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A Lie-ti(i:;)i«;siblf: nielhod of i n i t r a t i o n 

of Fokker-PUr.ck equations . ; i t h non-lint*!»* coefficient:; 

(exact and numerical solutions) 

I._ cc:;ŒPTuA!

:_rpA;;E:-:GRK OF THE ARTICLE. 

1) Generalities related to our treatment of Fokker-Plar.ck 

equations. 

Let us consider, at any point x^ of (Rm and at any time t , a 

density of probabi l i ty p(x^,t) which sat isf ies the Fokker-Planck equation 

( R e f i l l , page 144) 

/-s. a„ m « m m 

® H + I V ' D h > - \ l l 3 h 3 k (Pa n k ) • 
h=i h=i k=i 

The deterministic aspect of evolution is represented by the vector D with 

the components D , (x „ , t ) , and the diffusion by the symmetrical and positive 

matrix [ a 2 ] with the general term a L C ^ . t ) . 

The f i r s t step of the method that we w i l l use consists in asso

ciating the following system of coupled equations with Q 

© 

dXh 1 m 

ïïT = V h s D h - ^ J »|>4> (2-a) 

. m 

f t * I V p v h > s 0 ( 2- b> 
h«i 



The choice of the auxiliary system © is a priori r.-.?.$««: -.ble, sine it is 

easy to verify that system {?) implies equation © . 

The two equations which mako up © cannot evidently f--» dissocia-

tt.d since they are lini:ed by the- unknown function p-. Hov.^vor, v;h2n p is 

known (analytically by intern.-, tion of (T) 'or ex^vple, or numericÎ"11 y due 

to a preceding step of integration), the relation (2-a) becomes an indepen

dent differential system. Let us consider its solution 

© x h(t) = X h(t,x £(0);o) {£ = 1,2 n} 

and the associated Jacobian 

© j-j(t.x£(0);p).det[^] 

where x,(0) is the i n i t i a l value of x . ( t ) . 

The second step of our method (Ref[2]) consists in u t i l i z i ng the fact that 

the Fokker-Planck equation conserves probabil i ty during time evolution, and 

in wri t ing this lav/ of conservation alor.g the trajectories © , i . e . , 

denoting as d;i(x-) the element of volume at point x» of lRm, 

© p ( x £ ( t ) , t ) dp(x £ ( t ) ) = P ( X £ ( 0 ) , 0 ) dp(x £(0)) 

or s t i l l , by introducing the Jacobian © of the change of variables 

x h ( t ) / - >x £ ( 0 ) defined by © , 

(6 ) p ( x . ( t ) f t ) • - - <- • 
w *• J ( t , x £ ( 0 ) ; p ) 

The third and last step consists in utilizing Liouville's theorem, 



i n i t s o r i g i n a l form (Ref |3 j [4 ! | 51 ) , to ca lcu la te the JaoobUn J : 

. m 

h=i 

These ideas related to the Fo'J-.or-Planer, equation ?.::rd :-.vœ:.u\f\.'.,i,i 

by ( z ) , Q ) and Ç7) were alroady presented and us^d several tines (Ref[2! 

[61...[11]). We will see hereafter that they suggest a new method of numeri

cal integration of this equation. 

Let us note that, since we are presenting here a msthod, the 

numerical application of which has only begun, starting from Î-3, we will 

consider solely the particular case of or.e space variable, x €!R. The Fokker-

Planck equation will then be studied in the particular case 

© It ̂ ' ^ + f7(o(x.t)D(x,t)) - \ f^r(p(x,t)c2(x,t)) , 

with © , © and © being written in the following manner : 

© 

© p(x(t),t) 

£ = V = 0-^^) (9.a) 

!f +|-(pV).0 0-b) 

p(x(0),0) 

J(t,x(0);p) 

@ d T L o g J •UC^(t)îp) 



2) Our work in the fra^^work oF Lic-.'Kb'iss ..;lo .-ilrr-Viie 

(Ref | l 2 t , ! l 3 | jM | . I151 n-'.'e m, RQ!?. 

Frew A purely prag~;at.ic point of view» trie generalities of 1-1) 

are sufficient for the understanding of the present a r t ic le . ït is then 

possible Tor the reader, if he wants, to go directly to I I ) . However we will 

take the titfe hers to say some words about the relations existing between 

our work and that of the theoreticians of Lie-admissible algebrae. 

In order to be able to speak in terms of dynamics, let us look 

at the case when ftm is a phase spacefR'n and, to simplify the notations, 

limit ourselves to the case where ATn = ( R 2 , Xj = x , %2 - P» w i t h 

/DA / 3H/3P \ 
© D =( j= f J ; H « H(x,p,t) ; F = F(x,p,t) ; 

\ D 2 / V-3H/3X + F/ 

H is the Hamil torn'an which describes all the forces derivable from a poten

t ia l , and F represents all the other deterministic forces (local non-self-

adjoint forces according to R.M. San t i I l l ' s terminology, Ref[15]). Equation 

^j may be then written as 

@ H ' M } --ip<pF) + i I I v k Kk> 
h=i k»i 

with |p,H} - | £ i ! l - l£l! i . 
l M ' ' 3x lip Sp ox 

The non-Hamiltonian effects are concentrated in the right-hand side of the 

equation. They are represented —remember- by the non-conservative force F 

and by the diffusion matrix [ a 2 ] . 



Let us now intrm!»i:.£ the fol lowing qi*anUty : 

(Th u -. _ ! L _ + „ '£1:9. 1 l V V •> -, /..-:• i 
^ ' » P ' - V , p •'•«/3p 2 .. .p / i ? p . . r i / i î p h : ; k : i i, K- I,!:' 

which is l;noi.'!i v.hon tho s ta t i s t i ca l system is Muiv.ri, i . e . , •.;!'.<_:; ::, F, ,:,[ ] 

are determined. All the functions involved are assumed to be infi.-. itely 

d i f f e r e n t i a t e . 

Let us nov; consider the following product between any two functions A and B 

(also i n f i n i t e l y d i f fé rent ie l le } 

© 

which is expl ic i te ly known at the same time as n. I t is then easy to verify 

that (0) reduces to the following : 

H + (P.H) =0 

and one notices that, in the particular case u = 0 , relation Qb) recovers 

the traditional form 

© ||*{P.H)-0 . 

It is known that Poisson's brackets, considered as a product, 

lend a Lie-algebraic structure to the vector space of infinitely differen-

tiable functions defined in phase space. Let us recall that, in the same 

way, the product (.,.) equips this vector space with an algebraic structure 

which is called "Lie-admissible". It is indeed easy to verify that 



lT) (A,P.) -(B.A) ^ 2{A,B} -• [A,B] 

v.*'i»ra [ - , . ] is a Lie product, which iu the def in i t ion of Liiî-^c'^i: r lbi ] i ty 

l<':- ( . , . ) ; (Rof!15I paija 6a). - I t i:uy be useful to stress the fact, that the 

! 'c-aJr.nsoiJIL! algcbr.i ut hand only reduces i t se l f to a Lie algckra when 

>• - 0 , i . e . , i f the two aspects, dissipative (F) and di f fusive [ t r ] , - o f evo

lut ion are zero or cancel each other. 

3) Comparison with the method of characteristics. 

Our method of integration of the Fokker-Planck equation consists 

in replacing the resolution of the second-order part ia l d i f fe rent ia l equation 

CD ^y that of the system of f i rs t -order equations (T). For equation (s) for 

i>\.\;nple, one makes use of equation (9-b) , i . e . , 

^ - at v 3x p ax 

^h ich becomes a f i rs t -order equation as soon as V has been determined, with 

s u*"* ic ient precision, by an auxi l iary calculation or by the preceding step 

^ f" -integration. I f now, for the following step, the method of characteris

e s is used, we obtain : 

^N .. dx do 

" P 3 X 

• ' . e . f 



9x 

Th;r> one finJs 2-/a in the satre results as in I - l ) : (£n is r!^ <_;:;;-2 " { ' ; -a); 

(2p is (H) . '.a king (K)) into account. The difference is only a question of 

vocùl[;h.rj. Quo can, as in 1-3), speak in terms of trie chor.icteristies of a 

'first-or'.'-.ir pn-^ial d i f fe rent ia l equation which i s , at each stop, an approxi

mation of t ;;e second-order equation studied, or , as in I - l ) , insist on the 

conservation of probabi l i ty , and express time evolution, step by step, with 

the help of the Jacobian J. 

II. SO"! EXACT SOLUTIONS. 

The method developed in I - l ) gives us, not only a nev; numerical 

approach to the Fokker-Planck equation ( c f . I l l ) , but also a means of calcu

lat ing exact solutions in certain cases. Let us note that the application 

of the method is not l imited to equations which are l inear v i th respect to 

p, as is the Fckker-Planck equation, s t r i c t l y speaking. 

Let us consider the example of equation 

is. - i_L n 3P i at " axyp 3xj n € N 

which is said to be the "non-linear heat equation". When n =0, @ eviden

tly becomes the traditional heat equation. We will assume n/0. 

Let us look, a priori arbitrarily, for a solution p such that 

the associated differential equation of type (9-a) is a linear equation of 

the form 

|| - V - a(t)x+b(t) , 



in which the functions a and b will be di?'̂.-n:iirii:'.l l.'.lor. It is clivir !.ii":t, 

if such a solution exists, it will be only a particular solution. 

On the oc".or hand, the velocity V associated with 0) is evidently 

V = 1 1 , „ n 

n î'X 

Let ur, f i r s t l y integrate equation fcty ; the solution may be writ ten as 

© x = x( t ) = ( B ( t ) + x 0 ) J ( t ) , x 0 = x(0) , 

with 

J =J( t ) =exp( a (u)du l= |£ - such that : ^ = a J , J(0) =1 (27-a) 

B - B ( t ) (b(u)/J(u))du such that : a f ' j j , B(0) -0 (27-b) 

Next, l e t us integrate V = a ( t ) x + b ( t ) , i . e . , due to (25), 

j | j p n - a ( t ) x + b ( t ) 

I t follows 

P(x.t) - J-n(a(t) 4 + b(t)x + c(t))J 
i /n 

where c, another function of t , w i l l be also determined later . 

Let us now u t i l i z e the conservation of probabil i ty 

© p(x,t) • *kj*2i . 

Employing @ and @ , and letting a<j *a (0 ) , b 0 » b ( 0 ) , c 0 » c ( 0 ) , 



one then finds : 

- n(a(t)-Ç+b(t)x +c(t))|!' n =jj- n(^(5-3) : i + bfi(*-!) • c,)('''" '\ Jl 

that is 

@ a(t)4»b(t)x+c(t) = 4 ( - T ( r B ) 2 + b o ( 3 ' B ) + c ° ) 

from which we obtain 

© a.* 
a ^ = ,n + 

b(t) = - 7 — (b0-a0B) 

c(t) 4(y-b 0BK 0) 

Ke have here the elements which will allow us to determine the 

various functions, J, a, B, b and c. From (27-a) and @ , one finds 

dJ/dt = aJ = a 0/J n + 1, J(0) =1, ardthen : 

J(t) * (l+(n+2)a0t) n+2 

Let us recall that a(t) has already been defined in 0> : 

•w-p 
On the other hand, from (27-b) and (34), one obtains 



dS b bj-a ,B . ,. d!i rf.l ... .,.,, ., 
dt = J = ->T- • ™'J "™ b 0-^

 = a^J ' w , t" ̂  = 0 ' 

which oïvcs 

# C ( t ) = ^ ( l - 1 ) 
0 

and, cf course, from Q_4. and îjj; , 

Ï 9 

«») - > • 

@' ™-*(4G-H • 
Final ly , @; becomes, as a result of @ , @ , © , 

© ^«•t) ' ! " n l T ^ T 7 (aox +b0)2 + ± L -Af' " 

1 

with J = J(t) = (l +(n+2)a0t) 

The solution (j|p was published some years ago by other authors 

(Ref[16][17]), who had obtained it by applying a method of groups of trans

formations. Letting y 0 * (n+2)a0, equation @ then becoming 

© •<*•«> • j - « y (*• •".J" • -t^t)"5 5'^ .is^j11/n 

one will recognize @ - @ in formula @ of Ref[17], after the correc

tion of two printing errors in [17], in agreement with [16], The advantage 



of our iiiiïchoït is c;v.»t i t da.1 s not requir;: 3'W d i f f \oj î': w tî:;:r:a r i ^ ! p-vH-

uiinary, and that i t s physical interpretation is iiVm.edijte, in tonv.. of Ihe 

conservation of pra^;hn i t y . One nay ÙUD :.G!:ÎL.: Lliot rwr soV.tivVi cor;'.'ic:S 

one i.iore pare:..^er (3 free pa IV.BG ter s instead cf t ; indeed. b 0 is r.c(u:.l to 

zero in the pre^odin-j ;;:ihlicat"ions). 

As nay be understood froiTi the beginning of I I ) , we have no 

theoretical c r i te r ia which would allow us to know a pr io r i whether tKe 

preceding technique is applicable or not to such or such an equation. 

(There is only one evident necessary condition, i . e . , the fact that the 

equation may be writ ten in the form (9-b)). However, i t is clear that the 

u t i l i za t i on of the method is not l imited to the non-linear heat equation 

(£3-: . For the Fokker-Planck equation (Oj, for example, i> the part icular 

case where D is l inear with respect to x, and i is constant, i . e . , 

@ ! l - X f ï ï ( p x > = T 0 • * " constant. 

one can f ind , by using the procedure just described and beginning with the 

same equation ^4) , the well-known Gaussian solution : 

© >(x,t) . J£ exp j - - A . L x * + 2b 0 e- x t x + 4 ( e " 2 X t - 1 ) ) ( • 

Ça 
with K0 = e °2 , a0 =a 0 +\ 

(ao.b 0,c 0 having the same meaning as before) 

J . t " x t ^ l + ^ l ( e a t - l ) , 

which is the solution corresponding to the initial condition : 

http://iv.bg


Pf.(x) - K 0 exp - -V <•*</<• + 2l>0x)( 

JJL T H E J 1 ^ : ! 1 ^ ^ ^ ^ . GF THIS ''ETIiOD. 

The Fokker-Planck equation (S) is a partial differential equation 
of parabolic type. The current method of numerical integration consists in 
considering Q) as an ordinary differential equation with respect to t, the 
value of x beir.o fixed (Ref[lC] page 225). One uses for rhat a grid of x 
and t, the mesh of which is fixed, at least for x. When interpreting it 
from a physical point of view, it can be said that this method of numerical 
integration reflects an Eulerian approach to the problem (The chosen x are 
fixed, and one studies the variation of the density at these fixed points). 

A priori, the same problem may be considered from a Lagrangian 
point of view (all the x chosen at the beginning evolve in time, and one 
calculates o along trajectories). It is the core of our method : the grid 
is not fixed ; all the x and LX vary. This approach surely complicates the 
numerical problem, but it allows the grid to adapt itself naturally to the 
variation of the density p. Furthermore, it allows us to obtain, not only 
the solution p(x,t), but also trajectories which contain a piece of infor
mation which will be discussed ̂ ater. 

Our aim is to determine numerically a solution p(x,t) correspon
ding to a given initial condition p(x,0) s o 0 ( x ) . At this moment, we are 
working on regular and integrable functions, and have chosen limits of 
integration such that the solutions p have an almost-zero value on the 
trajectories of the Initial limits. This procedure allows us, at least 
temporarily, to disregard the general problem of boundary conditions. 



In the fol lowing, tho solution p(x, t ) Utot one looks Tor w i l l be 

parametrized by t , and then denoted as P J X ) . Our pu»pose is evidently to 

calculate ;>+ knowing p. , for t - = t.+,«,t, with ;.t b-^ii-j - u r f V. , . . ( -?„ 
J+i 

small. Let us thc-n consider, at a given moment t . , n peines x denoted as 

x. ( i * ! , . ? , . . . ,n}. During the time interval Li, the x. w i l l vary from 

x- . to x. , and the function p, assumed to be known at time t . by i t s 
i . t j i , t j n j 

values in the n points x. . , wi l l be determined at time t . by i ts values 

in the n points x. . The easiest way to express the idea is to make a 
graph : 

'•V. '•'M 'n,t j+ i 

To apply this idea, i t suffices to discretize relations (9-a), (10) , Ql 

as follows : 

© < < * > x i . t J t l - N . ^ v ( x i > v V c t j ( x J i t ^ At 



®-@ v t a J 
"t .Ai . t . ) 

'VJ+I^'V 

f I 

exp [^(•V^)]^)11 

This explicit scheme has been used to write a program (until now very ele

mentary) which works satisfactorily if one correctly adapts the time inté

gration step ùt co the variation of the space integration step AX, in order 

to maintain the convergence of the numerical procedure. Fig.2 presents the 

results obtained for the Fokker-Pianck equation with non-linear coefficients 

in the case D=-x 3, c = l, p &(x) = exp |--^--xj. We have taken care to put 

the two types of information obtained, i.e., the curves P t(x) and the tra

jectories x(t), which are complementary, face to face. 

It is knov-.n (Ref[l] for example) that the Fokker-Pianck equation 

© controls the time evolution of the density of the Brownian trajectories 

defined by the stochastic differential equation 

® dxB(t) * 0(xB(t),t) dt + o(xB(t),t) dW(t) 

in which W is the standard Wiener process (variance = 1), and that the 

Brownian trajectories x«(t) are almost everywhere non-d1fferentiable. One 

obviously then would not assimilate the trajectories x(t) of Fig.2 to the 





Brcwnion trajector ies / '^.(t '. liovcver, due to f.'::e v.-.v/ in wh:ch t ' . v are 

generated by the Fokker-Platic1: equation, the trajector ios x( t ) '^ ;" : ni ^oly 

contain a certain piiîce of itifo»r.:-tion related to t!:^ "rowing -::er;0: ;»v.n. 

In ord'jr to stress Hi is double aspect of things (existence of a l ink with 

iha Drov.!iM"«:i T.ition, and net dist inct ion with the Brov.r.ion t ra jector ies) , 

'we sty t h ' t the trajector ies z( t ) define Grownian "quasi-partieles", (P»ef 

l2 ! i r - j l9 ]L20j ) . Fror.i the point of view of Mathematical Analysis, do not 

forget that trajectories of quasi-particles ar3 constituted by a sequence 

of arcs of characteristics, characteristics of a first-order partial diffe

rential equation the coefficients of which vary from one integration step 

to the other (cf .1-3) ) . 

Since fundamental questions of statistical physics remain 

present-day problems (Ref[19],[20J), we will conclude with a remark of an 

interpretative nature. I t is obvious —and we have already said this in 

order to justify the utilization of the expression "quasi-particle" —that 

x(t) does not contain the same information as x R ( t ) . More precisely, there 

is a loss of information with respect to the Brownian process x.,(t). To be 

convinced, one needs only refer to the averaging procedure which allows us 

to derive the velocity V of (9-a) from the stochastic equation @ (Ref 

[21] page 105, [2] [8] [9] ) . But, to say that, is not enough. I t seems to us, 

in fact, that the following distinction must be made : i f i t is really 

proven experimentally that a phenomenon is of the Brownian typo J ^ L ^ i t is 

irrefutable that the utilization of the trajectories x(t) -even i f i t is 

technically prof i table- involves a loss of information with respect to 

reality ; however, i f experiments prove only that the phenomenon is governed 

by a Fokker-Planck equation, equation (§) constituting at a given moment a 

complete description of real i ty, there is no reason to speak of a loss of 
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