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By means of the effective action method the rate of quantum

decay of false vacuum in (1+1) dimensions is expressed in a

form ol a universal olosed formula, whose validity does not

rely on semiclassical expansion.
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It is well known ' ' that the probability W of quantum

tunneling from a metaatable phase ф+ to a lower phase ^.

of e real scalar field ф with the Lagrangian '

where the potential n f / has local minima at ф+ and ^>.

(Pig. 1), i3 given by the path integral in the Euclidean version

of the theory

with ,5 being the Euclidean action corresponding to the Lag-

rangian (1). The path integr
a
l runs over all configurations of

the field ф in the Euclidean apace-time, which approach

eb
+
 at infinity. The configuration which contributes to W

and on which ,S is stationary is the so-called bounce ' .i.e.

a round-shaped bubble of the lower phase y . surrounded by

' We use the system of units h ** & - 1 , where V is

the characteristic velocity in the problem,i.e. the speed of

propagation of infitesimally 3hort-wave ezitations of the

field <ф .
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zhe phase ф+ . In the case when the minimal of the masses of

exitations in the phases ф+ satisfies the condition m.R^>i

where Я is the radius of the bubble, the critical value of

R and the value of Д at the stationary point are expressed

only in terms of A* and £ where fr is the surface ten-

sion of the boundary between the phases and £ is the dif-

ference of energy density in the phases, £ = £ (f+) — £-(Ф~).

In the (1+1)-dimensional theory which is considered here

f( ж к/t and £
г
« "E£. (in this (1+1 )dimensional case и is

sometimes called the scliton mass).

The same condition tnH»1 ensures that the spectrum of

fluctuations of ф around the bounce configuration consists

of two distinctively different parts: 1) low-energy fluctuations,

corresponding to eigenvalues of с $/$ф of the order of

R~ and 2) high-energy fluctuations with eigenvalues

0 (ft ) . The first part corresponds to fluctuations of the

shape of the bubble and is described by the following low-energy

effective action

- Г
1
 -

eA
 <»

where {_, is the length of the bubble boundary, and A is

the area of the bubble, fhe high-energy spectrum corresponds to

exitations of the field <£ in the bulk of the phases Yt ai*d

to fluctuations of the profile of the field ф inside the'

bubble boundary (whose thickness la O(t*i'
1
) ).

Xet us first consider the furctional integration over the

hjf^-energy degrees of freedom, i.e. we integrate over all con-

figurations of the field j> which correspond to fixed shape



of the bubble. According to the well known decoupling theorem

/2/

' the result of such Integraticn reduceg in the low-energy

sector to renormalization of the parameters of the low energy

theory (i.e. м and £ in the case considered), provided

that the low-energy theory itself is renormalizable. This is

certainly the case for the theory with the action (3) since

i it is equivalent (at least perturbatively) to quantum mechanics

! of one degree of freedom. Therefore the functional integral in

j eq. (2) is reduced to path integral over shapes of bubble with

the action (3) in which M and £ are the renormaiized

parameters. (These quantities recieve no renormalization in the

llow—energy sector and one can easily invent "gedanken" experi-

,l ments to measure them).

To calculate the latter integral we introduce parametriza-

tion of the shape of the bubble boundary in the polar coordinates

( P _, <* ), in which the action (3) has the form

\ i , U)

0

where the dot denotes derivative with respect to the angular

parameter o( which plays the role of (periodic) time. To

determine the measure in the path integral we employ the formu-

lation of the integral in the phase space, i.e. over the coor-

dinates P and the canonical momenta p . Standard transfor-

mations result in the following expression

(5)
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Since the integration over о is Gaussian it is convenient

to integrate out the coordinates p rather than the momenta

0 . After doing this one finds
г
 гг

о р/с)

( М is well known р -independent normalization factor).

The latter integral in the exponent obviously counts the munber

of turns in the complex p -plane around the cut which goes

from as - f* to Dx + M » Paths P (U ) with zero number

of such turns correspond to one-bubble configurations. Let us

denote the integral over such paths as 2. j • The complete

path integral J£ is given by'^'^sexpEj . There-

fore evaluation of the decay rate (eq. (2)) amounts to calculation

of j£. , i.e. the same path integral as in eq. (6) but with

the latter integral in the exponent set equal to zero.

From eq. (6) it is obvious that j£. is related to the

statistical sum for a harmonic oscillator with the frequency

£*>* * -1 at the temperature T - (23Г) . These values

of 00 and 7* correspond to the situation of a kinetic

focus and the statistical sum is divergent* The divergency is

caused by two zero modes P s (L CCi oC and p s A 4*n. ei

which arise due to translational symmetry. At this point one

should recall that the finite quantity is not ff itself but

rather the probability of formation of a critical bubble per

unit length and unit time: *T s J
2
 W/JxJt . To regularize

the infinity brought in by the translational group and thus to

calculate *tT we slightly spoil the translations^, symmetry

by introducing e factor depending on the position Xp of the
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center-of-gravity of the bubble: d^/JxJt = ЪГex? f - ^

so that W - "№ JT/Д , where Д is infinitesimal regu-

larizing parameter. Using the explicit expression for the zero

modes in the о -space one can readily relate their amplitudes

to displacement of the bubble as a whole and thus verify that

the A -regularization is equivalent to the shift of the

oscillator frequency from CO = -1 to <*? s - ̂  + 2 A/uT£,7.

With this modified frequency one finds imZ^- ~-r exp (-Z£. )

(One should also take into account that integration over the

amplitude of the negative mode p = const goes along the

imaginary axis over one half of the Gaussian peak ' , which

gives additional factor 1/2 in ImZ,^ ). Summarizing the

previous discussion we find that the parameter A cancells

in the expression for tfT which has the form

W/Jx Ji = X e<? (- трг/е) (7)

and constitutes the final result of our calculation.

The only approximation made in derivation of eq. (7) was

the thin wall approximation fn £ ~ /nf* /£ » «f .As far as

another dimenaionless parameter C/f1 is concerned, eq. (7)

is exact in this parameter. In the special case when the poten-

tial V(f) is a polinomial of the fourth power in ф
 t n e

recently calculated '*' one-loop result for PJ~ coincides with

eq. (7) when the result of ref. 4 is expressed in terms ot re-

normalized M and £ . What is stated by eq. (7) is that

all higher order terms amount merely to renormalization of the

same parameters and that there is no series in powers of £//** .

Bq. (7) can also be applied when the temperature is below



the critical one: f < T = JL relative magnitude of

t
temperature corrections to eq. (7) in this region is proportional
to exp { - ccnst' £. (T~1~ Tc

 1) j .
I would like to thank V.Kiselev and K.Selivanov for

useful discussions.
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