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1. INTRODUCTION

The concept of symmetry In the Interacting Boson Model1 (IBM)
description of even-even nuclei has proved to be one of the model's
most important elements, not only because of the recognition of the
existence of the symmetries themselves, but also because they provide
benchmarks in the formulation of a unified description of a broad
range of nuclei. The importance of the recently proposed syametries
in odd-even systems can thus be viewed in the same light, and their
role in pointing to a slnple preecription for the changing collective
structure in odd A nuclei throughout a aajor shell is likely to prove
even more essential, given the much greater complexity of the boson-
fermion (IBFM) Haailtonian3.

The group structure of a boson-feraion system is described by
UB(6) x nF(m) where m specifies the number of states available
to the odd fermion, and thus depends on the single particle space
assumed. The ability to construct group chains corresponding to the
symmetries SU(5), SU(3) or 0(6) depends on the value of m, and this
problem has already been discussed in detail in a separate contribu-
tion . Of the structures studied in detail to date, the case of a-12
is the one with the broadest potential . The fermion is allowed to
occupy orbits with j - 1/2, 3/2 and 5/2, so that the assumed single
particle space corresponds to the negative parity states available to
an odd neutron at the end of the N - 82-126 shell, namely, Pi/2»
P3/2 aQd fs/2* The region of interest thus spans the W-Pt
nuclei, and since one prerequisite for an odd-A symmetry is the
existence of that same symmetry in the neighboring even-even core
nucleus, the odd Pt nuclei around A » 196 offer the obvious testing
ground for the 0(6) limit of U(6/12). The heavier even-even W
nuclei, on the other hand, have the characteristics of an axial
rotor, and hence the negative parity structure of the neighboring odd
W isotopes offer8 the possibility to study the validity of the SU(3)
limit. Finally, given a definition and understanding of these two
limits, the construction of a simple description of the transitional
odd-A Os nuclei can be considered.

In considering a unified description oi: the odd-A collective
structure in this region, the principal advantage of the IBFM is its
inclusion of a core description which can run the full gamut of
vibratlonal, rotational or asymmetric structure, and which incor-
porates essentially all collective excitations. Thus, in :he region
of well deformed nuclei, such as W, one can expect the model to



generate an equally detailed description of both the low lying rota-
tional structure which emerges from a Nilsson model treatment, asd
the subsequent vibrational modes Which to date have, in general, been
treated only qualitatively. In regions outside those of axially
symmetric deformation, such as the heavier Os and Pt nuclei, the
IBFM's capabilities should prove even more crucial, since here
deficiencies in the core description can manifest themselves even at
low excitation energies.

2. 195Pt: THE 0(6) LIMIT OF 0(6/12)

As pointed out in Section 1, the well established 0(6) syametry
in Pt and its neighbors , coupled with the isolated Pi/2»
P3/2 and £5/2 orbits available to an odd neutron in this region,
implies fhat the odd Pt nuclei should offer the best opportunity to
test the predictions of the 0(6) group chain of U(6/12). The
results of recent (n,f) studies of Pt have led to a comprehen-
sive level scheme which is compared with the U(6/12) 0(6) symmetry in
fig. 1. The origins of the theoretical scheme, and its associated
quantum numbers, have been discussed in detail elsewhere . It is
therefore sufficient to remark here that it offers an adequate
description of the observed structure, at least below 600 keV. It is
particularly encouraging that a one-to-one correspondence can be made
between experimental and theoretical levels up to this energy.
Moreover, subsequent (n,n',Y) studies have removed a number of the
ambiguities in the empirical spin assignments of fig. 1, and in all
cases, the results confirm the association of states shown. Data
from single particle transfer studies are also largely in agreement
with the symmetry predictions, although some important discrepancies
have been found for the reaction Pt+196Pt. However, it is
possible, and indeed likely, that these stem from uncertainties in
the form of the IBFM transfer operator itself. Recent data has also
been obtained on B(E2) values in Pt and again, these confirm the
selection rules mandated by the symmetry scheme. There is evidence
of syametry breaking, at the level of 20-30Z, but there is also some
indication that this may be largely accounted for by a suitable
choice of the relative signs and magnitudes of the boson and fermion
effective charges in the E2 operator.

A distinctive feature of the symmetry scheme is the existence
of couplets of levels with J, J+l separated by a constant J(J+1)
spacing. This feature shows up clearly in the data and results from
the pseudo-spin symmetry inherent in all the group chains of 0(6/12).
There is, however, a clear discrepancy between theory and experiment
at higher excitation energies in that the predicted states in the
representation labelled [N,l] are too compressed, relative to the
data. A modification to Che original scheme which removes this
problem, while maintaining the symmetry, is discussed in ref. 13.
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3. THE SU(3) LIMIT OF 0(6/12) AND THE NILSSON MODEL

The SU(3) limit of U(6/12) requires a rotational core struc-
ture, coupled to j - 1/2, 3/2 and 5/2 oibits. The odd W nuclei
represent the best chance of observing characteristics of this
symmetry since, in nuclei of lower mass is the well deformed rare
earth region, the Fermi surface is progressively farther from the
single particle orbits of interest. The structure of the SD(3) level
scheme is illustrated in fig. 2 and is defined by the group chain
decomposition.

^(6) x SUF(2)c 1^(12) D

t

Z> 0^(6) x Sl/^JOS^O) x SO^) (1)

Z> 0BF(3) x SUF(2)Z> Spin (3)

The corrssponding Hamiltonian which describes excitation energies is
constructed from the Casimir operators of the groups U B F(6),
S0BF(3), O B F(3), and Spin(3). The states thus group into the
various (X,y) representations of SUBF(3), and within each repre-
sentation, the equivalent of one or more odd-A rotational bands can
be assigned, and are labelled by their appropriate K values. The
SUB^(3) representations themselves fall into one of two possible
representations of the group UBF(6) which are distinguished by the
quantum numbers [N+1,0] and [N,l]. In fact, it will be seen present-
ly that it is the K-l/2 and 3/2 bands of the (2N,1) representation of
fig. 2 which form the ground state structure in W and this situa-
tion can be realized in the symmetry scheme by a suitable adjustment
of the relative sizes of the contributions from the Casimir operators
of UBF(6) and SUBF(3) in the Hamlltonian.

The SU(3) limit has the attractive advantage that its predic-
tions can be compared with those of the Nilsson model for the same
shell model states, so that a more physical interpretation of its
structure can be formulated. A comparison of the essential ingredi-
ents and approach in each framework is given schematically in fig.
3. The relative energies of the spherical single particle states
shown for the U(6/12) system stem from the pseudo L decomposition ,
represented by the boxed portion of the chain decomposition in eq.
(1), which treats the fermions as a one-boson system coupled to
pseudo spin ±1/2. In the Nilsson scheme, the spherical ordering is
different and would remain so if the input energies in the IBFM
scheme are taken as quasiparticle energies, since the Fermi surface
in the spherical scheme would be expected to be near the P3/2
orbit. The core basis in the Nilsson scheme involves only the ground
state rotational band, and this is also true for the lowest two
representations of the U(6/12) scheme . (The spin cutoff should not



affect the low spin states considered here.) In the Nilsson treat-
ment, the spherical states are first mixed via a quadrupole interac-
tion to generate Che Nilsson orbits shown on the right. Note that
the solid lines denote orbits stemming from the Pi/2> P3/2 or

^5/2 shell model states while the dashed Nilsson states originate
in the f7/2 * id 119/2 orbits and are therefore outside the U(6/12)
basis of interest here. The core states are then effectively coupled
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via the introduction of the rotational notion, and the residual
Coriolis and pairing interactions are also included, the latter being
considered in the deformed single particle potential. The 0(6/12)
approach starts from a basis comprising the rotational core states
coupled to the spherical single particle states, and then applies an
interaction which involves a quadrupole-quadrupole and an exchange
term. In this case, therefore, the location of the Fermi surface can
only be considered in the spherical limit and it is the exchange term
vhich must account for the effects of the deformed potential on the
pairing correlations.

The connection between the two bases can be explored via the
single particle structure of the wave functions in each case, as
shown below.

Nilsson

Intrinsic wave function:

^ to 5^ I

Normalization:

I C* - (2j+l)/2

Coriolis mixing:

eff . y ci

H(6/12)-SU(3)

Core particle wave function:

ll,K,a> - I a.^ljR;!^
1 jR JRI

Normalization:

y a 2 - 1
I.K J R

Cjf - {(2j+l)/2}1/2aj0

In the Nilsson scheme, the single particle structure for each
orbit is contained in the intrinsic wave function, Xfi, in terms of
the spherical amplitudes Cjj. The Coriolis interaction produces a
mixing of the pure orbits, represented above by the amplitudes a±,
so that the final structure can be represented by the quantity
ceffjg on the left. In terms of a core particle basis, as used
in trie IBFM scheme, the appropriate coupling coefficients are simply
the Clebech-Gordon coefficients <j£2R0|lfl>. Since these take the
value unity for the case R»0, j-I, the CJJJ coefficients are equiva-
lent to the amplitudes a-jo on the right, which represents the coup-
ling of the spherical state with spin j to the 0 + ground state of the
core. The different normalizations then imply the form on the right
for the quantity C®ffjJJ in the U(6/12) basis. Note that Coriolis
effects should be included automatically in this case.
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The amplitudes a-jg can be extracted numerically by taking an
overlap of the U(6/12J wave functions with those of the appropriate
SH(3) core. The resulting values of (fi^ji for the lowest three
SU(3) representations are compared with those for the lowest lying
Nilsson bands in fig. 4. At the top of the figure it can be seen
Chat the R»l/2 and 3/2 bands contained in the (X,u) - <2N,1) repre-
sentation have a particularly distinctive structure, which stems from
the fact that the amplitudes ajQ are identically zero for states
with odd values of the pseudo-orbital angular momentum. The corres-
ponding pattern is clearly not observed in the unperturbed Nilsson
bands. However, the lower portion of the figure shows the results of
earlier Coriolis mixing calculations in the W isotopes , and an
interesting feature emerges. The ctxing between the 1/2[510] and
3/2[512] bands results, iii W, in a transfer of strength between
the 3/2 and 5/2 states which almost exactly cancels one component in
each case, producing the structure required for the StT(3) symmetry.
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A similar analysis can be made between the bands in the (X,u)
» (2N-2.2) representation, and the regaining Nilsson orbitals of
Fig. 3, and the overall results lead to the establishment of an
unambiguous correspondence between bands in the two frameworks, which
Is summarized in fig. 5. However, for the (2N-2V2) representation,
the link between the two frameworks is no longer exact, since the
IBFM wave functions in this case contain components of the f$ and T
bands from the core, as well as the ground state band. This results
in a predicted fragmentation of the single-particle strength from the
corresponding three Nilsson bands. In fact, this fragmentation has
been established empirically for some time.

4. APPLICATION TO l 8 5W

It is clear from the preceding discussion that W represents
the most promising candidate for comparison with the 0(6/12) predic-
tions. The Fermi surface is known to lie is the vicinity of the
l/2[510] and 3/2[512J orbits in the V region, and hence the D(6/12)
bands in the (2N,1) representations must lie lowest in energy.
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Recalling the discussion of Section 2 and fig. 2, the Casimir opera-
tor of UBF(6) can bring this representation below the (2N+2,0)
states.

The empirical and predicted schemes are compared in fig. 6.
There are several important points to note.. On the positive side,
the same Coriolis mixing which gives rise to the distinctive "finger-
print pattern" of fig. 4 also results in a near degeneracy of states
in the lowest lying K-l/2 and 3/2 bands, which appears naturally in
the algebraic description. In addition, the distinctive pattern of
states in the 1/2[521] band, which in Nilsson terms corresponds to a
decoupling parameter close to unity, also emerges naturally from the



symmetry predictions. Both of these features imply that the intrin-
sic matrix elements <j~> in the Nilsson framework are well reproduced
in the alternative scheme. However, it is also evident in fig. 6
that certain observed bands (denoted by dashed .lines) cannot be
reproduced from the U(6/12) basis because they stem from the £7/2
and hg/2 shell model states. Moreover, only previously assigned
states are shown in the figure. There are addition^ states observed
which have not proved amenable to a Nilsson model description. In
order to determine whether some or all of these can be incorporated
in the U(6/12) scheme, it is necessary to first obt&in information on
their number and character, and the results of a recent experiment
devoted to this end are currently being studied .

A comparison of predicted and empirical (i.<0 cress sections is
also shojm at the top of fig. 6. In the IBFM description of W,
since the neutron number is past midshell, the number of bosons is
equal to that in W. Thus the lowest order operator describing the
(d,t) reaction can be taken simply as Cj* t where the Sj are
constants and the matrix elements of a*j are equivalent to the
quantities Cj£eff determined earlier. While the results look
promising, it must be ea;.aasized that such a simple approach to the
single particle transfer problem cannot hope to succeed in the gener-
al case in deformed nuclei. Specifically, higher order terms (e.g.,
(s'3")atj) must be included to account for the effect of the
non-spherical potential on the pairing correlations. The elucidation
of which of the many possible such terms are significant, and their
relationship to the underlying microscopy, remains one of the out-
standing problems to be solved in the IBFM formalism.

5. THE SU(3)+0(6) TRANSITION AND THE CQF IN ODD A NUCLEI

Despite its limited applicability, it is clear that the U(6/12)
SU(3) scheme Yields a basically valid description of the low-lying
8tructure_pf W. Thus there are now two benchmarks in the U<6/12)
basis, 19:>Pt and 1B5W, which define the SU(3) and 0(6) limits,
respectively, and it is possible to consider a description of the
transitional odd A nuclei in between. For the even-even nuclei in
this region, a simple approach involves the Consistent Q Formalism
(CQF)19, in which the Hamiltonian is defined by

H - -<%•% -K'L'L (2)

where the boson quadrupole operator, Qg, is

QB - (s
+d+d+s)<2) + (X//5) (d"^

( 2 ). (3)

The E2 operator is then constrained to take the same fora as QJJ.
For a given boson number N, the parameter x alone determines the
structure of the wave functions and can be varied in the range
defined by the values which generate the StT(3) and 0(6) limits,



namely, -/3J/2 to 0. The advantages of this approach lie chiefly in
its simplicity. It involves at least one less parameter than the
conventional approach, since the symmetry breaking mechanism is now
represented by x, rather than an extra term in H, but the freedom to
vary the structure of the E2 operator is removed. In addition, since
the wave functions and E2 operator are uniquely specified by x (and
N), relative B(E2) values and energies depend only on these two
parameters. There is also a degree of simplicity gained at trhe
intuitive, or interpretive, level since the changes in structure
which result from a change in the equilibrium nuclear shapa are now
ascribed simply to changes in the form of the quadrupole operator and
can, in fact, be simply related to the geometrical f3 and y deforma-
tion variables.

In />rder to formulate an equivalent approach for the boson-
fermion Hamiltonian it is clearly necessary to develop a compatible
parameterization for the fermion degrees of freedom, Referring again
to the boxed portion of chain (1) the pseudo-orbital angular momentum
decomposition of the fermion space constitutes the crucial
feature. This technique corresponds to treating the fenalon angular
momenta as arising from the coupling of a pseudo L quantum number
with L-0 or 2 to a pseudo epin of 1/2.

L X S
5/2

2 — c "
" 3/2

1/2

The analogy with the s,d boson space is immediately obvious, and
allows a fermion quadrupole operator Qp to be defined in an equiva-
lent way to QB (eq. 2).

QF - G<
2)(0,2) + G<2)(2,0) + (X//5) G<

2)(2,2) (4)

The fermion generators Gp(2)(£,ji') are given in detail else-
where > . They simply consist of appropriate combinations of the
fermion annihilation and creation operators, such that Gp(2)(o)2)
or GF<

2>(2,0) involve couplings of the type (j.j1) • (1/2,3/2),
(1/2,5/2), while GP(2)(2,2) involves (j,j') - (3/2,3/2),
(5/2,5/2) and (3/2,5/2). The CQF for odd-A nuclei can now be defined
by demanding that x take identical values in Qg and Qp.

In the IBFM Hamiltonian which corresponds to the SU(3) group
chain (1) the quadratic Casimir operator of the group SIPF(3)
generates a quadrupole Interaction of the form



u

Q*Q - <QB*V * ( Q B ^ V <6>

where Qg and Qp are defined by eqs. 3 and 4 with x " -/35/2. It
is Chen easy to show that when X"0, the Q'Q interaction reduces to
the form

°20BF(6) " C20BF(5) ( 7 )

which are the Casimir operators required in place of that of
SUBF(3) to produce the 0(6) limit of U(6/12). However, as in the
even-even case, the 0(6) limit produced in this way is not the most
general one, in that the 0(6) and 0(5) contributions are constrained
to be equal. The first success of this approach, therefore, can be
found by considering the magnitudes of these terns found in an
earlier fit to the nucleus Ft which, by virtue of its core
nucleus Pt, is the obvious odd-A candidate to exhibit this
symmetry. In this previous calculation, no restriction was placed on
the relative sizes of the two terms but, in fact, the fit yielded
33,5 and 35.0 keV for the coefficients of the 0(6) and 0(5) terms,
respectively.

In a transitional situation, where x takes a value intermediate
between -/35/2 and 0, the contributions to the Harailtonian from the
Casimir operators of U B F(6), 0B?(3) and Spin (3) remain diagonal,
so that the symmetry breaking mechanism Is contained only within the
Q*Q term, and hence is uniquely specified by X« Thus, just as in the
even-even case, the wave functions depend only on x> and the boson
number N. Also, if the E2 operator is defined as

T(E2) - o (QB"K)F)

then all relative B(E2) values are likewise uniquely determined.
Thus, a situation totally analogous to that in the case of the even-
even CQF is obtained, is that the behavior of relative energies,
B(E2)*8 and in this instance, single particle structure factors, can
be predicted across the transition from deformed to Tf-unstable
structure.

6. CHARACTERISTICS OF THE SU(3)-0(6) TRANSITION

The correct empirical ordering of representations for TJ is
illustrated in fig. 7a. An additional label has also been introduced
in this figure, which proves useful in tracking the behavior of the
SU(3) states through the transition to 0(6) structure. It is evident
in fig. 7a that the pseueflo-L values given on the left of the levels
themselves group into rotational band structures, which can be
distinguished by means of a pseudo-projection quantum nuaber Kp, as
shown. The behavior of the states within each pseudo-K band as x*0
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is then displayed in fig. 7b, the boson number and all other coef-
ficients being kept constant. This figure is necessarily schematic,
since the rotational band structure is eventually lost as the 0(6)
limit is approached. Nevertheless, the most important features are
evident, namely, that the Kp-1 states remain lowest in energy while
the most significant change is the rapid descent of the Kp»2
states, which eventually mix strongly with the ground state structure
around x " -0.5.

The empirical situation is depicted In fig. 8. At the top of
this figure, the "benchmark" SD(3) and 0(6) structures of 18 W and

Pt are shown. The transitional region of interest spans the odd
Os nuclei, and throughout these isotopes, the low lying structure
mimics that of W, as evident in the bottom half. The first four
low spin states are those originating from the near-degenerate R-l/2
and K-3/2 bands, and the single particle strength resides in the
first 5/2 and second 3/2 states in all cases. Moreover, the ratio of
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the 5/2 and -/2 strength in each case remains rather constant.
However, while these strengths can be reasonably well described in

T? in terms of the appropriate Coriolis-mixed Nilsson orbits, their
magnitudes grow in the odd Os nuclei, to the extent that they can no
longer be accounted for in a siaple Nilsson framework » . Of
course, such problems are hardly surprising in this region given that
the neighboring even-even nuclei no longer exhibit the characteris-
tics of axially symmetric rotors.

In Ft, the situation changes in two important respects.
Firstly, the analogues of the four lowest states in the W and Os
nuclei, which are characterized by UBF(6) quantum numbers [N,l] in
fig. 7, no longer form the ground state structure, but appear slight-
ly higher in energy, as is evident in the upper portion of fig. 8.
In addition, the order of the 3/2, 5/2 and 1/2, 3/2 couplets is
reversed. The single particle structure factors, however, still
follow the pattern established in the W, Os nuclei. The calculated
structure of the low lying states across the transition region is
shown in fig. 9. It is clear that the nost important empirical
features of the transitions emerge naturally from this description.
The single particle structure factors are in fact predicted to main-
tain a constant ratio, S(5/2):S(3/2) - 3:2, independent of x, while
the absolute magnitudes grow as x*0« Moreover, the reversal in the
ordering of the two pseudo-spin couplets is also reproduced. Final-
ly, it should be noted that only x has been varied to produce fig.
9=. Details concerning the ordering and correct energies of states
can be improved by variation of the remaining diagonal terms in the
Hamiltonian. In particular, the correct positioning of the states of
fig. 9 in the case of Pt requires an adjustment of the 0BF(6)
contribution.

In the preceding discussion of the structure factors of the low
lying states, the lowest order transfer operator of the form
?ja+j has been assumed to describe the (d,t) reaction in this
region, with 53/2 " 55/2- More generally, with this operator,
the ratio of structure factors for any two states with the same spin
will depend only on x and N. An example is shown in fig. 10, where
the ratio for the 3/22 state in the Kp-1 band, and the 3/21 state
in the Kp"2 band is plotted. However, another feature of this
Hamiltonian is that the squares of the matrix elements of a~*~5/2 acd
a+3/2 are always in the ratio 3:2 for two members of a pseudo spin
couplet with L-2. As pointed out already in the context of fig. 9,
this ratio is constant for all x values. Thus the curve of fig. 10
applies equally to the ratio of structure factors from the accompany-
ing L»2 5/2 states in each case. The curve has been drawn for N~9,
which is appropriate to Os, and in that case, the experimental
values are R(3/2) • 0.43(6) and R(5/2) - 0.48(7), and hence consis-
tent with equality. The range corresponding to their mean value and
error is drawn on the figure, and defines a range of x values for

Os, centered on x " -1.5.
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Fig. 10. Predicted ratio of indicated (d,t) structure factors as a
function of x, for N»9. The dashed lines correspond to the mean of
the two empirical ratios for Os.
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Fig • 12. Calculated and empirical negative-parity structure in
"9s Lines under S give the relative magnitudes of the (d,t)

structure factors. B(E2)+ implies B(E2) value from the ground state
in e^bz.

Similar types of predictions can be made for B(E2) values, again
couched in terms of ratios to avoid the necessity to specify the
effective charge. Some examples are shown in fig. 11, again for N«9,
for the lowest lying states. Here, the transition to 0(6)-like
structure around x " -0.5 is particularly evident. Also, one ratio
maintains a constant value throughout, and this feature again arises*
from the fact that the pseudo-L symmetry is conserved.

To conclude, the results of figs. 10 and H can be combined and
compared with the low lying structure in Os, as shown in fig. 12.
Note that in the experimental part of this figure, the low lying 9/2~
and 7/2~ states which are known to originate froa the b.9/2 shell
model orbit are omitted, sinae they lie outside the 17(6/12) basis
being considered here. However, there is very little mixing between
these states and the j-1/2, 3/2, 5/2 orbits, so that their neglect
should not significantly affect the comparison with the remaining
levels.

The agreement for the (d,t) structure factors is excellent, the
data reflecting both the 3:2 ratio for each 5/2-3/2 couplet, as well
as the predicted absolute magnitudes. The three strongest predicted
B(E2) strengths from the ground state are also shown, and these
coincide with the strongest measured values . However, in this
case, there is a discrepancy of a factxr of two for the 3/22 state.
The c£her apparent discrepancy is the existence of an additional 5/2"
state in the empirical level scheme, which cannot be accounted for by
the theory. This could originate from a coupling between the low-
lying b.9/2 bandhead and the quasi-T band, and hence lie outside the



U(6/12) basis. However, it should be recognized that there is still
some uncertainty concerning the spin assignment of this and many
other low-lying states in the odd-Os nuclei, and there is also no
guarantee that all low-spin excitations have been identified. A
series of (n,r) studies have therefore been initiated at Brookhaven
National Laboratory to clarify the empirical situation in this
region.
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