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A Lagrangian rethod is introduced for the integration of non-
linear Fokker-Planck equations. Examples of exact solutions obtained in this
way are given, and also the explicit scheme used for the computaticn of
numeirical solutions. The method is, in addition, shown to be of a Lie-
adm ssible type.
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A Lie-admissible neihod of integration
of Fokker-Planck equations ith non-linear cuelficienis

(exact and rumoerical solutions)

I. CCHCEPTUAL FOAMELGRK OF THE ARTICLE.

1) Gercralitias related to our treatment of Folkker-2lanck

it

equations.

Let us consider, at any point x; of R"

and at any time t, a
density of prcbability p(xt,t) which satisfies the Fokker-Planck equation

(Refil], pace 144)
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The deterministic aspect of evolution is represented by the vector D with
the components Dh(xi’t)’ and the diffusion by the symmetrical and positive
matrix [02] with the general term °§k(x£’t)'

The first step of the method that we will use consists in asso-

ciating the following system of coupled equations with (:)

dxp 1 m

It = vh = Dh - '25' k§1 ak(pfiﬁk) (2'3)
2, § V,) = 0 2-b
a_f + Z Bh(o h) = ( )

h=i



e e g "

The choice of the auxiliary systom (¢} is a priovi reasoesblo, circe it s

. . N .
easy to verify that systen () implies eqration ).

The two eaquations which wmake up (:} cannot evidently ha dissceia-
ted since they are linced by the urknown function p. Howaver, when » is
known (anzlytically by integration of (1) Tor exavnie, or pumaricaily due
to @ preceding step of integration), the relation (2-2) bocomes an indepen-

dent difrerentiail system. Let us consider its solution

©) X, (t) = ¥ (t,x,{0)32) (¢=1,2,...,3)

and the associated Jaccbian

raXn
@ J = J(t,xc(o);p) = det l?jxwi\ﬁi}

A

where xi(O) is the initial value of xé(t).

The second step of our method (Ref[2]) consists in utilizing the fact that
the Fokker-Planck eguation conserves probability during time evolution, and
in writing this law of conservation alorg the trajectories (:), i.e.,

denoting as du(xi) the element of volume at point Xp of R,

@ D(x'e(t)’t) du(xﬁ(t)) = O(Xt(o) ’0) d;!(XZ(O))

or still, by introducing the Jacobian (:) of the change of variables
X it) ~s,(0) defined by OR

. _P(x,(0),0)
@ p(Xl(t),t) J(t,xz(O);p)

The third and last step consists in utiiizing Liouville's theorem,



in its originel form (Ref13{141151), to caleulate the Jacobiin J :

m
@ gE les J = v SVt (t)50)
h=1

These ideas related to the Fokker-Planchk oauation ovg sumnarizsd
by @ @ and @ were alrcady presented and used several times (Ref[2!
lbl...[ll]).. {fe will see hereafter that they suggest a new method of numeri-
cal integration ¢f this equation.

Let us note that, since we are presenting here a method, the
numerical apniication of which has only begun, starting firom -3, we will
consider solely tre particular case of ona space variable, x €R. The Fokker-

Planck equation will then be studied in the particular case

@ g—t Q(X’t) + %x"(p(x,t)o(x,t)) = % %i;z-(p(x’t):?.(x’t)) ,

with @ ’ @ and @ being written in the following manner :

%:vw-’zlz%:(oaz) o
®
242 V=0 -
_ p(X(O)’o)
@ Px(8):8) = SR x(0)i0)

@ %'f Log J = -.3-; (tyx(t);0)
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Tooare sufficient for the understandingd of the nresent article,

2) Our work in the framoyort of Lic-oadsiss . ole alerheae

(Ref 123,113 1,141 . 115] noae 261, (201},

Frem a purely praguatic point of view, the genaralitics of I-1)
Tt 35 then
possitle Tor thé reador, if he wants, to go directly to I1). Howaver we will
take the time here to say some words about the relations existing between
our work and that of-the theoreticians of Lie-admissible algebrae.

In order to be able to speak in terms of dynamics, let us Took

at the case wken R is a phase SpacetRZ" and, to simplify the notations,

limit ourselves to tha case where R-" =(R2, X1 = X, X2 = p, with

0y 3H/3p
@ D = = 3 H=Hx.pt) 5 F

4 = F(x,p,t)
D, -3H/3x + F

H is the Hamiltonian which describes all the forces derivable from a poten-
tial, and F represents all the other deterministic forces (local non-self-

adjoint forces according to R.M. Santilli's terminology, Ref[15])

. Equation
(:) may be then written as

2 2
© %+ (oot} = - 567 + DR o%)
=1 =]

— e W gty St

The non-Hamiltonian effects are concentrated in the right-hand side of the

equation. They are represented - remember — by the non-conservative force F
and by the diffusion matrix [o2].

e K




T

Let us now introeduce the Tollewing quaniity :

ol -~
. F . afF /i _ 1 1 IS Y S S I
wo bﬂ7ﬂ; M T:/. 7 2 ]U/, TR - yont bl
“lep TTHp P 0D h=r k=
. . . ) s Le - s R $ L Iod r
which s known when the stetistical system is knoun, f.o., wien ih, Fy, o000

are detercined. A'! the functicns invelved are assumed to be infisitely
diffarontiedle.
Let us now censider the follewing product between any two funciions A and B

(aiso infinitely diffsrenticble)

0 1 3B/ ox

—_ TN
© (A,B) = ZA/ix  A/Tp
\s.__....--"

-1 U oB/s5p

which is explicitaly known at the same time as u. It is then easy to verify

that Q:) reduces to the following :

® By =0

and one notices that, in the particular case u =0, relation Q:) recovers

the traditional form

@ %‘%+{99H}=0

It is known that Poisson's brackets, considered as a product,
lend a Lie-algebraic structure to the vector space of infinitely differen-
tiable functions defined in phase space. Let us recall that, in the same
way, the product (.,.) equips this vector space with an algebraic structure

which is called "Lie-admissible". It is indeed easy to verify that



[P

¢ (D) - (B.A) = 2{A,B) = [A,3] ,

whera [.,.] 1s a Lie product, which is the definition of Lic-acoissibility
Cobter (0,0) 5 (RefP15] page 63). -1t may be useful to stress the fact thsot the
!

~ - ]
teeadnitssicte

algehira at hand only recuces iuself to a Lie algesra when
w20, f.e., if the tws aspects, dissipative (F) and difiusive [¢%],-0f evo-

lution are zerc or cancel each other.

3) Comparison with the method of characteristics.

Our method of integration of the Fokker-Planck equation consists
In replacing the resolution of the second-order partial differential equation
(I) by that of the system of first-order eguations (:). For equaticn (:) for

U\ample, one makes use of equation (9-b), i.e.,

R J0 a0 _ v
@ 'a—t""vi'i- DH

Which becomes a first-order equation as soon as V has been determined, with

Suf“icient precision, by an auxiliary calculation or by the preceding step

N34

integration. If now, for the following step, the mathod of characteris-

tics §s used, we obtain :

e o4 do
ey W

03
dx

=




(f.ﬂ/dt - '}V

0 X

Thus one finde 2cain the sawe results as in [-1) is tho wime A (eags

. (:) (:\ ing \;y 1n*o account. The difference is only a auesticn of

vocanuiary, Jue can, as in 1-3}, speak in terms of the chgracteristics of a

first-order parcial differential equation which is, at each step, an apsproxi-

mab1cw of tho second-order equation studied, or, as in I-1), insist on the

consurvition of proocability, and express time evolution, step by step, with

the help of the Jacobian J.

The method developed in I-1) gives us, not only a new numerical
approach to trne Fokker-Planck equation (cf.III), but also a means of calcu-
lating exact solutions in certain cases. Let us note that the application
of the method is not limited to equations which are linear vith respect to
p, as is the Fckker-Planck equation, strictly speaking.

Let us consider the example of equation

] 3 I nd
® &% L onen

which is said to be the "non-Tinear heat equation”. When n =0, @3} eviden-
tly becomes the traditional heat equation. We will assume n #0.

Let us look, a priori arbitrarily, for a solution p such that
the associated differential equation of type (9-a) is a linear equation of

the form

@ v =a(txen(t)
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in which the functions a and b will be determincd Totor. It 1s clear fhat,
if such a solution exists, it will be only a particular solution.

On the ozner hand, the velocity V asscciated with O is evidently

» v -lﬁ_,{_.,“

n ooex

Let us firstly integrate equation @; the solutior may be written as :

@ x = x(t) = (B(t) +xg)d(t) » xg = x(0) ,
with
t
J=J(t) =exp { a(u)du =g%o such that : g—‘%=ad, J(0) =1  (27-a)
@ g V0
B=B(t) =[ (b(u)/d(u})du such that : %%=g, B(0) =0 (27-b)

‘0
Next, let us integrate V =a(t)x +b(t), i.e., due to @,
13 n
- h 3o = atxeb(y)

It foliows :

@ p(x,t) = ;' n(a(t) x72-+ b(t)x + C(t))}”" ’

where ¢, another function of t, will be also determined later.

Let us now utilize the conservation of probability

@ p(x,t) = 29,0 .

s~ Employing and @, and letting ap =a(0), bg =b(0), ¢co =c(0),



gne tnen finds

C,Ib-

3 n(_.f_ (3-3)" +b, (J..n\ “))Q‘.;‘n

3 n(a\ -+b t)x +clt ))s’/q

that is :

G2 a(t)ﬁg- PE(E)X +c(t) = -Jlﬁ 92“.(3-8)2 +bg(3-8) +co) ,

from wirich we obtain :

T (bg~agB)

[

@ c(t) = 313 (23082 bgB +c0)

lhe have hera the elements which i1l aliow us to determine the
various functions, J, a, B, b and c. From (27-a) and @ , one finds

dJ/dt = aJ = ag/dM1l, J(0) =1, andthen :

1

@ J(t) = (l +(n+2)a0t)m

Let us recall that a(t) has already been defined in @ :

) a(t) = ;—L

On the other hand, from (27-b) and @ y one obtains :
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at _ b _ by-a.D ¢l 18 :
H-E' =37 '_:]'7455': » and then B—--f}——; = =, Wil B{i) =0
’ srdi Cov
which 2ives @
-~ 1] b‘ ( 1)
S0 = ¥ - -
(& G\t) ao 1 J

D
and, c¢f course, from 33 and @ ,

_ b
k\__g D(t) = J—ng_—z
2
( =1 (bo /1 _
40 c(t) = 3 (Qa_o = + ca>

Fina]'ny,é@} becomes, as a result of @ ’ @ ’ @ ’

g 2 \‘1/n
1 bs W
@1 o(xst) =) - n[—L— (apx +b )2+._(c -__0_), :
@ I \ead™ T T\ )
1

n+2
with 0 = 3(t) = (1 +(n+2)aot)

The solution @ was published some years ago by other authors
(Ref[161[171), who had obtained it by applying a method of groups of trans-
formations. Letting uy = (n+2)a,, equation then becoming

' - 1/n
@ p(x,t) = %- 7% (B%Z" +b0)2 = n(l+pt) 2 é" _§n+2u)bz>Q

" one will recognize - in formula @ of Ref[17], after the correc-

tion of two printing errors in [17]1, in agreement with [16]. The advantage
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of our mechod is that 10 does wof vequive any diTficuit wothmaticat proti-

minary, and that its physical intorpreiation is immediate, in terms of lhwe

P

3 AR -1 T R T -
conservaticn of reobzbitiny. One way alwo nobic: hel aur sovtion cont

s

one wore parancter (3 frea parameters instead i 2 5 indecd, b, is cqull o
zero in the sreceding publicetions).
As may be undarstocd Trom the beginning of II), we have no

Lt
ik

W

thooretical criteria which would allow us te know a priori whethe:r

przceding technigus is appliceble or not to such or such an eguaticn.
(There i3 only one evident necessary condition, i.e., the fact that the

equetion may be written in the form (9-b)). However, it is clear that the
utilization of tha method is not limited to the non-linear heat equation
an -~ . o~ . .

Q3 . For the Fokker-Plenck equation {3), for example, in the particular

case where D is linear with respect to x, and s is constant, i.e.,

\ .@. - 2— = 02 ._._azo =
Qgi 5 A= (bx) = T3 , A = constant,

one can find, hy using the precedure just described and beginning with the

same equation QE), the well-known Gaussian solution :

R '
@ D(x,t) = %— exps’- 02]:]2 QOXZ + Zbge-)‘bx + "b-;'\‘ (e At '1) : ’
-2 %0
With Ko = e 02 'y ao =a0 +A »

(apsbgsCo having the same meaning as before)

Jze-“"/l P20 @ty

which is the solution corresponding to the initfal condition :
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exp , - 71; (sux?»begx)’
o )

Y

selx) = Ky

11, THE MIHPIICAL VERSION OF THIS METHOD.

The Fokker-Planck eqguation (g} is a partial differentizl equaticn
of parazbalic tyse. The current method of numerical inteqgration consists in
considzring {i} as an ordinary differential equation with respect to t, the
value of x being Tixed (Ref{il] page 225). One uses vor that a grid of x
and t, the mesh of which is fixed, at least for x. When interpreting it
from a physical point of view, it can be said that this method of numerical
integration reflscts an Eulerian approach to the proglem (The chosen x are
fixed, and one studics the variation of the density at these fixed points).

A priori, the same problem may be consinered from a Lagrangian
point of view (2ll the x chosen at the beginning evolve in time, and one
calculates o along trajectories). It is the core of our method : the grid
is not fixed ; all the x and ix vary. This approach surely complicates the
numerical problem, but it allows the grid to adapt itself naturally to the
variation of the density p. Furthermore, it allows us to obtain, not only
the solution p(x,t), but also trajectories which contain a piece of infor-
mation which will be discussed -Jater.

Our aim is to determine numerically a solution p(x,t) correspon-
ding to a given initfal condition o(x,0) =0,(x). At this moment, we are
working on regular and integrable functions, and have chosen 1imits of
integration such that the solutions o have an almost-zero value on the
trajectories of the initial limits. This procedure allows us, at least

temporarily, to disrega.'d the general problem of boundary conditions.

IR AN
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In the following, the solurion p(x,t) that onc leoks for will be

paramelrized by t, and then denoted as pe(x). Our pmpose Is cvidently to

i 3 n ‘ st o= to4at, with ot buing sufficiently
. calculate ptj+l knowing by s for t3+1 tJ +at, with ot (! Fici Y

small. Let us thzn consider

»

, at a given moment t., n poincS x denoted as
j p

Xi ¢ (1 =1,2,...,n). During tha time interval! st, the A will vary from
ot

J
X5 ¢ to Xip. o and the function o, assumed to be knuwn at time Lj by its
] s ’ 1
JtL
values in the n points X; p will be determined at time tj+1 by its values
ot
J
in the n peints g The easiest way to express the idea is to make a
»

3+
graph :

A

\

J*i

SRR A

}

!

To apply this idea, it suffices to discretize relations (9-a), @ ’ @

as follows :

: (9% X - +V Jtes t
® : (%) oty ™ty ("i.tJ s ptj(xi.tj))A




S ) \
,: 11 Jt [x, ) > €xp [ [3;\ "’<'"tj;ctj("{>} iixi’t\l'dt

|t

This explicit scheme has been used to write a program (until now very ele-

mentary) which works satisfactorily if one correctly adapts the time inte-
gration step 4t o the variztion of the space integration step ax, in order
to maintain the convercence of the numerical procedure. Fig.2 presents the
results obtained for the Fokker-Pianck equation with non-linear coefficients
in the case D=-x3, c=1, p (x) = exp <}5;--x . He have taken care to put
the two types of infcrmation obtained, i.e., the curves pt(x) and the tra-
jectorfies x(t), which are complementary, face to face.

It is known (Ref[l] for example) that the Fokker-Planck equation
controls the time evolution of the density of the Brownian frajectories

defined by the stochastic differential equation

(D) dxg(t) = D(xg(t),t) dt + olxg(t).t) dH(t) ,

in which W is the standard Wiener process (variance = 1), and that the
Brownian trajectories xB(t) are almost everywhere non-differentiable. One

obviously then would not assimilate the trajectories x(t) of Fig.2 to the
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Brownian trajectories ::S(t‘,'. Howover, due to the wav in which B ave
gener:zted by tha Fokker-Planzh equation, the trajectoriss (i) Alvinitely
centain a certain picce of inforret%on relatad to the Droumisn ~hoenzionen,
In order to stress this double aspect of things (existence of a link with
the Srownian motien, ond net distinction with tine Brounian trajectories),
we sav thai nhe trajectories r{t) define Brownian "quasi-particies” (Ref

1211031911201 . From the peint of view of Mathematical Analysis. do not

—

forget that trajectories of quasi-narticles ar2 constituted by a sequenc2
of arcs of cnaracteristics, characteristics of a first-order partial diffe-
rential equation the ccefficients of which vary from one integration step

to tha otner (cf.I-2)).

Since furdamental questions of statistical physics remain
prasent-day preblems (Ref([191,{c0}), we will conclude with a remark of an
interpretative nature. It is obvious —and we have already said this in
order to justify the utilization of the expression "quasi-particle’ —that
x(t) does not contain the same information as xB(t). More precisely, there
is a Toss of informaticn with respect to the Brownian process xB(t). To be
convinced, one needs only refer to the averaging procedure which allows us
to derive the velocity V of (9-a) from the stochastic equation (Ref
[21] page 105, [2]([8][9]). But, to say that, is not enough. It seems to us,
in fact, that the following distinction must be made : if it is really
proven experimentally that a phenomenon §s of the Brownian typedtﬁgfzzﬁﬁ'is
irrefutable that the utilizatfon of the trajectories x(t) —even if it is
technically profitable - involves a 1oss of fnformation with respect to
reality ; however, if experiments prove only that the phenomenon is governed
by a Fokker-Pianck equation, equation constituting at a given moment a

complete description of reality, there is no reason to speak of a loss of
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