COMMISSARIAT A L'ENERGIE ATOMIQUE

DEPARTEMENT DES REACTEURS A NEUTRONS RAPIDES

CENTRE D'ETUDES NUCLEAIRES DE CADARACHE B.P. Nº 1 13115 SAINT-PAUL-LEZ-DURANCE_FRANCE

DIVISION ETUDES ET DEVELOPPEMENT DES REACTEURS Département des Réacteurs à Neutrons Rapides

NEACRP Restricted specialists meeting on shielding benchmark Paris (France) 10-11 Sep 1984 CEA-CONF--7852 DRN3/P/N® 300

DEEP PENETRATION IN PURE SODIUM EXPERIMENTS USING THE HARMONIE SOURCE REACTOR

J.P. TRAPP D. CALAMAND M. SALVATORES

RESUME :

ļ

La présente note documente les expériences de propagation de neutrons en sodium sur HARMONIE. On précise la géométrie de la maquette, les résultats des expériences et les résultats des calculs à une et deux dimensions.

The present note is a documentation of the neutron propagation experiments in sodium, performed on HARMONIE. Details are given on the geometrical specifications, experimental results and calculation, one and two dimensional, results.

П

PARIS, 10/11 Septembre 1984

TABLE OF CONTENTS

-

-

ð.

....

ł

. .

- INTRODUCTION -
A – MEASUREMENTS –
A-I - Experimental facility - A-I.1 - HARMONIE source reactor geometry and performances - A-I.2 - Sodium tanks -
A-II - Spectrum couverter -
A-III - Materials -
A-IV - Measurements and accuracies -
A-V - Experimental results -
A-V.1 - Neutron spectrum -
A-V.2 - Integral detectors -
B - CALCULATIONS -
B-I - One dimensional calculation -
B-I.1 - Geometry -
B-I.2 - Weighting procedure -
B-I.3 - Spatio angular tests -
B-I.4 - Boundary conditions and impurities -
B-I.5 - Neutron sources -
B-I.6 - Calculational results -
B-I.7 - Sensitivity calculations -
B-II - Two dimensional calculations -
B-II.1 - Geometry -
B-II.2 - Distributed source -
B-II.3 - Cross-sections and calculational options -
B-II.3 – Cross-sections and calculational options – B-II.4 – Calculational results –

T THE THE THE THE THE THE THE T

- INTRODUCTION -

The HARMONIE Sodium Integral experiments have been performed from 1976 to 1978. The aim was to study the deep neutron penetration in pure sodium in various conditions to improve, possibly with a sodium cross-sections adjustment, the performances of the propagation formulaire PROFANE; this formulaire should allow in particular the calculation of the sodium activation in the heat exchanger of a French fast power reactor, pool type, with known uncertainties.

The source reactor HARMONIE, located at Cadarache in South France, has been used for these experiments.

Mainly, two experiments have been performed :

1) With HARMONIE stainless-steel reflector

2) This reflector is replaced by a spectrum converter of the type of an UO2-Na blanket, to simulate the neutron spectrum at the edge of a fast reactor blanket.

In this report we describe the experimental facility and the measurements performed.

We indicate the calculational methods used to analyze the experimental results and the discrepancies between experiment and calculation. A - MEASUREMENTS

A-I - EXPERIMENTAL FACILITY -

1

A-I.1 - HARMONIE source reactor geometry and performances -

÷.

Figure 1 shows the outside of the source reactor HARMONIE located at Cadarache.

Figure 2 presents the three core positions; in our experiments, the core is in position 2 and the concrete blocks number : 2, 3, 6 and 7 are eliminated.

This reactor allows to obtain a fast neutron spectrum within a slab source geometry.

Thr reactor core is a enriched Uranium (93% U235) vertical cylinder with 123 mm diameter and 129 mm heigh. It is surrounded by a depleted uranium blanket and a stainlesssteel reflector.

> The main characteristics of the core are : - critical mass : 22.937 kg - Average neutron energy in the core : 0.75 MeV - Power : 2 KW

- Maximum flux : 1.25 10¹²n/cm².sec

A-I.2 - Sodium tanks -

1 1

1 1

1

Figure 3 shows the sodium tank arrangement; it is composed by :

- a central tank

- 4 half tanks surrounding the central tank

- a shield constituted with 4 fourty centimeters wood walls and with a wood roof.

The whole is placed on the upper reflector of the reactor HARMONIE at the place of concrete blocks.

1) Central tank : it is a vertical cylinder with 150 cm diameter (± 5 mm) and 275 cm high. The walls are in mild steel Martin A42C1 : 10 mm thickness. The bottom is of the same steel, but with a 6 mm thickness. Six radial channels for measurements are located each 50 cm in the axial direction. Channel 0 in figure 1 (and zone B in Appendix 5) is a measurement position "outside" the tanks, and used in particular for proton recoil measurements. Each channels is shifted by 15 degrees with respect to the previous one. They are made in AG5 with a 3 mm wall thickness and 60 mm diameter. The first channel (channel 1) is located at 73 cm from the center of the core. Each of the successive channels is 50 cm apart (the second is at 123 cm from the center of the core, the third at 173 cm and so on). The arrangement is such that we have seven measurements positions, 50 cm apart from each other, all on the core axis, in the propagation direction.

2) Lateral tanks : four lateral tanks are surrounding the central ones. Dimensions are 140x140x14J cm. The walls of these tanks are made of the same material then the former. The whole system forms a 280 cm cube.

5 Around this cube a wood shield is placed to protect from the diffused neutrons. The wood thickness is 30 cm.

4) All this tanks are filled with metallic sodium -"technology" quality. Its composition will be discussed later on. Care has been taken during the liquid sodium filling and during the progressice solidification to obtain an homogeneous medium.

A-II - SPECTRUM CONVERTER -

To simulate a neutron spectrum at the end of a fast reactor blanket a spectrum converter was used.

÷.

A part of the stainless-steel reflector was replaced by a Aluminium basket -126x126x25 cm - filled by UO2 and Na rodlets, MASURCA type. The homogeneized composition of this medium is given in the Table I.

A-III - <u>MATERIALS</u> -

1 1

1

1 I

11 I

Table I gives the summary of the nuclear densities of the materials used in the experiments. For the sodium, the concentrations of impurities were not known very accurately particularly the oxygen and hydrogen concentrations.

	Core	Radial Blanket	Axial blanket	Blanket UO2-Na (Converter)	Reflector	Stainless- steel HARMONIE (sone F)**	Tanks (Container)	Sodium	Wood	AZ	Concrete
U235	4.235-*	1.424-4	1.620-4	4.135-5							,
11238	3.072-3	3.545-2	4.035-2	9.730-3		ļ					
Ni	3.181-4	1.760-3	6.121-4	7.628-4	8.694-3	9.073-3	9.073-3				
Cr	6.465-4	3.576-3	1.244-3	1.550-3	1,613-2	1.683-2	1.683-2				
Fe	2.408-3	1.332-2	4.633-3	5.774-3	5.50 -2	5.740-2	5.740-2				9.84-3
Mn					1.659-3	1.731-3	1.731-3				
si					1,623-3	1.693-3	1.693-3				6.37-3
				1.954-2				3.6 -6	1.04 -3		3,96-2
Na				1.015-2				2.54-2			
Alu										6.0-2	
B 1 0											3,64-4
811			[1.58-3
C									1.046-2		4.69-3
H								2.50-5	1.980-2		4.63-3
i a								1.0 -5			

TABLE I : NUCLEAR DENSITIES OF MATERIALS

1.5

* Read 4.235 10^{-2} (x 10^{24}) atoms/cm³

** See Appendix S

e.,

A-IV - MEASUREMENTS AND ACCURA IES -

1) Spectrum measurements : Neutron spectra were measured by the proton recoil technique in channel 0 and in channel 1. In the energy range Letween 80 KeV - 1350 MeV, the accuracy was estimated to be \pm 10%. ċ.

2) Integral measurements : Five integral detectors wer used : Rh(n,n') and S(n,p) for the high energies. We used (n,γ) reactions : Na/Cd, Mn/Cd, Au/Cd, for the low energies. The integral detectors are placed in the channel which is filled with aluminum to restore a Na-type medium and to minimize the disturbance on the neutron fluxes in the sodium tank. The counting method is classical. Experimental accuracies are :

± 15% for Rh and S
± 5% for the other detectors

A-V - EXPERIMENTAL RESULTS -

A-V.1 - Neutron spectrum -

The neutron spectrum measured in the channel 0 and the channel 1 are given in the Table II. The results are normalized to 1 in the range between 80 - 1350 KeV and are given in the multigroup structure PROPANE Do (given in Appendix 9).

The counting rate ratio between the channel 0 and the channel 1 is 2.686 in the case without blanket and 3.338 in the case with blanket.

The uncertainties on the experimental values are evaluated at ± 10%.

Group	Chan	nel O	Channel 1		
Number	With blanket	Without blanket	With blanket	Without blanket	
6	0.0281	0.0168	0.0209	0.0094	
7	0.0206	0.0212	0.0180	0.0114	
8	0.0322	0.0405	0.0333	0.025	
9	0.0214	0.0269	0.0218	0.0161	
10	0.0548	0.0684	0.0500	0.040	
11	0.0617	0.0885	0.0656	0.0588	
1 2	0.0358	0.0486	0.0413	0.0406	
13	0.0096	0.0134	0.019	0.0246	
14	0.0288	0.0401	0.0263	0.0240	
15	0.0915	0.1163	0.0834	0.0918	
16	0.0970	0.1043	0.1008	0.0836	
17	0.1131	0.104	0.114	0.1083	
18	0.194	0.1682	0.1706	0.2032	
19	0.2160	0.1427	0.235	0.2632	

TABLE II - EXPERIMENTAL NEUTRON SPECTRUM

î.

A-V.2 - Integral detectors -

П

J.

بالمسلمان المسلمات

The experimental results are given in the Table III in the case with blanket and the Table IV in the case vithout blanket.

For each detectors, two independent measurements were made in each position to verify that the counting rates are reproducible inside the experimental uncertainties.

Measurements are normalized to 1 in the channel 1.

Position	Sulfur	Rhodium	Na/Cd	Mn/Cd
·Channel 0	4.78	3.645	1.419	1.072
" 1	1.0	1.0	1.0	1.0
" 2	7.18 10-2	6.29 10-2	0.506	0.395
" 3	7.03 10-3		0.227	0.119
" 4			8.411 10-2	3.20 10-2
" 5			2.450	8.38 10-3
" 6			6.62 10-3	2.20

.*

÷

1.1.1

TABLE III - WITH BLANKET

.

2.

TABLE IV - WITHOUT BLANKET

			•	
n	Rhodium	Na/Cd	Mn/Cd	Au/Câ
0	4.79	2.037	1.155	1.321
1	1.0 -	1.0	1.0	1.0
2	4.49 10 ⁻²	0.492	0.406	0.553
3	2.05 10-3	0.212	0.136	0.252
4	not measured	7.77 10-2	3.79 10-2	9.82 10-2
5	n	2.33	$9.54 \ 10^{-3}$	2.91
6	"	6.44 10 ⁻³	2.59	7.21 10 ⁻³
	n 0 1 2 3 4 5 6	n Rhodium 0 4.79 1 1.0 2 4.49 10 ⁻² 3 2.05 10 ⁻³ 4 not measured 5 " 6 "	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Rhodium Na/Cd Mn/Cd 0 4.79 2.037 1.155 1 1.0 1.0 1.00 2 $4.49 \ 10^{-2}$ 0.492 0.406 3 $2.05 \ 10^{-3}$ 0.212 0.136 4 not measured $7.77 \ 10^{-2}$ $3.79 \ 10^{-2}$ 5 " $2.33 \ 6.44 \ 10^{-3}$ 2.59

The second se

Т

I.

B - CALCULATIONS

B-I - ONE-DIMENSIONAL CALCULATIONS -

B-I.I - Geometry -

1.1.1

,**1**

The ANISN one-dimensional transport code is used in spheric geometry with a shell source.

The ANISN card list is given in the Appendix 3.

B-I.2 - Weighting procedure -

An appropriate weighting procedure has been used to collapse the sodium cross-sections and the letectors crosssections from the original 113 groups BABEL library to the PROPANE 45 groups structure.

Two spatial zones are required to treat correctly the neutron propagation in the sodium with respect to the reference method.

<u>Note</u>: The first zone includes 100 cm in sodium, starting from the tank edge nearest to the core. The second zone includes the remaining sodium (from 100 cm to the top of the tank, approximately 180 cm in sodium).

Table V presents the discrepancies with the reference method : 113G/S16/P3 for the integral detectors : э.

Channel	S	Rhodium	Mn/Cd	Na/Cd	Au/Cd
2	2.8	1.9	- 4	1.6	2
3	3.7	3.5	- 3	1.6	2
4	5.2	5.5	- 1.4	1.4	2.2
5	7.6	7.6	- 0.4	1.7	3.0
6	10.9	10.4	1.8	6.7	6.5

<u>TABLE V</u> - E(3) = $\frac{\phi(113/S16/P3) - \phi(45/S16/P3)}{re^2}$

For the detector cross-sections, the weighting procedure has negligible effects (= 1-2%) as expected from the optimization of the multigroup structure.

B-I.3 - Spatio angular tests -

A 5 cm spatial mesh size in sodium was found to be appropriate for the flux convergence. With 3 cm spatial meshes the observed differences are less than two per cent for the Sulfur and Rhodium detectors and negligible for Na/Cd, Au/Cd and Mn/Cd.

Finally, Table VI gives the discrepancies with respect to the reference method for the Sn quadrature.

		54	1	S		
		S	Na/Cd	S	Na/Cd	
Channel	2	7.5	1.5	- 1.5	- 0.3	
"	4	13.5	2•2	- 1.5	- 0.9	
"	6	31.0	0.7	- 5.0	- 1.0	

<u>TABLE VI</u> - $E(\%) = \frac{\phi(45/S16/P3) - \phi(45/Sn/P3)}{\phi(45/S16/P3)}$

We observe that the S16 quadrature is required for the high energy detectors while the S4 is adequate for the low energy detectors.

In the same way, the P3 scattering development is required for all the calculations.

B-I.4 - Boundary conditions and impurities -

The following treatment was adopted for the experimental boundaries conditions. It was found that the description of the stainless-steel bottom tank and of the wood shield is necessary. Moreover the sodium impurities - especially the hydrogen - must be carefully taken into account.

The uncertainty in the amount of these constituents will increase the global calculation (or experimental) uncertainties.

In absence of more precise informations on the impurities in the sodium, we have taken into account what is given by the supplier of the commercial sodium we used.

B-I.5 - Neutron_source -

E.

The neutron source to propagate in the sodium for the one-dimensional calculations comes from the two dimensional calculations (see section B-II).

However, in channel 0, where the spectrum is measured under the central sodium tank, we can compare the experiment and the spectrum calculated by the DOT (R,2) code. The comparison is made in the two cases : with and without blanket.

					With	blanket	Without blanket		
					Experiment	Calculation DOT (R,Z) 45G	Experiment	Calculation DOT (R, Z) 45G	
550	KeV	En	1.35	MeV	8.0 %	8.8 %	7.8 %	8.9 %	
294	"	En	550	KeV	18.3	16.1	25.5	22.2	
150	n	En	294	n	33.0	33.8	36.4	34.5	
80	"	En	150	n	40.5	41.1	30.1	34.2	

TABLE VII - NEUTRON SPECTRA IN THE CHANNEL O

We observe a good agreement between the experiment and the calculations in this energy range (80 - 1350 KeV).

Above 1.35 MeV, only the threshold detectors can be used to have informations on that energy range. For the Sulfur detector (threshold = 800 KeV), the experimental counting rate ratio between the cases with and without blanket is : 13.7 to compare with 14.4 in the calculations.

So we observe that the calculated neutron spectrum used for the propagation in the sodium is in fairly good agreement with measurements, specially in the energy range which is important for deep penetration (i.e. above 100 KeV).

The angular distribution of the neutron source is given by the DOT (R,2) calculations. No measurements have been performed for this purpose. However, the elimination of one of the forward components of the source (in a spherical S4 calculation, which is a very drastic condition), changes the attenuation of the integral detector response (Na/Ci) by only 4% in a 2.5 m propagation length. B-I.f - Calculational results -

With the specified options, the results of the 1D calculation are given in the Table VIII for the HARMONIE configuration with blanket :

		Sulfur (S16)	Rho (S	dium 16)	Na, (5	/Cd 54)	Mn, (S	/Cd 54)	Au, (1	/Cd 54)
Channel	1	1.	1.		1.		1.		1.	
"	2	6.67 10	-2 6.79	7 10-2	0.505		0.343		0.652	
"	3	6.22 10	-3 6.10	10-3	0.212		9.07	10-2	0.304	
"	4	6.55 10	-4 6.19	10-4	7.33	10-2	2.38		0.105	
n	5	7.37 10	-5 6:75	10-5	2.18		6.09	10-3	3.03	10-2
17	6	8.63 10	-6 7.61	10-6	5.46	10-3	1.42		7.31	10-3

TABLE VIII - HARMONIE WITH BLANKET

and in the Table IX for HARMONIE without blanket :

		Sulfur (S16)	Rhodium (S16)	Na/Cd (54)	Mn/Cd . (S4)	Au/Cd (S4)
Channel	1	1.	1.	1.	1.	1.
"	2	6.48 10 ⁻²	$4.14 \ 10^{-2}$	0.478	0.357	0.562
"	3	5.77 10-3	2.06 10 ⁻³	0.196	$9.71 \ 10^{-2}$	0.252
"	4	5.92 10-4	$1.14 \ 10^{-4}$	$6.71 \ 10^{-2}$	2.55	8.66 10-2
"	5	6.56 10-5	7.02 10-6	1.99	6.47 10-3	2.51
"	6	7.68 10 ⁻⁶	4.94 10 ⁻⁷	$5.02 \ 10^{-3}$	1.50	6.08 10 ⁻³

TABLE IX - HARMONIE WITHOUT BLANKET

The differences observed in the Rhodium response between the two cases, with and without blanket, come from the large differences in the source spectrum above 2 MeV.

Figures 4 to 7 present the results for the Na/Cd and Mn/Cd detectors in the case with and without blanket.

1 1 1

11

1

T T TT T T

шт

Note that both 54 and 516 calculations were necessary, to calculate 516/54 correction factors for the high energy detectors, to be used in 2D calculation (see paragraph B-II.3).

B-I.7 - Sensitivity calculations -

We have performed sensitivity calculations with the following calculational model :

- spherical geometry

- shell source coming fromDOT calculations
- P3 approximation
- S4 quadrature for low energy detectors
- S16 quadrature for high energy detectors
- spatial mesh : 5 cm

11 I I

- appropriate weighting procedure to collapse the 45 group library from the original one (113 G).

In our cross-sections adjustment procédure we do not use the absolute detector rates but the attenuation of each reaction rate between two points (i.e., reaction rate ratios). This is done in order to reduce the uncertainties related to the cross-section of each detector, and those related to the experimental precision.

We calculated with the GIANT-NL code the importance functions for the various detectors located in the choosen positions.

Then the ROSCOFF code calculates the sensitivity profiles to the sodium cross-sections (total, absorption, elastic and inelastic scattering) for these positions. In figures 8 to 9, we show an example of the results for the Au/Cd and Mn/Cd detectors in two cases :

Ratio Pos 1/Pos 3 i.e. Channel 1/Channel 3 Ratio Pos 3/Pos 6 i.e. Channel 3/Channel 6 and two configurations : with and without blanket.

The Appendix 1 gives the sensitivity coefficients for the Na/Cd detector for two positions and for the two configurations (with and without blanket).

The usual definitions of the sensitivity coefficients are found in the column SIGTOT, $(\partial R/R)/(\delta\sigma_{tot}/\sigma_{tot})$; SIGSCT for $\sigma_{scattering}$, SUM (= total sensitivity). The UABSOR, UINELS, ULAST are the sensitivity coefficients as defined by Mc Cracken (see for example the Proceeding of the OECD specialist' Meeting on Shielding Benchmark and Differential Data, Vienna 1976).

B-II - TWO DIMENSIONAL CALCULATIONS -

B-II.1 - Geometry -

The schematization is shown in the Appendix 5. This is a complete representation of the core and the progration media. In particular the description of the lateral sodium tanks and the wood shield is taken into account.

All the propagation calculations, were distributed (volume) source calculations and were performed on the complete geometry, shown in Appendix 5. In Appendix 6, the DOT 3.5 input data are shown. . . .

B-II.1 - Distributed source -

The distributed source was obtained with a k calculation performed with the geometry of the Appendix 5 but reduced on the 2 direction and with appropriate albedos.

The Appendix 7 gives the distributed source for the case without blanket and the Appendix 7bis for the case with blanket.

The Appendix 8 gives the fission spectrum to be used in the culculations.

B-II.3 - Cross-sections and calculational options -

For the Na, the cross-sections used are the same then in the ANISN calculations.

For the other media, the cross-sections come from the PROPANE Do library : the reference BABEL 113 groups library is collapsed in the PROPANE 45 groups multigroup structure given in Appendix 9.

The following calculational options are used :

- R,2 geometry

- 45 groups

- 54 (Sulfur and Rhodium are 516 corrected with the one-dimensional correction factors)

- P3

- Distributed sources in core reflector and blanket (or not) normalized to 1

- Spatial mesh : 5 cm in the sodium

All details are found in the Appendix 6 (DOT input).

1 1

1 1

B-II.4 - <u>Calculational repults</u> -

Table X gives the results of the DOT (R, 2) propagation calculation, for the case with blanket :

TABLE X - HARMONIE WITH BLANKET

		Sulfur	Rhodium	Na/Cd	Mn/Cd	Au/Cd
Channel	1	1.	1.	1.	1.	1.
"	2	7.72 10-2	$7.33 \ 10^{-2}$	0.451	0.364	0.640
"	3	6.93 10 ⁻³	$6.96 \ 10^{-3}$	0.199	0.103	0.332
"	4	6.90 10-4	$7.33 \ 10^{-4}$	7.35 10-2	$2.73 10^{-2}$	0.128
"	5	8.01 10-5	8.34 10 ⁻⁵	2.34	$7.04 10^{-3}$	4.05 10-2
11	6	$9.49 \ 10^{-6}$	9.58 10-6	6.33 10 ⁻³	1.69	1.07

The Table XI concerns the case without blanket

		Sulfur	Rhodium	Na/Cd	Mn/Cđ	Au/Cd
Channel	1	1.	1.0	1.0	1.0	1.0
"	2	$3.91 \ 10^{-2}$	$4.65 \ 10^{-2}$	0.408	0.364	0.487
11	3	$3.27 \ 10^{-3}$	$2.73 \ 10^{-3}$	0.171	0.105	0.231
"	4	3.48 10-4	1.78 10-4	6.15 10 ⁻²	$2.82 10^{-2}$	8.60 10-2
"	5	4.05 10 ⁻⁵	1.29 10 ⁻⁵	1.9 10-2	7.2 10^{-3}	2.70
"	6	4.85 10 ⁻⁶	1.01 10-6	5.2 10-3	1.70	7.13 10^{-3}

TABLE XI - HARMONIE WITHOUT BLANKET

The uncertainties on the calculations come essentially from the uncertainties on the sodium composition, particularly on the hydrogen impurities.

An upper limit for this uncertainty was evaluated to be \pm 5% around the central value calculated with 45 ppm hydrogen for the range 23-68 ppm hydrogen (for all detectors).

1

1 I.

L L

1

In our case where we are interested by the ratio between two positions, the uncertainties on the ratio calculated are less than 4%, at worse, in the second part of the sodium tank.

B-II.5 - E-C/C values -

With the results given in the sections A-V.2 and B-II.4, we can calculate the discrepancies between experiment and two dimensionals calculations.

Tables XII and XIII for HARMONIE with and without blanket :

<u>TABLE XII - WITH BLANKET - E-C/E (%)</u>

	_	Sulfur	Rhodium	Na/Cd	Mn/Cd
Channel	1	0	0	0	0
"	2	- 7	- 14.19	+ 12.2	+ 5.8
n	3	+ 20	no measures	+ 14.0	+ 15.5
"	4	no measures	n	+ 14.4	+ 17.2
"	5	"	"	+ 4.7	+ 19.0
"	6	"	"	+ 4.6	+ 30.0

<u>TABLE XIII - WITHOUT BLANKET</u>

		Rhodium	Na/Cd	Mn/Cd	Au/Cd
Channel	1	0	0	0	0
"	2	- 3.44	+ 20.6	+ 11.5	+ 13.6
"	3	- 25.0	+ 23.9	+ 29.5	+ 9.1
"	4		+ 26.3	+ 34.4	+ 14.2
11	5		+ 22.6	+ 32.5	+ 7.8
"	6		+ 21.5	+ 52.3	+ 1.1

11 1

In the case with blanket, we have eliminated the Au/Cd results for experimental problems; in the case without blanket we have eliminated the Sulfur for the same reason.

The global E-C/C uncertainties including both the experimental and calculational uncertainties coming from the Na composition, are :

± 10% for all low energy detectors ± 20% for high energy detectors

1 1

- CONCLUSIONS -

The aim of this Benchmark pure sodium experiments was to compare the experiment values with the calculation values obtained with the formulaire PROPANE Do in its non adjusted version.

These results and those obtained with the TAPIRO experiments concerning stainless-steel sodium mixtures (with various percentage) are used in our adjustment procedure to obtain the adjusted version : PROPANE 1.

In this report we have summarized the experimental facility and the experimental results obtained.

We have indicated the calculational method used for the analysis of these experiments.

The results obtained show an underestimation in the calculation, increasing with the penetration. This fact is coherent with our analysis (using both our reference methods, BABEL and PROPANE Do) of the TSF experiments concerning the same medium and larger propagation length.

C SYCA

12130	STENIO	RUZAIAH	(1115
` N	emp.2 of	ptriticust -	8-14/8-3

1-man - manual - 10/4M - Huldholder of compared at the rest water provided

	0*0	0.0	0.0	n+0	0•0-	C • O	2.0	3*0	S*
	20-75205 5°l	0.0	2°-396202°E	5°301946-05	20-392496 *#-	9.0	2.0	10-367830.1	**
	20-352452.6	0.0	1°24204E-95	1.290216-02	10-312542*5-	0.0	0*6	10-361616*5	٤4
	50-300048.4	0.0	20-3966+6*1	80-320010°H	10-304468*6-	5.0	5.0	00+299220*1	2÷
	10-411110*1	0.0	20-301/65*2	10-31894.1*1	00+726990+2-	0.00	0.0	00+20076112	15
	10-329181*1	0.0	20-3920S1*2	10-349966*1	00+74/114*2-	5*0	9*0	00+315855*2	3.
	20-104955*6	6.0	1-327235-02	10-314921-1	07+712455*2-	0.0	4.6	07+120294.2	65
	10-304920-1	0.0	20-366150*1	10-950-91-1	01+ mc+t+*2-	9*0	0.0	00+166266*6	96
	20-365806*1	0.0	P*54P40F-07	20-304755*4	00+15+1/0+2-	n • n	7.0	00+022251*2	10
	20-209646*8	0.0	F0-3+2016*9	20- 199991. "1	00+11+11-2-	0-0	5+5	19+04/592*2	92
	20-304942*6	0.0	2* 444 14F-07	20-3014.50*6	00+351112-2-	3.0	0.0	03+36+215*2	SE
	23-356076*5	0.0	F0-16+445*E	20- 149/67*4	00+371765*1-	0.0	n+0	CG+36566511	56
	20-050168*9	0.0	CD-742042**	20-121226-1	00+35+11+1-	0.0	3.0	0.4444.41	S.E.
	29-391066-1	0.0	1° 85428 - F	5-31310-05	00+490-045*1-	0.00	3.9	00+125619*1	26
•	E0-3E3444*4-	9.0	1*+55135-03	F0-350+22*4-	10-10/96/11-	0.0	9.6	10-495251 8	11
	*1-3+HR60*5-	0.0	+0-3012H2*F	+0-394410*I-	10-741 +55 *!-	a•0	0.0	10-124246-2	ÚE.
	+2-350+51*6-	0.0	+0-364466*2		19-74 556*2-	3 •0	0.0	10-3006612	50
i	F0-3+6211*9-	0.0	+0-764+60*9	F0-194/49*6-	00+71.50+*1-	0.0	5+0	04+45641	52
×i	20-3951+0*+	0.0	40-3646/2°F	20-465040**	00+3641++*1-	0.0	5.0	00+4552651	12
	27-1/2666*9	0.0	A*#37455-02	20-309600*/	00+2011+9*1-	0.0	a•a	09+ 46:114*1	92
片	20-11/106*6	0.0	C0-195651*9	20-141416*6	00+3+1+20*1-	3.0	C • D	08+1626/0*1	c.2
ωi	20-161179*1	0.0	60-32404/*1	20-1+62+9+1	10-191064*2-	ň•0	0.0	10-159549*5	\$2
0.1	10-322292*9	0.0	00-10/2+0+0	F0-1011.42*4	10-742761*1-	0.0	0.0	10-36656111	62
đ	20-305655**	0.0	+0-106215*1	20-124959*9	10-36002016-	0.0	0.0	06+152620-1	22
-	21-315911*E	0.0	40-32510E ° 2	20-3-50+1+6	10-3250/1*8+	0.0	0.0	10-314260.0	ĨZ
1	20-307962°L	0.0	50-797691 *1	20-361962*1	10-724525-01	0-0	2+0	10-346559*2	50
	20- 31 50 SU - 25	0.0	50-344928°2	20-324050*2	10-3112/5*9-	ŋ• <u>n</u>	a•c`	10-397222 7	6 Ť
	1*318636-05	0.0	2*2011SE-0+	20-32810+1	10-309221*L-	0.0	6 • O	3,312466-01	91
	E0-262911*8	0.0	3-525136-05	E0-300451*H	19-102429-1-	0-0	0.0	1.710245-01	<i>i</i> l
	4*569235-03	0.0	2°41031E-05	E0-704542*+	10-322+62*1-	5.0	0.0	1.327736-61	4 t
	3*555+06-03	0.0	50-3/06PR*1	£0-30£1+2*E	-1*1+0.091*-01	6 - 0	a•0	10-31242111	ςl
	2.132036-03	0.0	0-391061 *A	50-32R1+1*2	20-3してんい モー	9 ° 0	0.0	S6-345116.C	† L
	70-219+15°5	0.0	90-3/515/*2	+0-31+2+3*9	-1*11/026-05	j•n	Ú•0	20-355291*1	13
	E1-312999*1	0.0	30-300561*1	E0-199747*1	20-241444*1-	r = ŋ	3-9	20-166673*7	15
	F0-378446.5	0.0	90-759126*9	ビロー ヨらいしんじょう	50-370274-9-	. ŋ • ŋ	1-0	20-356216*9	tt
	50-35/091*2	20-365786.5	90-329615**	5.420546	70-10-10-	0-0	0.00	50-37E404.2	0 t
	1-246446-63	50-31212+°2	2°315+0(-00	EG-144/95*T	20-392661-1-	C • V	0*G	20-3100E6*1	6
	+0-10+F25*5 ·	50-359996*9	00-3E41V9*1	40-766 apt • 4	20-3HU340*2-	0.0	e•0	20-356751.5	8
	70-399542*2	50-356862*5	10-32+56+*6	50-311500°2	20-301163*1-	0•0	9 • 0	20-362516*1	L
	+C-121959*8	2.22551E-04	20-369506.5	F0-769846*t	20-362095*6-	9°0	0.0	20-34E929*E	9
	3.260715-64	90-312145.4	10-301159*P	+0-30506-0+	50-3601E9*1-	0°U	n-0	20-150E20°1	S
	5.747018-04	1-323336-04	10-3165ts*1	*0-3E+100**	69-340249***	0 • 0	0.0	SC-385400.1	+
	*0-391116*1	1*20205E-04	10-194960 . 2	90- IOnT25*C	E0- 405 01-1 - 0-	S.O	3.0	T.308497-03	E
	50-32E65t*S	2°-300y+6°L	90-3156+8*5	90-35054C*L	E0-3101+0.4-	0.0	C • O	E0-350ESS.S	5
	90-399110°t	20-351966.5	30-31087C.1	90-37EA46*R	キターましゃらとてきすー	0.2	C • 9	1.21572F-04	t
	_								

East to

1.44707E+00

Resident 1 : Y = 78 cm from the center 1.302662+00 *0-36191******9 10-36256+*1

Configuration : MARROWIE WIN Blanket

0.0

10+361922.

101015

°dd9

1.0

RUZ

Ξ

-3*40505E+01

wester : F . a theol

	٠
2	
	•
•	í
ń	,
•	ł
1	ĩ

ć

2.98760E-05 5.11122E-04		DELCHI	5105CT	SUH	UABSOR	UINELS	UELAST
5.11122E-04			2 6-71 607.5-	7.47769F-06	1.813125-06	3.977475-07	2.617945-07
3.111666-01				1. 10013F_05		2.06538F-05	1.10025-05
					1 316405-07	2 11016-05	A 271455-05
2.454785-03	•••	•••					
3.10958E-03	•••	0.0	-2.961165-03	1 - 484145-04	2.500905-07	3.44752E-05	1 • 1 305 /E - 0 4
1 APIAF-AP		0 ° 0	-9.93711E-93	2.73481E-04	6.44459E-07	6.45239E-05	. 2.09311E-04
					2.6.1446-07	1-410105-05	1.5710/F_65
4.66334E-03	0.0						
<u>3.64207E-03</u>	0.0	•••		2.04942E-04	4.47700E-07	3.84258E-96	Z.00051E-04
1.0212AF-02			-9.65663E-03	3.56786E-04	0.39593E-07	3.54160E-06	3.523795-04
			-1.273565-62	3.76631E-04	1.31291E-06		3.753166-04
			-7.614776-03	2 714405-04	1.467895.66		2 4007UF 04
2.97542E-03	0.0	•		+0-71/20/*t	1.012/05-01		
6.84720E-03	•••	•••	-7.619812-03	4.27399E-04	2.0)2205-00	0.0	4-25393E-04
2.321395-02	0.0	0.0	-2.27278E-02	4.86102E-04	3.72217E-06	9.9	4.82362E-04
				4.33362F-04	4.0.055F-06		4.24259F-04
3.208305-02	0.0	•••	20-352500.6-	E0-3050+2.1	00-322410.0	0.0	20-314652.2
6.33372E-02	0.0	•••	-6.10247E-02	2.31249E-03	+ .38145E-45 -	0.0	2.26842E-03
1.03786E-01			-9.987685-62	3.90953E-03	6-24888E-06	0.0	3.903215-03
				F. 44495	A. 188465-96		2.44070F-07
2.30269E-01	•••		10-316262.2.				10- 307 - 0A- C
2.93236E-01	•••	••	-2-92925-01	20-3C+590 • t	2.140275-04	•••	1.04401E-02
3.641495-02			-3.506926-02	24568E-03	2.085255-06	0.0	1.343595-03
9.54674F-02			-9.15617F-82	3.50571E-01	5.401025-06		3-500285-03
							1 ILTUTE AD
							20-31/400+1
6.14568E-01	•••	••0	-6.04919E-0	9.64820E-03	1 • 35969E - 0+	•••	E0-310215-6
6.23116E-01	•••	•••	-6.22425E-01	6.906995-04	2.60712E-04	•••	4.21882E-04
1.254575-01			-1.25594F=01	-5.12004F-05	1.109105-04		-1-62184F-04
10-3010C2*1			1 A-34 ABC 3* 1-				
3.72769E-01	0.0	0.0	-3.73127E-01	-3.578075-04	6.06487E-04	0.0	-0-010-04 -0+
7.00506E-01	0.0	0.0	-4.03005-01	1.121746-02	1.65613E-03	0.0	9.560A8E-03
9 48425-01			-0.25515F-01	4. 2926 1F - 62	2. TAIDIF-AJ		4.042405-02
1.27934E+00	•••	•••	00.0 101602 · 1-	20-30/2201		•••	0.11761E-0¢
1.72320E+00	a .e	•••	-1.62802E+00	9.51062E-02	4.27529E-03	0.0	9.09100E-02
2.18842E+08	0.0		-2.05954E+00	1.28860E-01	5.76766E-03		1.23092F-01
4 . 84992E + 40	0.0	0.0	-4.551105+00	2.955205-01	1.601145-02	0-0	2.820065-01
5.50052E+00	0.0	0.0	-5.13104E+00	3.694786-01	2.59703E-02	•••	3.43504E-01
7.904315+00				6.71105F-01	5.7450AF-02		6.117115-01
			00+325222*6-	4.521066-01	20-355/00.0		3.85708E-01
2.112356+04	0.0	o , o	-1 - 15845E+0D	3.53901E-01	20-345404°¢	0.0	2.99234E-01
3.507556-01	0.0	0.0		9.65554E-02	1.24703E-02	0.0	8.40848E-02
0.0		0.0	0.0	0.0	0.0		
	•		9				
4.47775€+01	•••	0.0	-4.142196+01	J. 35553E+00	3.439116-01	2.32524E-04	3.01137E+00

2

:

\$

2

2

Paritin 6 1 7 + 323.cm

FLARMUNIE WITH BLANKET

CEN/CA

¢

2

APPENDIX 1 (Follows)

Harmonie Withour Blanker

Harmonie *** Blanker

GIP. SUM ----4.09204E+00 7.88955E+00 7.04555E+00 3.66001E+00 2.10031E+00 3.55900E-01 0.0 2.64391E=04 2.64252E=04 2.33935E=04 2.33935E=03 2.33935E=03 2.131222E=03 2.12122E=03 2.12122E=03 2.12122E=02 2.41222E=02 2.41222E=02 2.41222E=02 2.41222E=02 2.41222E=02 2.41222E=02 2.4122E=02 2.45165E=01 1.325783E=01 1.325785E=01 1.325785E=01 1.325785E=01 1.325785E=01 1.35393E=00 1.35395E=01 1.35395E=00 1.35395E=00 1.35395E=00 1.35395E=00 1.35395E=00 1.35395E=00 6.15924E-05 1.02377E-04 5.3A737E-04 2.83462E-04 6.62221E-07 7.32406E-06 3.36543E-05 4.51060E+01 210101 SENFRAL THE REAL AND THE PROPERTY IN THE PARTY INTERPARTY INTERPA 0.0 HUSICE 0.0 DELCHI -1.95419E-03 -3.2242E-03 -2.21u25E-03 -4.56495E-04 -2.91344E-03 -4.17583E+01 -6.25.175E-01 2102015 Ş んい 9.65595E-06 -3.93927E-04 1.22770E-02 9.04491E-05 2.734451E-04 3.37125E-04 9.25504E-04 3.42274E-03 3.42274E-03 3.42274E-03 1.42076E-03 1.42076E-03 1.42076E-03 1.42976E-03 1.42976E-03 1.42976E-03 1.42976E-03 4.62075E-02 9.77716E-02 1.3075E-01 1.63075E-01 2.95172E-01 3.63135E-01 5.64335E-01 6.24376E-01 4.50936E-01 3.53324E-01 3.53324E-01 3.53324E-01 3.53324E-02 9.62169E-02 1.60412F-06 5.65596E-06 5.6708EE-06 3.99580E-05 3.90015E-06 6.44615E-06 4.97506E-05 1.14355E-04 1.45915E-04 1.21097E-04 3.34770E+00 5-03460E-0H SUM Pop ند Por $\begin{array}{c} 7,847746=06\\ 2,24746=06\\ 2,65380=06\\ 2,65380=06\\ 2,65380=06\\ 2,65380=06\\ 2,67355=06\\ 2,67355=06\\ 2,744035=06\\ 2,744035=06\\ 2,744036=06\\ 2,744036=06\\ 2,744036=06\\ 2,744036=06\\ 1,75776=06\\ 1,75776=03\\ 2,744036=03\\ 1,75776=03\\ 3,74436=04\\ 1,75776=03\\ 3,74436=04\\ 1,75776=03\\ 3,74436=04\\ 1,75776=03\\ 3,74436=04\\ 1,75776=03\\ 3,74436=03\\ 1,7576=03\\ 3,74436=03\\ 1,7576=03\\ 3,74436=03\\ 1,7576=03\\ 3,74436=03\\ 1,7576=03\\ 3,74436=03\\ 1,7576=03\\ 3,73716=03\\ 1,23716=02\\ 0,73716=02\\ 1,23716=$ 1.70112E-07 3.37963E-07 4.46790E-07 2.46802E-07 7.89780E-07 +.1407HE-08 1.92643E-08 2.34692E-09 8.26095E-09 3.4003E-09 3.4003E-08 1.40243E-08 1.40243E-08 5.20454E-08 3.44056E-01 5 UAHSOH 5 r: Ş 8.99581E-09 7.44048E-07 1.06134E-06 1.31644E-06 1.05134E-06 1.17623E-06 1.17623E-06 1.05136E-07 7.53571E-07 9.61238E-07 eltivity 1.20929E-05 **NINET 2** ざ 4 9.02016E-05 2.723626=04 9.238367=04 9.238367=04 9.238367=03 1.465465=03 1.465465=03 1.476765=03 1.476765=03 1.476765=03 1.476765=03 1.476765=03 1.476765=03 1.476765=03 1.476765=03 5.947077-09 1.577642-07 1.57762-06 1.57762-06 1.572362-06 5.332562-06 5.332562-06 1.132522-06 1.132522-04 1.255765-04 3.00358[+00 Ζ NELAST $N_{\rm e}^{\rm eff} < z$ I XIGNIAAV (Scollog) . • . t ł 1 1 1 . . 1 4 t ٨ 1 1 1

.

2

5

-

فخر

ŧ

П ---

5

٦

- APPENDIX 2 -

DETECTORS CROSS-SECTIONS

(These cross-sections take into account the Cd corrections at low energies)

Group	Sulfur (n,p)	Rhodium (n,n')	Mn/Cd(n,y) e* =0.02cm	Mn/Cd(n,γ) e= =0.05cm	Na/Cd(n,γ) e* =0.25cm
1	0.330	1.34	0.0	0.0	0.0
2	0.270	1.13	0.0	0.0	0.0
3	0.115	1.00	9.39 10-5	9.406 10-5	4.900 10-4
4	0.0119	0.840	$1.237 \ 10^{-4}$	$1.244 \ 10^{-4}$	6.006
5	5.50 10-4	0.715	1.442	1.453	6.38
6	3.55 10 ⁻⁵	0.653	1.726	1.724	7.035
7		0.472	2.049	2.051	9.55
8		0.237	2.351	2.352	1.060 10 ⁻³
9		0.154	2.595	2.616	9.20 10 ⁻⁴
10		0.130	2.846	2.866	7.83
11		0.109	3.408	3.428	1.125 10 ⁻³
12		9.58 10-2	3.901	3.922	1.935
13		8.84	4.108	4.144	2.148
14		8.32	4.343	4.366	2.130
15		6.71	5.050	5.079	2.124
16		4.22	6.624	6.688	2.490
17		2.51	8.153	8.016	2.120
18		1.76	9.721	9.802	7.40 10 ⁻³
19		$2.71 \ 10^{-3}$	$1.241 \ 10^{-3}$	$1.251 \ 10^{-3}$	6.670 10 ⁻⁴
20			1.457	1.485	7.957
21			1.864	1.876	$3.626 \ 10^{-3}$
22			3.421	3.488	8.150
23			2.969	2.986	6.905 10 ⁻⁴
24			3.745	3.784	6.940
25			5,185	5.179	7.340
26			5.092	5.144	9.38
27			4.439	4.286	4.50 10-3
28			6.580	7.595	3.800 10-2
29			3.337	4.278	$2.017 \ 10^{-1}$
30			8.097	1.038 10-2	7.071

A state of the sta

£

(Continued)

Group	Sulfur (n,p)	Rhodium (n,n')	Mn/Cd(n,γ) e* =0.02cm	Mn/Cd(n,γ) e* =0.05cm	Na/Cd(n,γ) e* =0.25cm
31			$3.182 \ 10^{-2}$	2.916	1.78
32			7.427 10-3	7.793 10-3	4.50 10-2
33			6.316 10-2	6.182 10-2	2.676
34			2.172	2.728	2.397
35			5.854 10-1	6.220 10 ⁻¹	2.459
36			6.871 10-2	6.502 10-2	2.590 10-2
37			2.704	2.690	2.835
38			2.334	2.352	3.380
39			2.720	2.764	4.600
40			3.811	3.915	7.150
41			6.009	6.153	$1.170 \ 10^{-1}$
42			9.008	9.298	1.80
43			1.204 10-1	$1.219 \ 10^{-1}$	2.380
44			8.670 10-2	8.797 10-2	1.717
45		•	0.0	0.0	0.0

ļ

E

-

in Barrier P

1

APPENDIX 2(bis)

DETECTORS_CROSS-SECTIONS

£

!

Group Number	Au/Cd	Group Number	
1	$1.253 \ 10^{-2}$	24	6.762
2	1.646	25	7.836
3	3.556	26	1.075 10 ⁰
4	6.091	27	1.584
5	7.273	28	2.154
6	8.377	29	2.783
7	$1.004 \ 10^{-1}$	30	3.028
8	1.199	31	3.743
9	1.350	32	5.185
10	1.503	33	7.973
11	1.783	34	8.267
12	2.011	35	9.940
13	2.090	36	6.070
14	2.148	37	1.063 10 ¹
15	2.304	38	1.545
16	2.571	39	$4.381 \ 10^{-1}$
17	2.749	40	2.313 10 ⁰
18	2.962	41	3.054 10 ²
1 9	3.110	42	3.523 10 ¹
20	3.649	43	2.211
21	4.408	44	1.279
22	5.617	45	0.
23	6.460 10 ⁻¹		

- APPENDIX 3 -

- -

E

ANISN INPUT - 45 GROUP HARMONIE

1555 0 0 0 0 0 200 303430 0 5 74 0 45 5 6 50 64 8 20 44 0 0 0 0 1 0 0 0 3 1 1 0 16++ 0.00001 0. 0. 0. 0. 0. 0. 0.5 0.00001 0. 0. 0. 0. 0. T 18++ (SEE IN THE ANNEX 6) 3** 3256Z 74R 1. T 1++ -45R 0. 4++ 350.5 353.6 9I 354.6 384. 571 60.5 53.61 55.0 56.4 * 53.6 5** 45R 1. 6+ 0.1734 0.32657 2N 0.0 7+ -0.86113 -0.33998 2M -1.0 855 21R 2 41R 3 4 10R 5 1 955 29 29 33 37 41 1955 5R 3

* The one-dimensional neutron source comes from the DOT R,2 calculation at the position 53.6 cm from the center of the core. It is averaged on several radial meshes. This source is introduced on the same position in the one-dimensional calculation. HARMONIE RITHOUT SLAUKET

E

		and a state of a state of the s	· 🛥 📍			
3R	0.0	3.1081F-11	1.34275-10	3F 0.0	3.26125-10	7.24535-10
3R	0.0	1.4075E-09	2.10667-09	32 0.0	3.37542-09	4.36848-09
3R	0.0	4.08042-09	4.77252-07	3R 0.0	9.74475-03	9-34725-33
3Ŕ	0.0	7.2795E-08	6.5192E-08	3P 0.0	2.46382-07	2.32415-07
ЗR	0.0	1.2747E-07	1.03132-07	32 0.C	2.7305E-07	2.04042-07
3R	0.0	4.3677E-07	3.+837E-07	3P 0.0	3.0049E-C7	2.49-00-07
3R	0.0	1.0445E-07	9.4954E-08	3R 0.0	1.97072-07	1.40795-07
3R	0.0	7.1645E-07	5.45202-07	3R 0.0	5.35622-17	3.6868E-07
3R	0.0	7.20528-07	5.15468-07	3F. 0.0	1.55932-06	1.21775-06
3R	0.0	1-2101E-06	8.0230E-07	3P 0.0	8.67725-07	5.88752-07
3R	0.0	2.10765-06	1.4190E-06	3P 0.0	1.19418-06	7.3030E-07
ЗR	0.0	4.88955-07	3.6464E-07	39 0.0	1.05565-06	7.20076-57
3R	0.0	1.57455-06	1.0088E-06	3E 0.0	1.77265-00	1.1173E-06
3R	0.0	9.4731E-07	5.63895-07	3P 0.0	9.5074E-07	5.95345-37
ЗR	0.0	1.9561E-07	1.2963E-07	3P 0.0	1.5701E-07	1.06445-77
3R	0.0	3.10688-07	2.0299E-07	3P 0.0	1.20035-06	7.46005-07
3R	0.0	1.1967E-06	7.0737E-07	3? 0.0	1.0527E-05	6.55668-07
3R	0.0	8.76472-07	5.03042-07	38 0.0	9.9952E-07	5.92705-07
3R	0.0	9.3097E-07	5.5754E-07	3P 0.0	1.22452-06	7.36376-37
3R	0.0	1.0490E-06	6.31542-07	38 0.0	1.0784E-06	6.4673E-37
3R	0.0	7.24275-07	4.3036E-07	3R 0.0	3.3646E-07	1.96465-07
3R	0.0	1.8530E-07	1.05345-07	3P 0.0	7.25565-06	4.05542-03
3R	0.0	2.9249E-08	1.46992-53			-

HARMONIE WITH BLANKET 3.07925-06 2.92915-03 3R 0.0 2.52835-09 2.8537E-09 3P 0.0 6.84625-03 6.1252E-08 3R 0.0 5.32292-08 5.11352-09 3R 0.0 3R 0.0 4.99632-38 4.24942-38 32 0.0 1.6046E-07 1.552JE-07 1.2453E-07 1.0541E-07 3F. 0.0 2.0987E-07 1.90635-07 3R 0.0 1.3862E-07 2.09705-07 1.50735-07 3R 0.0 1.18442-07 38 0.0 2.8101E-07 2.1940E-07 3P 0.0 1.80725-07 1.4612E-37 3R 0.0 1.23865-37 5-27632-08 4.44082-08 38 0.0 1.55885-07 3R 0.0 5.13305-07 4.0451E-07 3P 0.0 5.06542-07 3.79735-07 3R 0.0 3.86135-07 3R 0.0 6.4901E-07 4.90382-07 35 0.0 1.20212-06 9.0390E-07 3R 0.0 1.27455-05 3.70915-07 6-09502-07 3R 0.0 2.28375-05 1.5914E-06 3P 0.0 2.01195-06 1.33098-06 3R 0.0 7.71058-07 5.421-5-07 3R 0.0 3.77625-07 2.62795-07 38 0.0 3R 0.0 1-97432-06 1.3330E-06 3R 0.0 2.25942-05 1.48298-05 3R- 0.0 1.53105-06 9.72945-07 37 0.0 1.03445-06 6.42212-)7 3R 0.0 9.74245-08 6.0320E-08 35 0.0 5.95698-03 3.80348-13 2.0319E-07 1.29935-05 3-16335-17 3R 0.0 3-14865-07 38 0.0 3R 0.0 7.25300-07 1.3863E-06 8.45132-07 3F 0.0 1.10952-06 9.57402-07 5-56070-67 1-08532-06 3R 0.0 5.4425E-07 38 0.0 5-39128-07 8.12842-07 9.3703E-07 3R 0.0 4.7135E-07 3F 0.0 3.3865E-07 3P 0.0 5.75242-07 3.8270E-07 3R 0.0 5.8620E-07 1.09105-17 3-52395-07 3R 0.0 1.96925-07 1.93515-07 39 0.0 3R 0.0 1.25725-07 5.9425E-05 3F 0.0 5.23351-08 2.93521-53 2.16955-09 1.13-45-09 3R 0.0

- APPENDIX 4 -

SHELL SOURCES

	1 1 1		
	•	- Š XIONJUU -	
		un in aù gu an Ch 7ú 1ú nà mi hi il ai gi al Cl ≥i 1í. — N3mm∩n	
10 P0 16 00 60 00 F0	20 10 NO, AS 05 /C 05 45 46	[5 26 15 n5 no do je un 60 no fo 20 10 no 80 HF j£ nf - #3kw/W	
-C FE 25 31 34 30	14 50 51 55 53 54 52 59 51	at 1 t et €t Et 21 t t ol € a 7 3 € • C 2 1 = 83aw∩w	
		1 N 0 3 1 3 8 7 6 8 / 4 4 4 2 1 = 108MAS	
	4//////////	LCCCCCC+++++++++++FFFFFFFFFFFFFFFFFFFFF	
•	AAB/QC+F71AAB/44+F71AAB/	qcuf7105gjocof21naujocof71naujo co f71naqj ocof71naqjocof71 du x 124	
	*************************	rer anaaana ungenaan ayeenaningaaannaanaanaanaanii []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	
	************************	**************************************	

		In non-the near your state of the second	
		eueenee.eneeene.enee.enee.enee.eneeneeneen	
	*************************	ceananncancp concernativen-sonnangampedings()	
	***************************************	······································	
	***************************************	εεεεεεεεεεεεεεε εεεεεεεεεεεεεεεεεεεεε	

	**************************************	566.666666679999999999999999999999999999	
	**************************************	50*** 66 666 6 666 6 666 666 666 666 666 6	

		Cocococococococococococococococococococ	
	and an a platiticities		
		· · · · · · · · · · · · · · · · · · ·	
			:
:			, i
			,
	Manananan () () () () () () () () () (······································	• .
		//////////////////////////////////////	. –
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·
	₩₩₩₩₩₩₩₩₩₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	$z = y u \sigma z = y$
		**************************************	[
	NAMES AN FOR PROPERTY	·····································	uoioa liau - c
1	NMM.HEALTCFFFFFFFFFFFFFFF	**************************************	
		······································	XUD1 10015 = N
			poom = N
			0 londld
			$umu = q^{u^{n}}$
	MARTIN STATESTOR		
			taindly to
			19912-8891u1015 = J
			$a_1a_1a_2a_2 = T$
			actoslog = g
			18XUD19 10124 = W
			ternold lothos = I
		63*** <b>1111111111111111111111111111111111</b>	ə109 = I
		<pre>control configuration for a first and a first and</pre>	
			UO12D212DW2425 JAA
		r in Flaining an ann a' fhailte an ta thairt an thairt an thairt an thairt an the main of the transition of the A maintean de ann an thairt an the an an thairt an thairt an thairt an an tart an thairt an an an an an an an a	
	ለምምም እም ላ ይያ ይይ ት የታር ነው ት ላ ይ ይይ ት ት የሚገኛ የምም ት የ ይ ይ ይ የ ይለ የ ይ ይ ት ት የ የ ይ ት ይ የ የ የ የ ይ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	a malanday nangha nangha nangha nangha a ang antatata na na ana ana ana ang manala ana ang ang ang ang ang ang A malanday nangha nangha nang ana ang ana ang ang ang ang ang a	
	······································	nan szanze szerek verese vere vere veresztetetetetetetetetetetetetetetetetetet	
		$\sum_{i=1}^{n} (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)$	
	a an in an	R L NUMBER DE LANGE	
			,

HARMONIE WITHOUT BLANKET - APPENDIX 6 -615\$ 0 3 13 80 106 45 5 6 50 104 0 48 100 0 15 1 1 0 1 0 1 100 100 3 0 2 305 11 4R0 5 3R0 35 0 3 0 13 7P0 2 1 1 BRC 6255 10 12 11 30 3 13 4 23-21 27 8 50000 0 0 63++ 1.0 0.5E-04 0.1E-02 0.25E+03 14RG.C Ť 7+ D8--49500473 8--35002120 3-+35002120 8--9367+178 8--40834028 8--35002120 8-+35002120 3-+66889028 8--49500473 8--35002120 8-+35002120 8--93074173 9--86889028 8--35002120 8-+35002120 3-+36889028 8--86889028 20 1 8--35002120 40 1 1 8-+35002120 40 8-+86889928 20 1 Ť 6+ 9-8333333.10 9-83333333. 30 .0 1 • 0 1 9-83333333.10 .0 9-83333333. 30 . 0 1 T 1355 6600 6601 6602 6603 6700 6701 6702 6703 100 101 102 103 200 201 202 203 300 301 302 303 2000 2001 2002 2003 1100 1101 1102 1103 800 601 402 800 2100 2101 2102 2103.400 401 402 403 6900 6901 6902 6903 6800 6801 6302 6803 T 300 45R1.0 T 1... 4520.0 2++ 31 0.0 61 5.7 51 16.0 24.2 121 26.3 21 46.0 51.3 51.6 51.7 56.3 60.9 161 65.5 91 150.5 200.5 202.5 201 205.5 350.5 351.5 353.5 356.5 +1 340.0 380.0 4... 4I 0.0 6.2 3I 7.4 3I 12.39 23I 16.5 50.447 10I 51.8 74.4 76.0 78.0 81.0 111 25.0 139.0 140.0 142.0 145.0 41 149.0 170.0 500 45P1.0 855 5R1 9R2 42F4 24P6 3380 5R3 9R2 4274 24P5 5150 5R4 1R5 5JR4 24R6 30R0 56R4 2486 44810 1287 2486 12080 9R9 35P13 12F7 24F6 2080 72R13 8R12 5588 1913 1585 1813 6812 20090 55R11 1813 15711 1813 3812 9080 55R11 17P13 8R12 55811 1813 15811 1813 8812 29280 72R13 8R12 80R12 7020 955 -49 -53 -57 -61 -65 -69 -73 -77 -61 -85 -89 -93 -97 1055 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2866 2851 2862 **2R63 2P64** 2R65 2R65 2R67 2868 2R69 2870 2871 2872 2873 2874 2875 2876 2877 2078 2279 2950 2901 2862 2833 2834 2835 2985 2807 2838 2839 2890 2R91 2R92 2893 2894 2895 2896 2897 2893 2899 28100 1155 0 9 0 10 1 11 0 12 0 13 0 14 0 15 1 16 0 17 0 19 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 23 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 1 0 2 0 3 0 4 7 25 5 26 5 27 5 25 5 33 5 34 6 35 6 25 6 5 6 5 0 41 0 42 0 43 6 44 5 45 0 46 5 47 5 43 12++ 0.0 1.0 9.3 1.3 9.7 1.3 7.3 1.3 7.3 1.9 2.2 1.0 3.3 1.3 3.3 1.3 0.0 1.0 C.C 1.J 2.3 1.5 3.7 1.3 3.6 1.3 C.3 1.9 5.0 1.8 0.3 1.3 0.0 1.00008-24 0.0 1.0008-24 0.0 1.0008-24 0.0 1.0008-24 0.0 1.0 9.0 1.0 0.0 1.0 9.0 1.0 0.0 1.0 0.0 1.0 9.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.3 0.0 1.0 5.0 1.0 5.0 1.0 0.0 1.0 0.0 1.0 0.3 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.3 1.0 0.0 1.0 0.0 1.0 3.3 1.3 0.3 1.9 0.0 1.2 0.3 1.3 3055 1 . 3 4 5 6 7 6 9 16 11 12 13 32:4 1 2 3 4 5 7 8 9 10 11 13

£

#### FISSION LDD Habushe YZT 4 YZT 5 YZT 6 YZT 7 YZT 1 -YZT 2 . YZT 3 YZT 8 XHR 1.73961E-03 1.67414E-03 1.5142HE-03 1.2HUJ3E-03 9.76674E-05 6.10417E-05 3.45575E-05 2.67621E-05 1 1.57412F-03 1.61565F-03 1.4801HE-03 1.23993E-03 9.29671E-05 5.7H222E-U5 3.76461F-05 2.53460E-05 Elanky. Villant 3 1.56659F-03 1.59697F-03 1.37915F-03 1.18248E-03 4.50526E-05 5.23340E-05 3.39419E-05 2.28361E-05 1.40357F-03. 1.34994F-03. 1.23974E-03 1.05472E-03 7.32463E-05 4.478505-05 2.92773E-05 2.013035-05 1.17A06E-03 1.13457E-03 1.144794-03 9.09482E-04 5.18149E-05 3.08272E-05 2.52192E-05 1.77484E-05 7.81858-05 7.43614E-05 6.47258E-05 5.21276E-05 3.74274E-05 2.66672E-05 1.88964E-05 1.36315E-05 5,004192-05 4.7592AE-05 4.14749E-05 3.47448-05 2.80347E-05 2.13643E-05 1.54656E-05 1.176458-05 --3. 48508-05 - 3. 305425-05 - 2. 44772E-05 2. 55400E-05 2. 12202E-05 1.04518E-05 1.24455F-05 9.94772E-06 the corre and the 9 2.530011-05 2.40145E-05 2.17640E-05 1.40642E-05 1.6323HE-05 1.33104E-05 1.451/3E-05 8.24811E-06 1. 44 ROAF-05 1. 75740F-05 1.59444F-05 1.431312-05 1.24460E-05 1.04534E-05 M.44100E-06 6.73316E-06 5.3316E-06 1.34097E-05 1.34097E-05 1.182112-05 1.07240E-05 9.54597E-06 8.1/2/9E-06 5.50027E-06 5.50027E-06 10 11 9,85010F-06, 9.47501E-06 H.HM5541-06 H.20432C-00 7.37955E-00 6.45693E-06 5.46542E-06 4.53766E-06 12 7.36952E-05 7.14334E-06 6.79242t-06 6.349178-06 5.14010E-06 4.46270E-06 3.78147E-06 13 ···· ··· 14 5.64473E-06 5.51171E-06 5.34434E-06 4.94213E-06 4.01630E-06 4.17541E-06 3.60063E-06 3.19979E-06 15 0.0 0.0 0.0 0.υ IN THHU ARE TO SAFE AS ABOVE XHR YZT 9 YZT 10 YZT 11 YZT 12 YZT 13 YZT 14 YZT 15 YZT 14 1.A4121E-05 1.27612F-05 6.20140E-06 0.0 0.0 0.0 0.0 0.0 1.73625E-05 1.27612F-05 6.20140E-06 0.0 0.0 0.0 0.0 0.0 1.73625E-05 1.11401E-05 8.0300E-06 0.0 0.0 0.0 0.0 0.0 1.57601E-05 1.02324E-05 7.40352F-06 0.0 0.0 0.0 0.0 0.0 1.27645E-05 1.02324E-06 5.36278E-06 0.0 0.0 0.0 0.0 0.0 1.27645E-05 0.35126E-06 0.0 0.0 0.0 0.0 0.0 0.0 1.27645E-05 1.02324E-06 5.36278E-06 0.0 0.0 0.0 0.0 0.0 2.79345E-06 0.79345E-06 0.0 0.0 0.0 0.0 0.0 0.0 3.7945E-06 5.36278E-06 0.0 0.0 0.0 0.0 0.0 0.0 3.79345E-06 5.37278E-06 0.0 0.0 XLD 13 14 15 XUD YZT 17 0.0 YOU 100 YZT 25 1 C.O XAR XPR YZT 33 0.0 **X (4 12** XHR YZT 41 1 0.0 160 XD2 YZT 49 1-0.0 XRR

		, , ,				- -			- - - - - -				••••	-	•	 	· • •			• •		·	•	<b>.</b>		, 1	•		•	•	, <b>r</b>		,	•	<b>)</b> 	•	•			
	H	under Robook er	the core , the bi													4.07		nd		->	<u>b</u>	о   0														· · · · · · · · · · · · · · · · · · ·				
£		7/1 H 4 4461E-05	2.444545-05 2.4446545-05	<	1./~/10E-U5 1. 14012E-U5	1.140/36-05	4.42445 - 44 1.002636 - 00	6.231366-UD 142472-Un		J. 021512-00 J. U9UA6E-06				0.0	0.0	0.0	0.0					<b>0.</b>	•	727 24 - 1 - 455102-07 -	1.041251-01	1.015056-07	1./H341E-Ur L.74A53E-U7	1-113116-07	10-1107/0-1	1.04/304-07	1.510145-07 -	1.5 Storf -07	1.443026-07	1 • 4 6 4 4 4 5 5 4 4 5 4 4 5 4 7 4 7 4 7 4 7 4	10-305-15-1	1.25870L-07	1 • 6 00 1 ve - v · 1 • 1 5 5 4 5 6 - 0 7	1.106674-07	1.054036-07	
		721 7 3-413705-05	3. //~/ut-05	1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • • • • •	2.4-10151-05 1.460771-05		1./ JUITE	1 • /4035-00	5.16877F-06	4.675376-00 3.559176-00	0.0	- 721 15 -	3.9	0.0		0°0		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				727 23 - /_U3543E-U7	2.912255-07	2.0500%-01	2.461616-4. 1.417664-01	10-3+7+7-7-1	10-4+2575-1	] .116 JUAE -11 / · 1 4 116 - U /	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1.1/04.4-01	1.044056-UT	1+7/4/02-41-07 1-014314-07	1.451705-01	1. J.G. 1E-Ur	1. < / 3051 - 07	1.217245-07	1.103045-V. 1.112145-07	TI STATE
		727 45-115 	5. / UP:JNE-U5		3.071655-03 	07-101-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1.2.4.4.4. 2.4.4.4.4. 1.4.4.4.4.4.	0.57851E-UD	6. UK120E - US	4.0-361250.4		· • • • • • • • • • • • • • • • • • • •		0.0			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						- 721 RC - 2-3514 B-UT	2. 314915	2.4.45.45.41 		2.1'iè>2E-U1	10-41/051*2		70-3(-300	1.1.1.1.1.1.1	ノロー J ロー J コー J ー J ー J コー J コー J ー J ー J ー J ー	1-111111		1.315-14-47	1.401 305-07	1. Jin 2.1 47	1.220576-41	Turk Staut
		50-101040-0	20-12/14/2		10-10-10-1	50-305.mm		1.1.1597E-US	5. V.JAALE-04	5.37675E-00	0°U						0.11	2.3		e • •		0.3		· 727 / ·	2. e. 7 . 1 . t - 4 7	10-10 5440 7	2.551956-07 2.551966-07	20-355-61	1-1-1-5-V		×		13145455 3*6	- 2 m - 3100044 - 1 -	1.11134-07	1.545.46E-UT	1.54144	1.4/11/6-07	L	1 - 77 1 1 1 5 - 11 7
•		¥27 4 1 2014111-03	1.72 1251 - 17 1.72 1251 - 17		90-908-008-00-00-00-00-00-00-00-00-00-00-00-	3. 1: 1: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:	1.7.55.16-05		7.64116F-06	0.000 Jeb - 000			· · ·	0.0			0.0	0.0				0°0.		/ 1- 371/ 51 F	1	10+4950000 .	1 4 - 12 6 4 4 5 7 7	2.465446407	24-36/01 1.72	211-21-102-2	10-301125-2		<pre>&lt; * &gt; * * * * * * * * * * * * * * * * *</pre>	24-3462-642	70- 10-25-0- 1	1.3/04/2 -07	- 10-3100.0.1			
		177 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1.0-39F(98) (		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 45 M 21 - 05			n.eantrean 5.lan71L-an	34047 52 28046			98-319652"Z -	-97-1-7-6-4	50-31-51-51-51-51-51-51-51-51-51-51-51-51-51					an- luč stati u	G.C. AS APDUF			Lu- sitely F	10-4125454			14-4.61 45.57		- 25-34 and - 21			こう ゴー こう ちょし						- 1 3 4 1 4 4 1 - 1
	riss of stra	7/1 2 1 444/95-03	- 60-362557 -			61-16-2404-4 61-16-2404-4	3.174345 - 445 2.174345 - 445	1 - 52 0 34F - 11 - 1 2 - 1 - 11 7t - 05	1.1.20F-05	5. 35.2705-00	4.6 101 11.2 74.	771 17 1.2521 8 - 457	20-3612-1-1	1 - 41 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2		7.231 17 5. 191371		201- 125-201-2 201- 125-201-2	3. 471475-15 2. 7. 1447 - 14		2.270015	0.41 (01) 48.21 - 7A-11		YZT 46 0.40						6°6			5.9		0.1	0. <del>4</del> . 0		1 		
		1 127 1 .	Fr-1954222 -	1. 10410F - 57. 1. 10410F - 57.		20-11-02-4.4	3.77441]E-05		100 110 100 - 000 	7. 17.11 1. 17. 19. 5. 19.10 1. 19.	AL AL ROA	721 - 1 	1.70444	1.351001-00 1.3943-0-05	55-+5-C*-L	6.77.175 - CS	10-4502-4 10-4502-4	<b>A</b> , N 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	チュート アフアニナ ール・ハ マニデム ちゃらじ ールハ	46-36242.E	2.544145-11-5 - A		~ * **>			6, c				, , O, C		с. С	· · · · · · · · · · · · · · · · · · ·	· · ·		с. С		<b>5.</b> 0	<b>7.1</b>	
		2	~ ~	)	<b>r n</b> i	~ €		12	25	12;	<b>s</b>	АРН		<b>7 </b>	ເທ 🖬			' e ;	= _	67	: :	1 -		· - /	<b>(</b> \.; m	" 4				•	U L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:::::::::::::::::::::::::::::::::::::::		<u>.</u>	<u>.</u>	7 7 			•

τ, ÷. ۰. ł ۱ ביישמעיןיזיי : ţ 1 : 1 , 1 I I . ÷ ļ . • ł ; ; i ł i ł F . ï : ł 1 i ÷ ANY RE 1 i 5 1 ŧ į 1 ---į ł ł i . Ì 1 ! į ÷ i 1 * * * * * * **F** * -----------Ì ł i ļ ; ļ Ì ; 1 ł ł ł i ÷ 111 i ļ 1 1 İ İ į ł İ İ ł ł • -ŧ i ; • ļ ..... • I . 1 ļ ļ : : | İ ţ ł į į ł • . ! i . : 1 1 ļ 1 ! İ : ! İ i ł ļ i ŧ : ł i I R0-P0-801 5°-110 90-80 -**R0-**80 -P0-100-63-301 10-100 87-100 10-6.14704E-08 80-P0-Po-**P** 2 **P**0-123-104 80-100-102 87-4.26027E-05 8.84/44E-UA 8.44744E-Ud 6.34470L-0A 80-4.41230E-08 * * < > > < 1 = 1 = 0 A -6.031756-08 H0 - . 3-- 09 80-4.7001][-0H 2.62122E-04 3.44744 3.40366E-3.43541E-0.0 5.70405E-- 342.42.4 N 8.052×11 7.084436 7.32455 6.0+522E 5.161136 5.442636 5.UU032L 4.1.40566 4.5412JL 4.11504E 5.62202E 3------5.20H74E 30/611.4 345873.4 3.444176 3.14016 3.640746 3+34446-6 315215-6 3.4840.6 よいりょう 2.124.36 6.4875E 6.65445E 20224205 4.546045 4.42436£ J.+444E 3566+8-5 127 2 **20000** ••• 7。44410E-07 7。41037E-08 7。23643E-03 3.41436E-08 3.21215-03 10-1.62174E-09 7.56631E-04 1-2-1405-00 1.00011E-08 6.40534-04 6.1JU44E-04 5.Y2Y2JE-Ud 5.72403F-94 5.22451E-UA P0- . 10-4-54.3556-04 A. 51.305F-08 8.40127E-05 1. UJ201E-04 80-350552.0 5.642516-08 20-3/26/4.5 5.14104E-Ud 4.71041E-08 4.71033E-08 1.58274L-0h . + 281 56 - 08 .192556-08 4-11+736-08 7.656851-08 1-1-1+04-01 7.0434K-0R h.73n2+L-03 80-3F119.4 6.44444-01 6.322414-04 2.425-104 40-3170E1.2 ヒローニアモナナル・ナ 4.55531E-UN 3. 7 / 444E - 04 3. / 1554E - 08 ちつー レンマンロニ・ノ 1.66]835-08 n.5/5/vivi-14 nu-3415ev.c 4.115046-04 1.50167E-UM 24743E-04 1.13n14r-0d エコードトンシンコー 1.01424F ī 1-1-1-1-1-4 127 þ ð R. 1 3548 - UA H. 1 1 345 - UA 7. 4166 - 18 - 19 7. 510 165 - UH 7. 1 50 365 - UH 7. 1 50 365 - UH 6. 11 /2 14 6. 15 11 /2 14 5. 0 /2 44 5. 0 /2 44 5. 0 /2 44 5. 1 34 74F - 48 4. - 35 4 - 48 4. - 72 45 - 48 - 5----r./jnjt-ud 4.u4951E-Ud E 3 | £ ... # () | 1231 5--011116-07 HU-3614/1.0 5-A. 555775-08 4.405515-08 ねいーぶん いじいい ドイトションドーショ 4-1-1/12-09 オコーゴーングロコー トレー ブレー フロフ・ セフー ゴンアイアワッチ A. JAC Laf - UA トコー シンファフ・ オコー さってしつつ ち 5.6-31-5-0A ドレーゴン・ログにゅー エフーぶいいどい・ 10-1:00-0-10-アフーンドレウドフ・ 3.514005-04 A-7-5-1-5-7.6 3. - 3. - 5. - 6. 3. - 1. 3. - 5. ちょ よいろにゅだ ー じみ アコーヨシェーナド・ ちゅいつ ごた ー ロオ 3.004105 324241.8 112200. 192244 ......... 4-9-4-9-4 Jer le. 4.1392.4 171 į i. 4 - 1 7 / 7 / 7 - 08 4 - 3 1 / 7 / - 08 7 - 3 - 1 - 1 - 1 8 - - 1 - 1 - 1 8 - - 1 - 1 - 1 8 - 1 - 1 - 1 7. 140 14E - UH 7. 140 14E - UH 4 • + 5 / 5 | F - 14 2 • 5 | 4 2 5 E - 6 8 871 1-0-35.46-01 エコーゴデフニット・フ 1.010110-01 1.52250E-68 80-313771 ** N- 103/07 - 11 4.040 14 - UN 0-0443iE-03 カニー・ イナインナイー ニタ ビリー ろくじゃし ざ・ぐ 5.215245-63 5.11 vn 36-00 83-35557.4 80-205022... 1. 512414 - 44 N. 3255715 - 44 H. 107574 - UB 7.347.96-94 h. / 41 325 - 4d 6 • 5 35 × 45 • 42 4 0-13-150-0 たっしょう しょうしゅう **7.336282-8**3 5.10-1/r-ne ちょう イニト したい カロージーングビノ・ - 2421 44-05 • 14754E-08 ピュービッショア・ 1. / 1. 1. 1 | L - 1. 1 1. 00- 7 hE - UG 1.10~4/25-07 ロコー シックシット・ショ ~ "う コニナエ " • 70-11-2-7 70-11-2-7-1 70-1-2-7-2 1 - 1 194 197 - 97 1 - 2 / 2 : 2 : - 11 / 1 - 2 : 2 / 2 : - 11 / 1 - 1 - 2 : - 12 / 1 - 1 - 1 - 12 : - 12 / 1 - 1 - 1 - 12 : - 12 / 1.12996-07 1.123375-07 1.111201-07 40-J015-46*0 No- 3710-01-0 10t III 1.44 3454 -07 4.71614F-04 Тс I - 53 TC-.......... 199-3212277-2 111 111 n. 4] 3/]F - 38 n. 1 14 / 01 - 48 5--Ĩ 0. 31467E-04 111 N III ----8 0 1 Ę 20-100010-0 2.7.4011 -04 5.-11L-04-0 ヨピージンドッドニット 88-31 101 8 11-24495 オニーショーン・ノアーニ 5.5-150E-4H 4.112 JL - 64 hu- 301140. チョー イントントッチ 2.1.5015-04 エニー トノワ てっ アック 1-1-1-1-1-1 しんしょう いったいいた ークス • 12.11.1.6 ŝ 1+ n6-.0 * 4.1002 .P ちょう ひょう .clait. たいたいさき 127511-6 ちょうし ま 5+ 3-50 Hr .1..... La truch af 121 Þ ŝ à . . . I Lu-Sterre. 1.1441.5-07 - - -12 10-12:57*5 - -Ē 10i i i 101 HD+ R.S.J.19*4 ... 11:11 152 - 17 1-1--17 ----Ĩ ŝ 10-5 = 1 101 L / 0 - 201 / 11 - 1 / 0 - 1100 / 11 - 1 1 1-1-1-1-1-1-1-1 1.212114 20-120 v2 v · V H0- 4-112 211-4 NG-1162111 - 51 40-300 L < < < < 20-3-1441-1 1.112146-17 -67 ビコーシーン ドー・ア un- lut sur."/ ト・フレント・フ 1 ファーション ニーション i アニー チンチング・ト ier 1 5.31 1.1 ì Ì Ì Ī ····· | · · · · · · · · ビー ビン・シン・コー ø - Parten L. 2 1.0.000 1.1744 * ...... Present to TH. VL Y ! . / ..... 1.1 4 · · · · · · · · 5.715611 10000 **** デュニュン・ ICT.ALL .I 1......... 145760-1 ~1.00.1 1・1/1/・ ションシャン・ト 7.11.4.1 111111110 +++++++ アーフィンショク 1.101 10-25 1-5 34526271--68-1. ...... 0.714475 1×6 4114. 1----+----*I*. 121 = 5 Aut ł ÷ ; , • į ł ; į • 1 d= 4mi [ ut -. 3/2/2/16 - 37 1 - June 1E . MM- 100. 1011 * 1. 211-2[++]5. 10- 11 ריור זיוור איי א 21 1-1-1-1 on-llygon, **となー ふごうへだ。** とっし シットン・・・・ 20-3124-1-. 10- 1-5-11 -1 . L . - 144 - 144 - 144 ショーン・フィー・ 11- 11 SUL ; ! 1- 1-1-27 L i • 1 • 1 : Ì i ŝ ; ļ 311677. 114141 . 1.1 : I · · · AWN 121 1 · 1 ٠ i . ----***** e. . 5 C 2 C ----0.0 с. с **.**.. : e. e . . . ٩, ÷ Them F 5 • 51-30E CAA. - 12 5 1.1 しょうぶい どうりょう [1-30( 107 5-3-35-35-4 LUNDER IFE. アニールティッペー ŝ 51 ..... 12-12-24 しいーうくしゃじゃ。 [ - - - - - C / - - - ] 10-311 -04 1. - - - - - 1 - 1 - - - 1 しょう れんじょう じゅー ・・ トゥピイン ויי- אאר און. オジー・オイナンド・ トレーニット 28ニッ 4.715 Jun ----i • 10--1--1ī ļ Ş Š, 1 41. . . . . 11-12. 1.1. 12 4 7 7 1 BOLLUN. 10.01 はってんり 7 1-2155. 727 Ē Ļ -----............. Herk 5000 a c đ . ιČ ď Rekererfensensen 52555222 ç 7 7 こえん えんれき たったのさい 11 i Į ; 1 ı. . . . . . Į. 1 1 ţ ÷ + .' : , :::: i ł ł į ļ ŕ ÷.

• 1

ţ

ţ

# - APPENDIX 8 -

E

Fission Spectrum used in the DOT.Volume calculations

			·
. 1	1.1397 - 02	24	3.1754 - 04
2	1.2811 - 01	25	6.6479 - 04
3	2.0443 - 01	26	4.6677 - 04
4	1.3782 - 01	27	2.2127 - 04
5	8.7001 - 02	28	1.0475 - 04
6	1.7859 - 01	29	1.3075 - 05
7	5.3485 - 02	30	1.1256 - 05
8	4.3828 - 02	31	2.5214 - 05
9	1.8626 - 02	32	2.3422 - 05
10	3.1450 - 02	33	1.1069 - 05
11	2.477 - 02.	- 34	5.2303 - 06
12	1.0260 - 02	35	2.4711 - 06
13	2.3681 - 03	36	1.1874 - 07
14	6.6647 - 03	37	5.5146 - 07
15	1.4832 - 02	38	3.3345 - 07
16	1.1409 - 02	39	1.0825 - 07
17	8.6880 - 03	40	4.0428 - 08
18	9.2425 - 03	41	9.0210 - 09
19	6.5691 - 03	42	1.7498 - 09
20	2.2773 - 03	43	5.6810 - 10
21	4.2908 - 03	44	1.4410 - 10
22	1.9151 - 03	45	0.
23	1.4443 - 94		

1

1 I

1 1 1

1.1

Т

# - APPENDIX 9 -

# PROPANE Do - 45G

	G	Corres- pondance to BABEL	En sup	٥u	G	Corres- pondance to BABEL	En sup	Δи
~	1	1-7	14.19 MeV	0.65	24	65-66	24.788 KeV	0.125
	2	8-17	7.408	0.70	25	67-68	21.87	0.375
	3	18-23	3.678	0.50	26	69-70	15.03	0.5
	4	24-26	2.231	0.30	27	71-72	9.11	0.5
	5	27-28	1.65	0.20	28	73-74	5.53	0.5
	6	29-33	1.3534	0.50	29	75	3.35	0.1
	7	34-35	820.85 KeV	0.20	30	76	3.03	C.1
	8	36-37	672.06	0.20	31	77-78	2.74	0.3
	9	38-39	550.23	0.1	32	79-80	2.03	0.5
	10	40-41	497.87	0.20	33	81-82	1.23	0.5
	11	42-43	407.62	0.20	34	83-84	7 <b>48.52 eV</b>	0.5
	12	44	333.79	0.1	35	85-86	454.0	0.5
	13	45-48	301.97	0.025	36	87-88	275.36	0.5
	14	47	294.517	0.075	37	89-90	167.02	0.5
	15	48-49	273.24	0.2	38	91-93	101.30	0.75
	16	50-51	223.71	0.2	39	94-96	47.85	0.75
	17	52-53	183.16	0.20	40	97-100	22.603	0.75
	18	54-58	149.96	0.30	41	101-104	8.315	1.0
	19	57-58	111.09	0.333	42	105-107	3.05	0.75
	20	59	79.6	0.186	43	108-110	1.445	0.75
	21	60-61	87.38	0.5	44	111-112	0.6825	0.5
	· 22	82-83	40.87	0.45	45	113	0.414	-
-	23	64	26.05	0.05				

I I I I I I I I I I I

Ę.

8



- 11a : Thermal column: graphite
- 11 b : Carbon steel
- 2-3-6-7-12-13 : Concrete
  - 10 ; Horizontal measurement channel (not used in the present experiment)
- 7: Zone for stainless-steel slabs or UO2-Ha blanket (Harmonie configuration without or with blanket) (The blocks 2,3,6 and 7 are eliminated during the experiments)



 $1,1,\cdots,1$ 

1 1

- 2. Intermediate position
- 3. High position

I I I I I I I I I

Ê

Fig.2



. . . . .



1.1

1

1

1

Fıg.4



}

1 11 1

1

____



П

I = I

1 1 1

1 1

1 1 1

1 1 1



1 1

1 1 1

1 I II I I

1 1



