in our derivation of eq.(13) that the residual inter-
action is sma]] If it is true the first term (K=0), independent of
z the correlati variab]e, must be predominant in the expansion of
P(z,r) on the (z) basis. We found that for the analyzed V, S3 and
S4 potentials, the norm of the partial wave ug(r) in (23) are respec-
tivelly .99, .98 and .99 for 3H and .99, .96 and .98 for 4He ground
states . When Vqo(r) #s dominant it can be used to calculate the exci-
Egd s;afe ‘bnergies. We did it for” 6Li in the First order approxima-

ion .



The excited states are described in the L.S. scheme by the
coupling of ‘the two 1p shell nucleons. We choose for simplicity i)
two phenomenological potentials S 1(20) and S 4 (21) adjusted wi-
thout tensor force to the 150 and 351 phase shifts and ii) the cen-
tral part of the realistic GPDT 3 'potential. The excitation ener-
gies obta1ned for the varfous states are displayed in Table 3 in
MeV. The 1, 2% and 3% states, degenernrted without spin orbit force,
are compared with the centrold of the éxpérimental energies 32). .

J" | T% sS4 S1_6POT _ Exp.

(g.s.)1¥{00 0o o o o

ot 10 5.64 4.69 3.49 3.56

stet1* o2 2.90 3.18 4,19 3.60

2t 12 6.37 5.32 5.06 5.36
r.m.s. radiusi. 2.13 2.12 2.55 2.33:.1 fm

T and? refer to the total isospin and orbital momentum. The r.m.s.
radius of the ground state is givén in the last row.

We cannot expect a better agreement with the experimental data
from a truncated fnteraction without tensor and spin-orbit force.
Now we come to the most important quéstion : does our wave function
well describe the two-body correlations.To answer we solved the



Tritium with two potentials giving
both the exmerimental binding energy
and r.m.s. radius. One potential (V)
has a very weak repulsive core and
the other (G2) a very strong one (17)
(see fig.2). The one body density
(continuous line) and two-body corre-
lation function (dashed 1ine) are .
shown on fia.3a and 3b respectively
for the Vx and G2 potentials. What-
ever is the strenght of the repulsion
the one body density is flat near the
origin but the two-body correlation
function has a hole.in the center
denerated by the potential core. The
hole"is very deep, and does to zero
at the origin for the G2 potential,
as expected for a very strong repul-
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sive core potent1a1 There is a last question we would like to com-
ment about : Does the energy spectrum determine the interaction ?
Assume that for a nucleus an overall good agreement between theo-
retical and exper1menta1 energy spectrum of excited states is rea-
ched with an 1ndependent part1c1e mode) {particles moving in a
we]l) Does 1t proves that the associated wave functions are good ?
Take a three-oart1cle system with a two-body 1nteract1on V(r ) He
eliminate the c.m. by using the Jacobi coordinates xz-x1 51

and /3(¥;-X) = £2nwhere X is the center of mass.

The wave function u(Ei.Eé) is a solution of the Schridinger equation

By 598 L Vo) - IEARY

Let us now exchange E} and 82, then the sets (x -xj) and 3(xk-X)
are also exchanged(a in such a way that ¢(a2.51) becomes a solu-

tion of
hZ 2 2 f + n
- (g )+ .v(/s'(xk-it» “EW(EpiE ) = 0

Then W(El.Eé) and ¢(Eé’tl) have the same energy spectrum but one-
body density and two-body correlation functions are exchanged {i.e.
the densities in fig.3 are: exchanged) An agreement with the energy
spectrum is not sufficient to accredit the wave functions generated
from a well for particles interact1ng by pairs.

From our analysis emerge a new picture of the nucleus in which
the wave function is the product of an antisymmetrized harmonic
polynomial defining the state, which exhibit an independent parti-
cle behavior, and a symmetrised function describing the two-body
corralations generated by the interaction. Therefore, most of the
particle-hole configurat1ons are not "states" in our scheme, except
when they are constructed according to the rule leading to a harmo-
nic polynomial (see eq (10)). Our wave function is cleared from



.\/

spurious. center of mass motions when the state is described

by a harmonic polynom{al of minimal degree. It can be eliminated
for low degree po'lynomial 3 ) Besides the monopo]e and dipole
giant résonances Other collect1ve states can be described by our
modél. For mstance. the interacting boson approximation {IBA) be-
Tongs to our scheme because the lou-lying IB excited states are
cons tructed by coupHng the nucleons in the last unfilled shell.
The total kinetic energy is fixed by the degree of the harmonic
po'lynonnal 'lndependent of the coupling between the nucleons and by
the size of the nucleus, .

The excitation energy proceeds from the effect of the coupling
of the nucleons on the N-N interaction. It must be only slightly
sensitive to the two-body correlations in order to preserve the
agreements already reached with experimental data.

The utilisation of the harmonic polynomial method requires the
knowledge of the wéight function (18) which is obtained from the
Fourier transform of the two-body correlation function calculated
with the first order H.0. wave function deduced from (10). The
Fourier transform can be calculated by using the Talmi coefficients
and the Talmi integrals (35)

Our conclusion is still the one of our first paper using the
harmonic polynomial method for solving the few—body problem
“In this formalism extended to the many body prob'lem, which gives
a dominant central potentul. 1ies probably the justification of
the success of the shell model".
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