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Abstract

By means of the effective sction method the rate of quantum
decay of faulge vacuum in (141) diinensicas 18 expressed in a
form of a universsl olosed formula, whose validity does not

rely on semiclassical expansion,
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It is well kmown /' tnat the probability W of quantum

tunneling from a metastable phase ++ to a8 lower phase +..
of £ real scalar field 45 with the I.agra.ngia.n*)

Z= -;—(9/-5')1- Vi¢) (1

where the potential V(f) has loczl minima gt ++ and +-
(Pig. 1), is given by the paeth integral in the Euclidean version

W=2ln o] (D8] ep-5)} @

with S being the Euclidean aciion corresponding to the Lag-
rangian (1). The path integrgl runs over all configurations of
the field + in the Euclidean space-time, which approach

¢+ at infinity. The configuration which contributes to W
and on which ,S' is stationary is the so-called bounce /1/,i.e.
a round-shaped bubble of the lower phase 4’- Surrounded by

*) W#e use the system of units t - =1 » Where VUV is
the characteristic velacity in the problem,i.e. the speed of
propagation of infitesimally short-wave exitations of the

field ¢ .
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che phase c‘;,_ . In the case when the minimal of the masses of

exitations in the phases @,
K is the radius of the bubble, the criticel value of

satisfies the condition m K >51

where
R and the value of S at the stationary point are expressed

only in terms of /«« and £ where ,u is the surfaece ten-~

sion of the boundary between the phases and £ is the dif-

ference of energy density in the phases, £ = ¢ (4:4) -E(¢.),

In the (1+1)-dimensional theory'which is considered here

K = /h/z end §,= Z;-; (1n this (1+41)dimensional cese A 13

sometimes called the scliton mass).

The same condition mK>>1{ ensures thaet the spectrum of

fluctuations of + around the bounce configuration consista

of two distinctively different parts: 1) low-energy fluctustions,

corresponding to eigenvalues of §:5 / § ¢z of the order of
R’Z aend 2) high-energy fluctuations with eigenvalues

0[ nt) « The first part corresponds to fluctuations of the

shape of the bubble and is described by the following low-energy

effective action

Sc[f = /‘L -eA )

where [, is the lemgth of the bubble boundary, snd A  is
the aree of the bubble. The high-energy Ipectrum corresponds to
exitations of the field ¢ in the bulk of the pheses P+ and
to fluctustione of the profile of the field ¢  inside the’
bubble boundery (whose thickmess 18 (/(m=-7) },

Let us first consider the functional integration cver the

high-energy degrees of freedom, l.e. we integrate over all con-

figurations of the field ? which correspord to fixed shape
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of the bubble. According to the well known decoupling theorem
/2/ the result of such integraticn reduceg in the low-energy
Sector to rencrmelization of the parameters of the low energy
theory (i.e. r and & in the case considered), provided
that the low-energy theory itself is irenormelizable. This is
certainly the case for the theory with the action (3) since
it is equivalent (a2t least pertiurbetively) to quantum mechanics
of one degree of freedom. Therefore the functicnal integral in
eq, {2) is reduced to path integrel over shapes of bubble with
the action (3) in which M and & are the renormalized
parameters, (These quantities recieve no renormalization in the
llow-energy 8ector and one can easily invent “"gedanken" experi~
ments to measure them),

To calculate the latter integral we introduce parametriza-
tion of the shape of the bubble boundary in the polar coordinates
{ g , o ), ir which the action (3) kas the Zorm

ar
S.;,c = j(rﬁ‘%‘ -$eg*) du W

where the dot denotes derivative with respect to the angular
parameter o  which plays the role of (periodic) time., To
determine the measure in the path iniegral we employ the formu-
lation of the integral in the phase space, i.e. over the coor-
dinates ‘f and the canonical momenta p . Standard transfor-

mations result in the following expression
{

Z= Jﬂ J;;Q e""{';{(l’f*“r‘“?‘f “rEst)de]
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Since the integration over ? is Gaussian it is convenient

to integrate out the coordinates 4 rather than the momente

P + After aoing this one finds

2r Pte)
_Z = /l/Sﬂ JF CXP{- '.'Ef‘fz-j éz.z_-z_fzgfg + I_K.E/-_"_E—?JP } (6)

0 plo
( A/ is well known p -independent normalization factor).
The latter integral in the exponent obviously counts the munber
of turns in the complex P -plane around the cut which goes
from p= - p to p=+pM - Pathe Fld) with zero number
of such turns correspond to one-bubble configurastioms., Let us
denote the integral over such paths ss .Z 4 o« The complete
peth integral Z is given by /1/ z = exp Z., « There-
fore eveluation of the decay rate (eq. (2)) amounts to ecalculgtion
of Z, , i.e. the same path integrel es in eq. (6) but with
the latter integral in the exponent set equal to zero.
From eq, (6) it is obvious that Z , is related to the

statistical sum for a harmonic oscilleator with the frequency

w? 2 _1 at the temperature .r=(2)l')-li . These values
of w and T corregpond to the situetion of & kinetic
focus and the statistical sum is divergent. The divergency is
ceused by two zero modes ID = 4 o3 and P = a #n ol
which arise due to translational symmetry. At this point one
should recall that the finite quantity is not W 1itself but
rather the probability of formetion of a critical bubble per
anlt length end unit times 5 = J2 W /dxdt . 1o regwiarize
the infinity brought in by the translationel group and thus to
calculate W we siightly spoil the transletionel symmetry
by introducing & factor depending on the position X'n ‘of the
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center-of-gravity of the bubble: J‘Wﬂx# = W exp (- )«X;)
soc that W = W'JJ'/A , where A is infinitesimal regu-
lerizing perameter, Using the explicit expression for the zero
modes in the P ~space one can readily releate their amplitudes

to displacement of the bubble a8 a whole and thus verify that

the A ~-regularization is equivalent to the shift of the

oscillator frequency from W = -1 to wiz -4+ 2i/(FE),

T
With this modified frequency one finds Im 21 = % exp (-_Yéﬁ )
{One should also take into account that integration over the
amplitude of the negative mode P = const goes along the
1/

imeginary axis over one half of the Gaussian pesk /2 which

gives additionel factor 1/2 in Im Z, ). Summarizing the
previous discussion we find thet the parameter A cencells

in the expression for 1~ which has the form
42 W/Jx dt = 25;_ exp (-Ji‘,u’/é') (7

and constitutes the finel result of our celculation.

The only approximation mede in derivation of eq. (7) was
the thin wall approximation mA = /m/v/z >>4 , As far as
another dimensionless parameter £,//4t'z is concerned,eq. (7)
is exact in this parameier. In the special case when the poten-
tial V(f) is a polipomiel of the fourth power in 4? the
recently celculatied /4/ one-loop result for W  coincides with
eq. (7) when the result of ref, 4 is expressed in terms of re-
normalized M and ¢ « What is stated by eg, (7) is that
all higher order terms amount merely to renormalization of the
same paremeters and that there is no series ir powers of L‘Ak" o

Eq. (7) can also be applied when the temperature is velow
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°
the cr.tical one: T‘< T: = g&. « The relative magnitude of
temperature corrections to eq. (7) in this region is proportional
to © exp {- const g (T T~ T;-')} .
I would like to thank V,Kiselev and K.Selivanov for

useful discussions,
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