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ABSTRACT In the f i rst order approximation therucleons are moving, 
into a collective well extracted from the two-body N-N interaction. 
The nuclear shell model is explained by the structure of the f i rst 
order solution of the Schrodinger equation. In the next step the 
two-body correlations generated by the N-N potential are introduced 
in the wave function. 

The standard nuclear shell model emerged in the f i f t i e s from 
the study of the properties of the ground state of nuclei such as 
the discontinuities in binding energies, the patringenergy between 
two nucléons,the spin of odd nuclei . . . . leading to the concept of 
"Magic Numoers". 

I t appeared soon that the ground and low lying excited states 
can be constructed, in the f i rst approximation, from the Harmonic 
Oscillator (H.O.) states when a suitable spin-orbit interaction is 
introduced. As the harmonic oscillator is an independent particle 
model i t has been concluded that each nucléon is moving into a 
common average field generated by the interaction of one particle 
with the others ' K I t is an independent particle model (IPM). 
But the H.O. is a confining potential preventing any nucléon to 
escape from the nucleus. Therefore another potential, like the 
Wood-Saxon well, vanishing at infinity has been substituted for 
the H.O. potential in order to allow nucléons to be separated from 
nuclei and generate a better charge density. Ultimatelly the 
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Hartree-Fock method has been used for generating an average field 
from a potential (e.g. Skyrme), adapted to the method, yielding 
good binding energies and densities for nuclei ' ' . 

Our approach starts also from the H.O. Model but leads to ano­
ther conclusion. 

Let x.(i=l A) be the nucléon coordinates and X the 
center of mass, the H.O. potential is proportional to 

." 

I x[ = {(*,-# + AX2 U ) 

Introducing the collective coordinate 

^^'"Ui^'VV^ (2) 
one deduces that the H.O. interaction is either a sum of Indepen­
dent particle interactions (the orthodoxe-interprétation) or a col­
lective interaction of the collective translationally invariante 
coordinate r. 

Here we investigate the consequence of this last interpretation. 
Let us consider the motions in which r is preserved, i t can be the 
rotation of one particle around the center of mass if, or the rota­
tion of two particles around their own cm. combined with the ro­
tation of this two-body cm. , more over i t can be the one of three 
particles around their cm. and so one. 

Assume that the part V0(r) of V(r..), the N-N potential, inva-
riant for such motions is prédominante,then i t can be written as : 



v( rij> * V r > + I V ( r i j ) - V r » (3) 

where the last terme the residual Interaction which contains the 

two-body correlations, is small. I t vanishes identically for a H.O. 

according to (2). Using a decomposition of the wave function by 

pairs we write 

1 (x) = I <P,,(x) (4) 
i , j> i 1 J 

•»• • * • • + • * • 

where x stands for the set of particle coordinates (Xj.Xg, ...,x A). 
We require that each partial wave is a solution of 

{ T-^ii V0(r) - E> *1d - -{¥(r fJH 0(P)Î J ^ *kl(5) ( 5) 

where T is the kinetic energy operator. 

This equation is equivalent to the SchrSdinger equation 

(T + I V(r. . ) - E)T (x) = 0 (6) 
i , j> i 1 J 

In the f i rst order approximation, where one neglects the residual 
interaction, the solution is the product 

* l j ^ = H[L]<*> r u

n ( r > { 7 ) 

of a (homogeneous) harmonic polynomial Hr,i(x) and a function of 
the collective coordinate *8'. The polynomial is characterized by 
a set of (quantum) numbers [L] and n is the number of nodes of 
u (r), the eigenfunction of the "hyper" radial equation 



fùijjlL - £ËiD) + tmi y (r) - Et u_(r) = 0 
m dr« r* 2 

* - L + " Ç - 3 ( 8 ) 

where L is the degree of the harmonic polynomial. In this solution 

the state is defined by the harmonic polynomial H.|i(x) which must 

exhibit the symmetry required by the particle statistic (bosons or 

fermions) in any exchange of two particles. It is independent on 

the collective potential V n(r), which determines only the shape of 

ii_(r). The ground state is reached whenX, i.e. the degree L of the 

polynomial is the smallest (then the repulsive centrifugal barrier 

is the weakest} and when u(r) has not node (n=0). 

For nucléons Hp,(x} must be an antisymmetric polynomial. In 

order to construct harmonic polynomials of low degree corresponding 

either to ground or low lying excited states we introduce the 

homogeneous polynomials of degree 2n+i 

2nH 
< W x i > = x W ^ ' W u i > • ( 9 ) 

where ^ ( (1 ) . ) stands, as usual, for the spherical harmonics 
Yjt(w.) coupled to the nucléon spin to produce an individual to­
tal angular momentum j with projection m. 

Then we construct the Slater determinant 

H [ L ] M = I - *0ij«<x1> < W x i > • • • % j E « * i < x i ) - " l ( 1 0> 



where for any fixed fcjm the number n is used without any hole from 
0 to the maximal value rnt^ chosen independently for each set *jm. 
A homogeneous polynomial constructed according to this rule Is a 
harmonic polynomial ' 4 ' . When 1t is multiplied by }r e"(^-) = 
e"*^ga' e""bT i one obtains a H.O. Slater determinant cons­

tructed with the Individual H.O. eigenstates £ J A I C * . ) . The 
harmonic polynomials of low degree are constructed with the nijm 
quantum numbers in following the rule used for f i l l ing the ground 
or low lying states H.O. Slater determinants. 

The discontinuities in separation energy of the last particle-
after a closed shell is generated by a sudden Increase in kinetic 
energy. When one more nucléon is introduced in the lowest unfilled 
shell of a nucleus the increase of V 1s l + | (see eq.'(6)) 
where lm 1s the highest orbital allowed in the shell (e.g. i.m - 0 
in Is, £.m » 1 in lp, lm « 2 1n 2s, Id shells) (4) 

The increase in the centrifugal barrier is then 

[ (2V3JX + ( v f j e w f ) 1 h 2 / m r 2 

where & conserves the same value in a shell. But £_ becomes 
lm + 1 for the next nucléon Included after the closure of a shell 
and the kinetic energy endergoes a sudden increase which 1s not 
balanced by a similar decrease in potential energy then generating 
a drop In the separation energy of the last particle, hence explai­
ning the discontinuities after 4He, 5 0 and Ca. This mecanism 
is mixed up beyond the (2s, Id) shell by the spin-orbit effect of 
the nuclear force. The spin orbit operator fc. . . (a. + a.) 
does not change the degree of the polynomial Hr, i(x) but selects 
which one of the harmonic polynomials brings the largest binding and 
must be chosen, to describe the ground state. 

I t favorises the high spins and is mainly responsible for the 
feature of the sequence of the nuclear ground states after the (2s,Id) 
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shells • At least two collective motions are explained by our mo­

del : 1) the breathing mode which is exactly described by the exci­

ted states of the radial motion (see eq.{8)) * 6 ) ' ^ ; 1i) the 

giant dipole resonancewhich originates from the translational in­

variance of the harmonic polynomial describing the ground state. 

Indeed the degree of the antisymmetric polynomial H[Lm](x) descri­

bing the ground state is minimal, therefore any symmetric diffe­

rential operator decreasing the degree of a homogeneous polynomial 

gives zero on 1^. j { x ) . In particular 

A 
Ï (1±T_(i)) v\ &,.(*) = 0 
1=1 m 

shows the translational invariance of Hj Lm] (x) for any motion of 
either the neutrons or the protons center of mass. The relative 
motion of the neutrons versus protons center of masses can be fac-
torized In agreement with the Goldhaber and Teller picture of the 
giant dipole resonance * 8 ' . 

The potential between the two center of mass can be calculated 
from the charge form factors and leads tc dipole excitation energies 
in agreen 
in eq.(8) 
in agreement with experimental data * '. The collective potential 

V r ) • r ' 2 L f H?L]W V(r t J,a.TÎ H fL](x)dQ 
(r=l) 

is the average taken ever the unit hypersphere (r = 1) of the N-N 
potential. It takes into account the effect of the exchange opera­
tors on the harmonic polynomial describing the state. To illustrate 
the first order approximation we have drawn in fig.l the effective 
potential U(r), including the kinetic centrifugical barrier, obtai­
ned with the Brink-Boeker Bl potential* ' for Ca. 
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It looks like a mole­

cular potential : the 

ground state wave func­

tion is concentrated 

near the bottom of the 

well, the next state is 

the breathing mode stan­

ding 19 MeV above, in 

approximate agreement 

with the experimental 

energy 80 A"1''3 MeV. 

The position r m of the 

minimum of U(r) 1s rela­

ted to the r.m.s. radius 

a by 

2 !/2 m - ^ 2 1/2 
rm*<r' > = m <(xj - t)£ > = m.a 

(11) 

Then a look at U{r) provides an easy estimate of both the total 
binding energy and the size of the nucleus. 

For introducing the two-body correlations we assume that the 
residual interaction in (5) is small. We substitutethe f i rst order 
solution H [ L ] ( x ) * ( r ) for * k 1 in (5) generating the right member 
AtA- lJ /ZMr^) - V 0 ( r ) ) H[L]f&)<f> ( r ) . The partial wave*^ becomes 
the product < U Î 

* 1 J ( Î ) • ' H [ L ] ^ F ( r i j ' r > (12) 
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of a harmonic polynomial characterizing the state and a function 
F(r*-,r) describing the correlations generated by the two-body po­
tential V(rjj). This function i s a solution of 

{ T + *i*lll V o ( r ) . E } H [ L ] ( x ) F ( r i r r ) 

< 1 3> 

For solving this equation we introduce, beside the collective coor­
dinate r, a "correlation " coordinate z related to the relative 
coordinate r ^ by 

2 2 r i j " r cos$, z " cos 2* * 2 r j V r " * (14) 

tu 
Then we define the set of polynomials P K (z) such that the product 

^Wr^ ^(z) - r1^ [ ^ { a i i ) (15) 

be a harmonic polynomial of degree L + ZK *1ZK It must fulfill the 
orthonormal condition 

n f * * I LI . Ul 
r J HtLl ( 3 ? ) P K ( Z ) W X ) PK' ( z ) * " ÔKK' (r-1) 

(16) 



where the integral is taken over the surface of the hypersphere 
(r » 1). The surface element over the hypersphere (r * 1) dft i s 
separated in two terms : 

3A_4 1/2 
d3 = (B 1 . 2" D / 2 ( l - z )~^ (1+z) ûz 

where «^stands for all the surface coordinates but z. Integrating 
(16) over all variables fli leads to the orthonormal condi­
tions 

r tu ni .... 
J w[i](z)PK ( z ) P K'( Z ) d z " ô W ( 7 ) 

-1 

where P^ (z) are polynomials associated with the weight function 

-D/2 |5-4 1/2 -. f 9 

W(L] (z) - 2 (l-z) z .(1+z) r *• J \\\ J (xjrdBj 

3A 

•(1+z) r"' 
(r=l) 

The weight function i s the product * ' 

JC-2Jt -1 1/2 
W [ U ( z ) - (1-z) m (1+z) P [ L ] ( z ) ( i 8 ) 

where lm i s the largest orbital in the last shell andp[ L j(z) is 
a polynomial of degree 21 with zeroes out of the range - 1 < z < 1. 
The polynomials associated with such a weight function are obtai­
ned from the Christoffel's formula " ' . Me reduce eq.(13) to a two 
variables intégra-differential equation by operating a projection 
of this equation on the space spanned by r*y For this purpose we 
introduce the projection function 
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f [ 

y r v m [Lj "1 
. L ] ( z , 2 ' ) - w l L , ( z ' ) ^ 0 [ k ^ ( i t j ) < L+acta^)! L + 2 K(R k 1)>J 

[L] [L] 
x P K (z) PK(z') 

(19) 

where the sum over the pairs occurs for ( !c ,> ) .-'• ( ï , j ) . The bra-
kets stand for- the overlapping of polynomials related to different 
pairs. The sum over k,l decreases as (A-2) /2 2 K - 1 (K>2) for in­
creasing K * 1 3 ' so that only a few terms (e.g. K<7) are suffi­
cient to obtain a very accurate projection function even for large 
A (e.g. AclO3). The two first terms are A(A-l)/2-l for K « 0 and 
-Ifor K * 1. We write Ffr^.-.r) as a function of the two indepen­
dent variables z and r : 

.FCr^.r) = P(z,r) (20) 

The wave function for fermions is the antisymmetric combination 

. . -(X+l) _ , , 
¥ (x) = H (x) r I P(2rJ,/rM,r) 
tLl IL] 1,j>i 1 3 { n ) 

where P(z,r) is a solution of the integro differential equation^ ' 
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{AÎ[ - JL +1Ë1H . ± _ 1 _ A ( i . z «, „ (z) JLj 
m 3r 2 r 2 r 2 W Î M ( z ) 8z l L J 3z 

•IL] 

+ 4 ^ V Q(r) - E}.P(z,r) 

•ÎV(r/3p)- »0(r)]{P(z,r) *J [z,z') P(z\r)dz'} 

(22) 

This equation has been solved by using the polynomial expansion 

P(2,r) - Ï PK (z) u K(r) ' < 2 3 ) 
KBQ 

and by projecting (22) on the PK ' (z) basis. The partial waves 

u„(r) are a solution of a system of coupled second order diffe­

rential equations in r. When the two-body potential V(r.-) con­

tains exchange operators, the weight functions generated by these 

operators must be taken into account. Essentially the P m ( z ) 

polynomial is modified and eq.(22) must be changed accordingly. 

For bosons in the ground state the symmetrical harmonic 

polynomial H[|_m](x) describing the state is constructed with al l 

particles in the Is state, therefore i t is a constant (Lm=Jlro"0) 

and the polynomials P„ (z) associated with the weight function 

(18) are the suitably normalized Oacobi polynomials P 3 / ' 2 ~ 4 ' (z ) . 

The ground state of the tr i nucléon system and He are construc­

ted as for a bosons system when the potential is purely central 

and the mixed symmetry state generated by the difference between 

triplet and singlet even potentials is disregarded. 



In Table 1 is shown a comparison between the binding energies 
obtained by integrating (22) for various nuclear potentials' " ' 
and by the best variational calculations taking the two-body corre­
lations into account with Jastrow cores * ' eventually combined 
with a Montecarlo method ^20^and with Yakubovsky equations * ' . 

The potentials contain a repulsive core which can be strong 
as in the S3 Afnan-Tang ' ' and S4 Eikemeier-Hachenbroich * ' 
potentials for which the ratio between the strenght of repulsion 
and attraction is ten. The soft core Volkov ' ' potential Is also 
used for comparison . 

Table 1 Ground state binding energies in MeV. 

Potential V S4 S3 
3He (14)(15) 8.47 7.03 6.66 

Var. ( 9 ) 
MonteCarlo(20) 
Yak.(37) 
4He (17) 

8.45 

8.44 

7.03 
7.00 

6.61 
6.56 
6.40 

Var. ( 9 ) 
MonteCarlo(20) 
Yak.(37) 
4He (17) 30.4 27.9 26.0 

Variational (9 ] 
Monte Carl o(20) 

Yak.(37) 

30.3 
30±.l 

30.2 I 

28.2 
27.7±.l 

26.5 
26.4±.l. 

25.5 

From the values displayed in Table 1 i t turns out that our results 
are as good as those obtained with the best variational calcula­
tions and therefore that the wave function (21) contains a good 
description of the two-body correlations. 

Calculations with realistic interactions for the same nuclei 
are also in agreement with other calculations performed by solving 
Fadeev or Yakubovsky equations ( Z 3 " Z 5 J . 
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Eq.(22) is general and can be applied to any nucleus as soon 
as the "state" Hr jx) is defined. In order to estimate the contri­
bution of the two-body correlations in the ground states of 0 

40, and "Ca we solved (22) with the Brink-Boeker Bl potential ( 1 0 ^ 
compared our results * ' 
Fock method (28) 

and 
with those obtained applying the Hartree-

E0 E 8 

LHF bHF A E H F A E H F EHF exp. EHH 
" 0 

" 0Ca 

106.5 

323.4 

113 

337 

152.1 

468.1 

6.5 

13.6 

45.6 

144.7 
99.6 
264.4 

127.7 

342 

138.3 

388.1 

In Table 2, E 0 , EfjF and E£jH are respectively the f i rst order, 

Hartree-Fock and Harmonic polynomial binding energies without 

Coulomb in Mev.AEHF and AEH H are the corresponding increase in 

binding energy with respect to the f i rst order. E H F and E H H contain 

the effect of the coulomb potential and are compared with E, 
the experimental binding energy. 

exp. 

The potential Bi which already overbind *He t 2 9) has the same ef­
fect on 1 6 0 and 4 0Ca. The increase of binding energy originating from 
the correlations i n 1 6 0 and W are respectively 7 and 10 times larger 
than the one obtained applying the Hartree-Fock method. The overlap 
«l>HH I *HF> between H.F. and H.H. solutions are respectively .9 
and .85 for 1 6 0 and 4 0Ca. The H.F. solution cannot be a reliable so­
lution if one believes that the Rayleigh-Ritz variational principle 
provides a test for the quality of a ground state wave function 

We assumed in our derivation of eq.(13) that the residual inter­
action is small. If it is true the first term (K=0), independent of 
z the correlation, variable, must be predominant in the expansion of 
P(z,r) on the P l u (z) basis. We found that for the analyzed V, S3 and 
S4 potentials, the norm of the partial wave ug(r) in (23) are respec­
tively .99, .98 and .99 for 3 H and .99, .96 and .98 for *He ground 
states . When Vn(r) is dominant it can be used tû calculate the exci­
ted state energies. We did it for" 6Li in the first order approxima­
tion 30 J. 



The excited states are described in the L.S. scheme by the 
coupling of-the two lp shell nucléons. He choose for simplicity i) 
two phenoraenological potentials S l^ 2 0' and S 4 » 2 1' adjusted wi­
thout tensor force to the ^ Q and 3Sj phase shifts and ii) the cen­
tral part of the realistic GPDT* 3 'potential. The excitation ener­
gies obtained for the various states are displayed in Table 3 in 
HeV. The 1 +, 2* and 3 + states, degenerated without spin orbit force, 
are compared with the centroTd of the experimental energies * '. 

J* T *• S4 SI GPDT Exp. 
<g.s.) i + 

o + 

3* 2* 1+ 

2 + 

r.m.s. radius 

0 0 0 0 0 0 

1 0 S.64 4.69 3.49 3.56 

0 2 2.90 3.18 4.19 3.60 

1 2 6.37 5.32 5.06 5.36 

2.13 2.12 2.55 2^33±.l fm 

T arcU refer to the total isospin and orbital momentum. The r.m.s. 
radius of the ground state is given in the last row. 

Me cannot expect a better agreement with the experimental data 
from a truncated interaction without tensor and spin-orbit force. 
Now we come to the most important question : does our wave function 
well describe the two-body correlations.To answer we solved the 



I< 

2 [fm) 

Tritium with two potentials giving 
both the experimental binding energy 
and r.m.s. radius. One potential (Vx) 
has a very weak repulsive core and 
the other (G2) a very strong one * ' 
(see fig.2). The one body density 
(continuous line) and two-body corre­
lation function (dashed line) are 
shown on fia.3a and 3b respectively 
for the Vx and G2 potentials. What­
ever is the strenght of the repulsion 
the one body density is flat near the 
origin but the two-body correlation 
function has a hole.in the center 
generated by the potential core. The 
hole is very deep, and goes to zero 
at the origin for the G2 potential, 
as expected for a very strong repul-
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Fig. 3b 
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sive core potential. There is a last question we would like to com­

ment about : Does the energy spectrum determine the interaction ? 

Assume that for a nucleus an overall good agreement between theo­

retical and experimental energy spectrum of excited states is rea­

ched with an independent particle model (particles moving in a 

well). Does it proves that the associated wave functions are good ? 

Take a three-particle system with a two-body interaction V(r.-). We 

eliminate the c m . by using the Jacobi coordinates Xg-jfj = f ̂ 

and /3(x3-5t) » ç 2

, w , 1 e r e x 1 S t n e center of mass. 

The wave function Ht^to) 1 S a solution of the Schrb'dinger equation 

exchange *, and Z^, then the sets (x^-Xj) 
xchanged*33' in such a way that *(l 2»li)

 D« 
Let us now exchange ?, and 5 2»

 t n e n t h e s e t s ( xi~ xj) a n d 3 ( x k " x ) 
are also exchanged"' in such a way that <K£ 9.f 1) becomes a solu­
tion of 

Then *(|,,? 2) and «Kl^tti) have the same energy spectrum but one-

body density"and two-body correlation functions are exchanged (i.e. 

the densities in fig.3 are exchanged). An agreement with the energy 

spectrum is not sufficient to accredit the wave functions generated 

from a well for particles interacting by pairs. 

From our analysis emerge a new picture of the nucleus in which 

the wave function is the product of an antisymmetrized harmonic 

polynomial defining the state, which exhibit an independent parti­

cle behavior, and a symmetrised function describing the two-body 

correlations generated by the interaction. Therefore, most of the 

particle-hole configurations are not "states" in our scheme, except 

when they are constructed according to the rule leading to a harmo­

nic polynomial (see eq.(10)). Our wave function is cleared from 



spurious center of mass motions when the state is described 
by a harmonic polynomial of minimal degree. It can be eliminated 
for low degree polynomial " '. Besides the monopole and dipole 
giant resonances other collective states can be described by our 
model. For instance, the interacting boson approximation (IBA) be­
longs to our scheme because the low-lying IB excited states are 
constructed by coupling the nucléons in the last unfilled shell. 
The total kinetic energy is fixed by the degree of the harmonic 
polynomial independent of the coupling between the nucléons and by 
the size of the nucleus; 

The excitation energy proceeds from the effect of the coupling 
of the nucléons on the N-N interaction. It must be only slightly 
sensitive to the two-body correlations in order to preserve the 
agreements already reached with experimental data. 

The utilisation of the harmonic polynomial method requires the 
knowledge of the weight function (18) which is obtained from the 
Fourier transform of the two-body correlation function calculated 
with the first order H.O. wave function deduced from (10). The 
Fourier transform can be calculated by using the Talmi coefficients 
and the Talmi integrals &5K 

Our conclusion is still the one of our first paper using the 
harmonic polynomial method for solving the few-body problem * ' : 
"In this formalism extended to the many body problem, which gives 
a dominant central potential, lies probably the justification of 
the success of the shell model". 
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