Albuquerque, NM (USA) CEA-CONF--7803

FR8501857

LIQUID METAL VERSUS GAS COOLED REACTOR CONCEPTS FOR A TURBO ELECTRIC POWERED SPACE VEHICLE

F. Carré, E. Proust and J.P. Schwartz Centre d'Etudes Nucléaires de Saclay (33-3)-908.54.04 Service d'Etudes des Réacteurs et de Mathématiques Appliquées Département des Etudes Mécaniques et Thermiques 91191 Gif-sur-Yvette Cedex (France)

Recent CNES/CEA prospective studies of an orbit transfer vehicle to be launched by ARIANE V, emphasize the advantage of the Brayton cycle over the thermionics and thermoelectricity, in minimizing the total mass of 100 to 300 kW_e power systems under the constraint specific to ARIANE of a radiator area limited to 95 m². The review of candidate reactor concepts for this application, finally recommends both liquid metal and gas cooled reactors, for their satisfactory adaptation to a reference Brayton cycle and for the available experience from the terrestrial operation of comparable systems.

The development of conceptual designs for both reactor concepts provides the input data to identify the critical technological problems and design features associated with the choice of either coolant. Both considered designs assume a filling factor in fully enriched UO2 of 40% in the form of 0.6 cm in diameter fuel pins canned in O.I cm thick Molybdenum/Rhenium tubes and arranged in a tight triangular lattice with a pitch of 0.9 cm. The aimed reactivity margin of 5% at the beginning of life assigns the core height and diameter to 45 cm, with 15 cm thick axial reflectors made of BeO pellets stacked at both ends of the fuel rods and with a 8 cm thick radial reflector made of Be or BeO. Meeting the beryllium temperature and fluence technological limitations restricts the reactor thermal power to 1 MW; in return, a reactor power in excess of 2 MW implies the use of BeO for all reflectors. Auxiliary control devices in the form of either exchangeable ${}^{10}B_{L}C$ and BeO central plugs or distributed core poisoning by specific thermal absorbers such as Gd₂O₃, are compared with respect to providing a - 5% subcriticality margin in case of immersion and minimizing the penalty in normal operation.

The impetus for a gas cooled reactor lies in its immediate readiness for the start up and in its capability to drive a direct Brayton cycle, provided the temperature rise required by the reference cycle (1000 to 1400 °K in the core) be compatible with adequate heat transfer capability. Both fuel in and out of tube concepts as compared with respect to their capability to meet a temperature limitation of 1550 °K on the structure. The former is finally recommended in the form of a tight lattice of fuel pins cooled in double passes by helium pressurized at 25 bars, successively entering the cold core outer region and the hot inner zones. The alternative core concept cooled by axial pressure tubes exhibits the potential for an improved fuel filling factor and for an easy adaptation of a fuel venting system, able to relieve the pressure load on the walls of the cooling channels, when calibrated at the coolant pressure ; however thermohydraulic considerations prove that, even if the heat transfer enhancement brought by the use of annular cooling channels, equiped with individually celibrated diaphragms enables to meet the temperature limitation criterion over the entire core characterized by power fluctuations of 20% about the average, this solution finally appears not to

1 I

be realistic, given the reduced size of the requested gap between the walls of the annular section (0.1 cm) and the extreme sensitivity of the wall temperature to any change in the gap width or the power distribution. Both gas cooled reactor concepts adopt a coolant routing scheme, specially designed to keep the pressure supporting structures below 1250 °K and to restrict the pumping power to less than 2% of the removed heat.

Contrary to the gas cooled reactors, liquid metal systems are featured by a significant thermal inertia, a low pumping power and a quasi isothermal heat transfer ($\Delta T \leq 50$ °C) to any type of separate conversion loop. The potential for a low pressure operation at 1400 °K increases with the metal melting temperature and depends on the ability to efficiently purge the coolant from the helium produced by (n, α) reactions; however, the desirability of a low pressurized system comes in conflict with the search for a low melting temperature, necessary to keep the preheating manageable before the start up. The respective capability of lithium, sodium and NaK to realize an acceptable trade-off in this respect is evaluated as well as the realism of various preheating scenarios based on ohmic heating or on the use of Pu238 loaded fuel or heating devices. Preliminary investigations indicate, that a total auxiliary power of 4 to 6 kW would be adequate to preheat the core of the considered lithium cooled reactor (2 to 3 kW) and to bring the coolant of the primary loops from 270 to 500 °K in 4 hours.

This work performed in the frame of a joint CNES/CEA programme may be considered as a first attempt to evaluate the presently considered reactor concepts for space applications, with respect to their adaptability to the specific ARIANE launching conditions of a european orbit transfer vehicle.

INTRODUCTION TO FRENCH CNES-CEA SPACE GENERATORS STUDIES

- . THE FRENCH NATIONAL SPACE AGENCY (CNES) INITIATED IN 1982 A COLLABORATION WITH THE FRENCH ENERGY COMMISSION (CEA) ON NUCLEAR SPACE POWER SYSTEMS FOR CIVILIAN APPLICATIONS
- . PRELIMINARY SCREENING STUDIES IN PROGRESS DECISION YEAR 1986 TO LAUNCH R&D PROGRAMS
- . PRESENT REFERENCE POWER SYSTEM SPECIFICATIONS

ERATO - STUDY OF AN ATOMIC ORBIT TRANSFER VEHICLE

- ELECTRIC PROPULSION FOR AN OTV TO EXTEND THE ARIANE 5 PERFORMANCE TO 9 TONS IN GEO (2000/2005)
- ELECTRIC POWER : 100 TO 400 KWE
- LAUNCH CONDITIONS SPECIFIC TO ARIANE 5 ALLOW THE RADIATOR AREA TO EXCEED 100 M² AND THE SYSTEM MASS TO EXCEED 3 TONS
- . PRELIMINARY PROSPECTIVE STUDIES OF CANDIDATE CONVERSION SYSTEMS EMPHASIZE THE ADVANTAGE OF A BRAYTON CYCLE OVER THE THERMIONICS AND THERMOELECTRICITY IN MINIMIZING THE TOTAL MASS OF 100 TO 300 KWE POWER SYSTEMS UNDER THE CONSTRAINTS SPECIFIC TO ARIANE
- . THE REVIEW OF CANDIDATE REACTOR CONCEPTS FOR THIS APPLICATION FINALLY RECOMMENDS BOTH LIQUID METAL AND GAS COOLED REACTORS, FOR THEIR SATISFACTORY ADAPTATION TO A REFERENCE BRAYTON CYCLE AND FOR THE AVAILABLE EXPERIENCE FROM THE TERRESTRIAL OPERATION OF COMPARABLE SYSTEMS

LIQUID METAL VERS''S GAS COOLED REACTOR CONCEPTS FOR A TURBOELECTRIC POWERED SPACE VEHICLE

- , INTRODUCTION TO FRENCH CNES-CEA SPACE GENERATORS STUDIES
- , REFERENCE ENERGY CONVERSION SYSTEM
- . ADAPTABILITY OF VARIOUS REACTOR CONCEPTS AND TENTATIVE EVALUATION OF THE ASSOCIATED TECHNOLOGICAL OPTIONS

GAS COOLED REACTOR

- IMPETUS FOR A GAS COOLED REACTOR TO DRIVE A DIRECT BRAYTON CYCLE
- REVIEW OF SPECIFIC PROBLEMS
- HEAT TRANSFER ENHANCEMENT AND CONTROL OF THE STRUCTURE PEAK TEMPERATURE
- COMPARATIVE STUDY OF VARIOUS COOLING, CHANNELS FOR A FUEL OUT OF TUBES REACTOR CONCEPT
- FUEL IN VERSUS OUT OF TUBES
- DESIGN OPTIONS FOR A GAS COOLED REACTOR DRIVING A DIRECT BRAYTON CYCLE

LIQUID METAL COOLED REACTOR

- IMPETUS FOR A LIQUID METAL COOLED REACTOR AS A HEAT SOURCE FOR
- . ANY TYPE OF SEPARATE CONVERSION LOOP
- REVIEW OF SPECIFIC PROBLEMS
- GAS PRODUCTION AND PREHEATING BEFORE START UP
- DESIGN OPTIONS FOR A LITHIUM COOLED REACTOR

CRUCIAL ISSUES COMMON TO BOTH REACTOR CONCEPTS

FUTURE STUDIES

COMPARATIVE EVALUATION OF VARIOUS SPACE REACTOR CONCEPTS ACCORDING TO THEIR TECHNOLOGICAL OPTIONS

	LM COOLED REACTOR	GAS COOLED REACTOR		HEATPIPE REACTOR	IN CORE THERMIONICS						
TODAY AVAILABLE EXPERIENCE											
IMPORTANCE AND TIMESCALE OF THE TECHNOLOGY DEVE- LOPMENTS REQUIRED BY THE CRITICAL ISSUES	!	!		!		!		!		0	0
START UP	?		!	!	-						
ADAPTABILITY TO VARIOUS CONVER- SION CYCLES	!	(3	!	-						
OPERATION WITH A FAILED FUEL OR COOLING ELEMENT	-		-	?	-						
FUEL ELEMENT COMPLEXITY AT, PRESSURE LOADS	Pins !	PINS ! ?	TABS ?	TABS AND FINS	TFE ? -						
CORROSION VENTING BEHAVIOUR UNDER IRRADIATION	??	! ? -	! ?	?	- - ?						
STRUCTURE OPERA- TING TEMPERATURE	?	L	-	?	?						
ISOTHERMAL HEAT TRANSFER	!	?		!	!						
THERMAL INERTIA	!			!							
REDUNDANCY/RE- LIABILITY	-		-	!	!						
POTENTIAL FOR EXTRAPOLATION	!	? -		-							
SUBCRITICALITY IN CASE OF IMMERSION	-		?	-	?						
VESSEL THICKNESS/ DISPERSION IN CASE OF REENTRY/ CONTROL WORTH	-		?	!	-						
TRANSIENT RESPONSE	!		4	TO BE STUDIED	!						
	, PREHEATING SEPARATION	BRAYTON CYCLES	STIRLING	. SIGNIFICANT VELOPMENTS	TECHNOLOGY DE-						
MAJOR CRITICAL ISSUES	OF HE ALL STRUC- TURES OPE- RATING BEYOND 1 200°C	. CONTROL OF THE PEAK TEMPERATURE . AXIAL TEMPERA- TURE GRADIENTS (~ 200°C)		FUEL ELEMENT ? . ACCOMMODA- TION TO HEATPIPE FAILURE ?	TFE ? THERMIONIC CONVERSION ONLY SIZE/WEIGHT START UP ?						

I.

1 I I

1 1

ţ

1.1

IMPETUS FOR A GAS COOLED REACTOR TO DRIVE A DIRECT BRAYTON CYCLE

ADVANTAGES	GAS COOLED	REACTOR	DRAWBACKS
. AVAILABLE EXPERIENCE FR PLANTS (EXTRAPOLABLE ?) . IMMEDIATE READINESS FOR	OM TERRESTRIAL START UP	. NO INCENT COOLED RE VERSION S (DIRECT C	IVE TO ASSOCIATE A GAS ACTOR WITH ANY OTHER CON- SYSTEM BUT GAS CYCLES COUPLING)
PRIVILEGED ADAPTATION T STIRLING CONVERSION SYS FORM OF A DIRECT CYCLE	C BRAYTON AND TEMS IN THE	. DRIVING A IMPLIES A RISE (TYP QUENTLY L GRADIENTS	A DIRECT BRAYTOR CYCLE A LARGE COOLANT TEMPERATURE PICALLY 400°C) AND CONSE- ARGE AXIAL TEMPERATURE 5 IN THE FUEL ELEMENTS
. WEIGHT SAVING ASSOCIATE SUPPRESSION OF THE PRIME EXCHANGER ($\sim 200 \text{ kg/}200 \text{ kWe}$) THE PROPORTION OF STRUCT ABOVE 1 200°C DOES NOT IN RETURN, THE FUEL ELER RIENCE SEVERE AXIAL TEME GRADIENTS ($\gtrsim T \sim 200°C$ WITH DOUBLE	D WITH THE ARY HEAT TURES WORKING EXCEED 30 % MENTS EXPE- PERATURE PASSES)	. LOW CC > LA > TF HE PL CC CC DIFFIC TURE F EXIT C . LIMITE	DOLANT FLOW RATE AMINAR REGIME RADE OFF BETWEEN ACCEPTABLE EAT TRANSFER PROPERTIES AND JMPING POWER. INCENTIVE TO DNSIDER A DOUBLE PASSES DOLING CULT CONTROL OF THE STRUC- PEAK TEMPERATURE AT THE DF THE HOT CHANNEL ED POTENTIAL FOR AN
. LIMITED CONSEQUENCES OF COOLANT INTERFACE FAILU	THE FUEL/ RE	INCREA 10 W/C . QUESTION 2-3 MPA S	ASED SPECIFIC POWER BEYOND GU NABLE COMPATIBILITY OF A PRESSURIZED VESSEL WITH :
		. THE AL . THE VE FOR : . AN E TROU ROTA . THE OF F OF F	LLOWABLE CREEP RATE ESSEL THICKNESS LIMITATION EFFICIENT REACTIVITY CON- BY REFLECTOR/ABSORBER ATING DRUMS SATISFACTORY DISPERSION THE CORE CONTENT IN CASE REENTRY EMOVAL OF THE AFTER HEAT
		EXTRAPOLA	ABILITY TO MULTIMEGAWATT POWER ?

I I

REFERENCE BRAYTON CYCLE

TO THE REFERENCE CONVERSION CYCLE

COMPARATIVE STUDY OF VARIOUS COOLING CHANNELS FOR A FUEL OUT OF TUBES REACTOR CONCEPT

PRELIMINARY GAS COOLED REACTOR CONCEPT

P \sim 1 MWTH, D \sim 31.6 cm, H \sim 37.1 cm, 40 % UO₂ P_S \sim 10 W/gU, P_V \sim 95 W/cm³ P_{GAS} \sim 2,5 MPA, [1006 , 1400]°K, pVS \sim 0.515 kg/s.

TECHNOLOGICAL LIMITATIONS

GAS AVERAGE EXIT TEMPERATURE 1127°C STRUCTURE PEAK TEMPERATURE ≤ 1300°C NEED TO CONSIDER COOLING CHANNELS CAPABLE OF EXCELLENT HEAT TRANSFER IN SPITE OF THE LOW COOLANT FLOW RATE ASSOCIATED WITH THE DESIRED 400°K TEMPERATURE RISE IN THE CORE.

COMPARISON OF FOUR CANDIDATE CHANNELS HEAT TRANSFER PERFORMANCES

PLAIN TUBE TUBE WITH HELICAL PLATE FINNED TUBE ANNULAR TUBE $40 \% U0_2$ T _{STRUCTURE} ≤ 1300 °C F _{AH} ~ 1		P - 40		
EXCHANGED FLUX (W/CM2)	9.2	17.6	7.8	17.5
EXIT HX COEFFICIENT (W/CM2/°C)	0.040	0.07	0.034	0.0765
PRESSURE DROP (PA) L ~ 0.55 M	700	1000	1000	6000
STRUCTURE AND % MO COOLANT PROPORTIONS % HE	25 34	29 31	29 31	18 + 23 42 - 20
NUMBER OF CHANNELS IN THE CORE	$D_{\mathrm{I}} \sim \overset{2100}{0.4} \mathrm{CM}$	540 D _I ~ 0.95 см	540 D ₁ ~ 0.95 cm 8 x 0.26 cm fins	$\begin{array}{c} 540\\ D_{1} \sim 0.65 \text{ cm}\\ D_{0} \sim 0.95 \text{ cm} \end{array}$

THE USE OF SPECIALIZED TUBULAR CHANNELS MAKES IT POSSIBLE TO EFFICIENTLY ENHANCE THE HEAT TRANSFER AND HENCE TO DIVIDE BY 3 OR 4 THE NUMBER OF COOLING ELEMENTS.

1

1

MANUFACTURING CONSIDERATIONS LEADS TO PREFER ANNULAR CHANNELS TO COOLING TUBES EQUIPPE: WITH HELICAL PLATES OR FINS.

THE VOID FRACTION RANGING FROM 30 TO 35 % FOR ALL SOLUTIONS APPEAR COMPARABLE TO THAT : FUEL PIN ASSEMBLIES OF SIMILAR FUEL CONTENT (\sim 40 % UO₂).

1

I II

1 I

Т

COOLANT FLOW RATE REGULATION AND HEAT TRANS_ FER CONTROL IN ANNULAR COOLING CHANNELS

STRUCTURE PEAK TEMPERATURE AS A FUNCTION OF THE HOT CHANNEL HYDRAULIC DIAMATER DH

Ņ

COOLANT FLOW RATE REGULATION AND HEAT TRANSFER CONTROL IN ANNULAR COOLING CHANNELS

PRESSURE DROP

1

- _P NEGLIGIBLE IN COMPARISON WITH THE COOLANT PRESSURE.
- 1P VERY SENSITIVE TO THE CHANNEL GEOMETRY AND GAS TEMPERATURE.
- ---> DIFFICULT CONTROL OF THE STRUCTURE PEAK TEMPERATURE WITH A NON UNIFORM POWER DISTRIBUTION (FR \sim 1,2).
- --> LOW AVAILABLE MARGIN TO COMPENSATE POSSIBLE DEFORMATIONS OF THE NOMINAL ANNULAR CHANNEL.

POSSIBLE ADJUSTEMENT OF THE COOLANT FLOW RATE TO THE LOCAL THERMAL LOAD

STANDARDIZATION OF THE GAS OUTLET TEMPERATURE (T \sim 1127°C) to maintain the structure peak temperature below 1300°C.

1 - THROUGH THE SPECIAL ADAPTATION OF D_{H} FOR EACH INDIVIDUAL CHANNEL.

Т. I. Ш.

2 - THROUGH THE SPECIAL SETTING UP OF INDIVIDUALLY CALIBRATED DIAPHRAGMS AT THE INLET OF EACH COOLING CHANNEL.

1 U I

FUEL IN VERSUS OUT OF TUBES

COMPARATIVE THERMOHYDRAULIC CHARACTERISTICS OF BOTH FUEL IN AND OUT OF TUBES LATTICES

LATTICE	CANNED F	UEL PINS	FUEL OUT OF TUBES		
FUEL PROPORTION (% U02)	40	50	40	50	
D/P	0.664	0.743	0,739	0.675	
(p + 2T)/P	0.797	0.891	0.813	0.743	
HEATING PERIMETER $P_{\rm H}/P$	1.252	1.400	1.152	1.060	
HYDRAULIC DIAMETER D _H /P	0,587	0.347	0,739	0.675	

HEAT EXCHANGE THROUGH THE TUBES OUTER VERSUS INNER SURFACE

DIFFERENCES IN $P_{\rm H}$ and $D_{\rm H}$ are emphasized by an increasing fuel proportion as the tube diameters vary in opposite directions for both lattices.

		-	25	7	F0 R	40	7	^{U0} 2
ATGAS (PIN/TUBES)	}							
	(-	60	%	FOR	60	%	002

The second se

BENEFICIAL EFFECT OF AN ADDITIONAL PRESSURE DROP TO DAMP THE SENSITIVITY OF THE STRUCTURE PEAK TEMPERATURE TO ANY CHANGE IN THE CHANNEL GEOMETRY OR IN THE RADIAL POWER DISTRIBUTION

COMPARISON OF FUEL IN AND OUT OF TUBES LATTICES

REQUISITE NUMBER OF FUEL OR COOLING ELEMENTS WITHIN A 1MW REACTOR TO RESTRICT THE WALL/COOLANT TEMPERATURE DIFFERENCE TO A DESIRED VALUE AT

FUEL IN OR OUT OF TUBES

FUEL IN TUBE	VER	sus	FUEL OUT OF TUBE
 CONCEPT OF FUEL ASSEMB BY MOST TERRESTRIAL RE COMPATIBLE WITH A HIGH PORTION (≤ 60 %) IN TH A TIGHT HEXAGONAL LATT 	LY ADOPTED ACTORS FUEL PRO- E FORM OF ICE	• POSSIBLE AD VENTING SYS PRESSURE LO COOLING CHA AT THE COOL REACTORS)	APTATION OF A FUEL TEM ABLE TO RELIEVE THE AD ON THE WALLS OF THE NNELS, WHEN CALIBRATED ANT PRESSURE (GAS COOLED
. EXTENSIVE EXPERIENCE I TURING AND TESTING	N MANUFAC-	. POTENTIAL F FILLING FAC	OR AN IMPROVED FUEL Tor
. SATISFACTORY HEAT TRAN BILITY	SFER CAPA-		
. FUEL PELLETS CANNED IN TIVE CLADDING	A PROTEC-		
. ACCOMMODATION TO FISSI RELEASE ?	ON GASES	. BEHAVIOUR O UNDER IRRAD	F NON-CANNED FUEL TABS
, PELLET/CLADDING INTERA	CT I ON ING	. LESS ATTRAC FORMANCES T BUNDLE CONC PROPORTION	TIVE HEAT TRANSFER PER- HAN THOSE OF THE PIN EPT WITH COMPARABLE FUEL :
(U0 ₂ /LI INTERACTION)		- THERMAL THE TUB SURFACE	FLUX EXCHANGED ACROSS E INNER VERSUS OUTER
(, ACCOMMODATION TO THE DIFFERENCE ON BOTH SIDES CLADDING)	PRESSURE OF THE	- HEAT EX Reduced	CHANGE COEFFICIENT 3Y A FACTOR OF 3
		. AMPLIFICATI HEAT TRANSF FUEL PROPOR	ON OF THE DIFFERENCE IN ER CAPABILITY WHEN THE TION INCREASES
		. THE FUEL OU MAINLY TRAC COOLING DEV OR LIQUID M	T OF TUBE OPTION APPEARS TABLE WITH EFFICIENT ICES SUCH AS HEAT PIPES ETAL

I I I I

ī.

1 I

DESIGN OPTIONS FOR A GAS COOLED REACTOR TO DRIVE A DIRECT BRAYTON CYCLE

THE FOLLOWING OPTIONS IMPROVE THE CONTROL OF THE PEAK TEMPERATURE AT THE EXIT OF THE HOT CHANNEL :

- REDUCTION OF THE AXIAL TEMPERATURE GRADIENT BY THE USE OF :

- . A RECUPERATOR
 - (DECREASE OF THE TOTAL CORE AT FROM 700°C TO 400°C)
- . A DOUBLE PASSES COOLING SCHEME (TOTAL 400°C SPLIT INTO TWO 200°C SINGLE PASS △T)

- USE OF CANNED FUEL PINS RATHER THAN FUEL OUT OF TUBE CORE CONCEPT

- . IMPROVEMENT OF THE HEAT TRANSFER PERFORMANCES FOR A GIVEN FUEL PROPORTION
- . LESSER SENSITIVITY OF THE STRUCTURE TEMPERATURE TO ANY VARIATION IN POWER DISTRIBUTION OR IN THERMOHYDRAULIC CHARACTERISTICS OF THE COOLING CHANNELS

I I I I

AN APPROPRIATE COOLANT ROUTING SCHEME AIMS AT MAINTAINING THE OPERATING TEMPERATURE OF THE PRESSURE SUPPORTING STRUCTURES BELOW 1 000°C AND HENCE AT MINIMIZING THE ANTICIPATED CREEP RATE

- PRESSURE VESSEL SWEPT BY A BYPASS STREAM OF COOLANT AT THE INLET TEMPERATURE (~ 750°C)

- COAXIAL INLET AND OUTLET COOLANT DUCTS.

1 I

L 1.11

1

I.

Т

Т

11

I I I I

REQUISITE PUMPING POWER AS A FUNCTION OF THE SPECIFIC POWER

TO MAINTAIN THE MAXIMUM FUEL / COOLANT TEMPERATURE DIFFERENCE BELOW 270°C

ш

DESIGN OPTIONS FOR GAS AND LITHIUM COOLED REACTORS TO DRIVE A DIRECT BRAYTON CYCLE

PRESENTLY ASSUMED (1984) DESIGN OPTIONS	GAS COOLED REACTOR	LITHIUM COOLED REACTOR			
NET SYSTEM ELECTRIC OUTPUT	200 KWE	200 KWE			
REACTOR THERMAL POWER	1 100 KWE	1 100 KWE			
COOLANT	HELIUM-XENON (A \sim 40)	LITHIUM 7			
PRESSURE	2,25 MPA	0.05> 0.1 MPA			
COOLANT WORKING TEMPERATURES	[1006 ; 1400]°K	[1420 ; 1470] [•] K			
FLOW RATE	0.515 кд/s	5.35 KG/S			
COOLANT ROUTING	DOUBLE PASSES	SINGLE PASS			
FUEL SPECIFIC POWER	9,5 W/GU	11 W/GU			
ACTIVE CORE DIMENSIONS HEIGHT ~ DIAMETER	∿ 35 см	∿ 34 см			
REACTOR WEIGHT	500 KG	450 KG			
FUEL ELEMENT FUEL PELLET DIAMETER CLADDING THICKNESS TRIANGULAR PITCH NUMBER OF FUEL PINS	UO ₂ (95 % x 98 % T _D) OR UN (30 % CENTRAL VOID) 0.7 CM 0.05 CM 1.0 CM				
S FUEL/STRUCTURE/COOLANT	49	5 3 + 20 7 + 35 7			
AXIAL REFLECTOR	BEO PELLETS (~ 12.5 CM) STACKED AT E	BOTH ENDS OF THE FUEL PINS			
RADIAL REFLECTOR	8 CM THICK BE REFLECTOR				
REACTIVITY CONTROL	12 ROTATING CONTROL DRUMS (BE, 10 CM 1.D.) WITH $^{10}B_4C$ Absorber segments (2 11/3 x 2 cm)				
FISSION GAS PLENUM	15 CM AT THE END OF UO, PINS OR 30 % VOID WITHIN UN RODS				
SUBCRITICALITY IN CASE OF IMMERSION	$GD_2O_3 - UB_4C$ poisons mixed with the F devices (safety plug, rods) ?	UEL ? REMOVABLE ^{IUB} 4C CONTROL			

LITHIUM COOLED ERATO REACTOR CONCEPT (1,1 MWth)

L L L L

IMPETUS FOR A LIQUID METAL COOLED REACTOR AS A HEAT SOURCE FOR ANY TYPE OF SEPARATE CONVERSION LOOP

ADVANTAGES	LIQUID META	L COOLED REACTOR	DRAWBACKS
. AVAILABLE EXPERIEN TRIAL PLANTS (EXTR	ICE FROM TERRES- Rapolable ?)	. SOLID COOLANT AT ROOM NEED FOR PREHEATING E UP	TEMPERATURE
WELL ADAPTED TO A THERMAL OUTPUT	WIDE RANGE OF	. CORROSIVE AND PYROPHO	DRIC COOLANT
■ GUASI ISOTHERMAL F ANY TYPE OF SEPAR/ LOOP	GUASI ISOTHERMAL HEAT TRANSFER TO ANY TYPE OF SEPARATE CONVERSION LOOP		THE COCLANT URGE OF THE (HELIUM FROM)
LOW VAPOUR PRESSU LITHIUM (0.04 MPA) SODIUM (1.0 MPA)	RE AT 1 200°C)	. TRAPPING OF THE : IMPURITIES	SOLID
. LARGE COOLANT HEA CONSEQUENT SIGNIF INERTIA	T CAPACITY AND ICANT CORE THERMAL	. ALL CORE INTERNAL AND STRUCTURES WORK AT A EXCEEDING 1 200°C	D SUPPORT TEMPERATURE
LARGE ELECTRIC CON ENABLES THE USE ON PUMPS	NDUCTIVITY WHICH F ELECTROMAGNETIC	. COMPATIBILITY WI Allowable creep Vessel ?	TH AN RATE OF THE
. POTENTIAL FOR A PA REMOVAL THROUGH TO PUMPS	ASSIVE AFTER HEAT HERMOELECTRIC	. NEED FOR AN EFFI FOIL INSULATION RADIATIVE PEAT D THE ADJACENT BER FLECTOR	CIENT MULTI- TO LIMIT THE EPOSITION IN YLLIUM RE-
LOW PUMPING POWER RATIO	TO REMOVED HEAT	. CONSEQUENCES OF A CL FAILURE ? (U02/LI INTERACTION)	ADDING

--

T

IMPETUS FOR A LIQUID METAL COCLED REACTOR AS A HEAT SOURCE FOR ANY TYPE OF SEPARATE CONVERSION LOOP

	ADVANTAGES	LIQUID META	L C	OOLED REACTOR	DRAWBACKS
	AVAILABLE EXPERIEN TRIAL PLANTS (EXTR	ICE FROM TERRES- PAPOLABLE ?)	•	SOLID COOLANT AT ROOM NEED FOR PREHEATING I UP	1 TEMPERATURE Before start
•	WELL ADAPTED TO A THERMAL OUTPUT	WIDE RANGE OF	•	CORROSIVE AND PYROPH	ORIC COOLANT
•	QUASI ISOTHERMAL H ANY TYPE OF SEPARA LCOP	EAT TRANSFER TO TE CONVERSION	£	NECESSITY TO PURIFY , SEPARATION AND PU GASEOUS PRODUCTS	THE COOLANT URGE OF THE (HELIUM FROM
•	LOW VAPOUR PRESSUR LITHIUM (0.04 MPA) Sodium (1.0 MPA)	RE AT 1 200°C		(N, A) REACTIONS . TRAPPING OF THE IMPURITIES	SOLID
•	LARGE COOLANT HEAT CONSEQUENT SIGNIFI INERTIA	CAPACITY AND CANT CORE THERMAL	•	ALL CORE INTERNAL AND STRUCTURES WORK AT A EXCEEDING 1 200°C	D SUPPORT TEMPERATURE
Ŧ	LARGE ELECTRIC CON ENABLES THE USE OF PUMPS	DUCTIVITY WHICH FELECTROMAGNETIC		. COMPATIBILITY WI ALLOWABLE CREEP (VESSEL ?	TH AN RATE OF THE
Ð	POTENTIAL FOR A PA REMOVAL THROUGH TH PUMPS	NSSIVE AFTER HEAT HERMOELECTRIC		, NEED FOR AN EFFI FOIL INSULATION RADIATIVE HEAT DI THE ADJACENT BER FLECTOR	CIENT MULTI- TO LIMIT THE EPOSITION IN YLLIUM RE-
•	LOW PUMPING POWER Ratio	TO REMOVED HEAT	•	CONSEQUENCES OF A CL. FAILURE ? (U02/LI INTERACTION)	ADDING > UN ?

1 I I I I I

DESIGN OPTIONS FOR GAS AND LITHIUM COOLED REACTORS TO DRIVE A DIRECT BRAYTON CYCLE

PRESENTLY ASSUMED (1984) DESIGN OPTIONS	GAS COOLED REACTOR	LITHIUM COOLED REACTOR	
NET SYSTEM ELECTRIC OUTPUT	200 KWE	200 KWE	
REACTOR THERMAL POWER	1 100 KWE	1 100 KWE	
COOLANT	HELIUM-XENON (A \sim 40)	LITHIUM 7	
PRESSURE	2.25 MPA	0.05> 0.1 MPA	
COOLANT WORKING TEMPERATURES	[1006 ; 1400]°K	[1420 ; 1470]°K	
FLOW RATE	0,515 kg/s	5,35 KG/S	
COOLANT ROUTING	DOUBLE PASSES	SINGLE PASS	
FUEL SPECIFIC POWER	9.5 W/GU	11 W/GU	
ACTIVE CORE DIMENSIONS HEIGHT ~ DIAMETER	∾ 35 см	∿ 34 см	
REACTOR WEIGHT	500 кс	450 KG	
FUEL ELEMENT FUEL PELLET DIAMETER CLADDING THICKNESS TRIANGULAR PITCH NUMBER OF FUEL PINS	UO ₂ (95 % x 98 % T _D) OR UN (30 % CENTRAL VOID) 0.7 CM 0.05 CM 1.0 CM 900/1 000		
S FUEL/STRUCTURE/COOLANT	45	5 % + 20 % + 35 %	
AXIAL REFLECTOR	BEC PELLETS (~ 12.5 CM) STACKED AT E	BOTH ENDS OF THE FUEL PINS	
RADIAL REFLECTOR	8 СМ	1 THICK BE REFLECTOR	
REACTIVITY CONTROL	12 ROTATING CONTROL DRUMS (BE, 10 CM 1.D.) WITH $^{10}B_{4}C$ Absorber segments (2 11/3 x 2 CM)		
FISSION GAS PLENUM	15 cm at the end of UO2 PINS or 30 % void within UN rods		
SUBCRITICALITY IN CASE OF IMMERSION	$GD_2O_3 = {}^{IU}B_4C$ poisons mixed with the F devices (safety plug, rods) ?	UEL ? REMOVABLE ^{LUB} GC CONTROL	

A passively cooled berythum reflector may be considered for a 1MW reactor provided a multifold insulation efficiently limit the flux radiated by the reactor vessel(W,M_0,C_{12})

П

1

1 I I

Alternative reflector materials (BeO) featured by extended technological performances should be considered for a reactor power exceeding 2MW

IMPACT OF THE BERYLLIUM TECHNOLOGICAL LIMITA_ TIONS UPON THE DESIGN OF THE RADIAL REFLECTOR

BERYLLIUM TEMPERATURE LIMITATION AS A FUNCTION OF THE FAST FLUENCE

1

•

I I I

1 1

I. I.

1 + 1 + 1

LIQUID METAL COOLED REACTOR CONCEPT

1.1

PRESSURE (MPA)	LITHIUM	SODIUM	POTASSIUM	EUTECTIC NAK	MERCURY
MELTING T(°C)	180.54	97.81	63.25	- 12.5	
500°C		5.3 x 10 ⁻⁴	4.0×10^{-3}	2.9×10^{-3}	1,037
750°C	2.3 x 10 ⁻⁴	2.59 x 10^{-2}	9.37 x 10 ⁻²	7.09 x 19 ⁻²	
1 000°C	6.7×10^{-3}	0.257	0.504	0,491	28,51
1 250°C	6.55 x 10 ⁻²	1.255	2.054	1.785	
1 500°C	0,340				

REVIEW OF THE MAIN CANDIDATE COOLANTS

THE LOW LITHIUM VAPOUR PRESSURE AT THE OPERATING TEMPERATURE IS ONLY BENEFICIAL, IF THE HELIUM PRODUCED BY (N, x) REACTIONS CAN BE EFFICIENTLY SEPARATED FROM THE COOLANT AND PURGED TO PREVENT ANY PROGRESSIVE PRESSURIES RIZATION OF THE PRIMARY CIRCUIT.

 $\binom{6}{7}_{LI} + N \longrightarrow \frac{4}{4}_{HE} + \frac{3}{4}_{H} + \frac{4}{4}_{.8} MeV)$ $\binom{7}{4}_{LI} + N \longrightarrow \frac{4}{4}_{HE} + \frac{3}{4}_{H} + \frac{3}{8}_{H} - 2.5 MeV)$

TOTAL	450 APPM	CORE	0.02 💈
LI CONVERSION	125 APPM	REFLECTOR	~ OF THE ⁷ LI
IN A 10Y LIFETIME	40 APPM	PLENUM	REACTOR CONTENT

0.047 $\ensuremath{\text{m}^3}$ of Helium at 1 200°C under 0.1 MPA

1 1 1

-11 - 1 - 1

THAWING OF THE LITHIUM LOOPS BY THERMAL CONDUCTION OF THE HEAT GENERATED IN THE REACTOR

REACTOR TEMPERATURE EVOLUTION DURING THE FASTEST REALIZABLE PREHEATING TRANSIENT

 $P \le 6.3 \,\text{kW}$ for $T \le 1470^{\circ} \text{K}$

_

=

- Chan

1 1

11 I I I

THAWING OF THE LITHIUM LOOPS BY THERMAL CON. DUCTION OF THE HEAT GENERATED IN THE REACTOR

SENSITIVITY OF THE PREHEATING RECUIREMENTS TO THE DUCT CHARACTERISTICS

_ GEOMETRY (DIAMETER, LENGTH) d, 2 × L

- _ MULTIFOIL INSULATION EFFICIENCY &
- _ INITIAL TEMPERATURE To

1

1

1 I.

1 I I

IMPETUS FOR A LIQUID METAL COOLED REACTOP AS A HEAT SOURCE FOR ANY TYPE OF SEPARATE CONVERSION LOOP

ADVANTAGES	LIGUID META	AL COOLED REACTOR	DRAWBACKS
. AVAILABLE EXPERIE TRIAL PLANTS (EXT	NCE FROM TERRES- RAPOLABLE ?)	SOLID COOLANT AT ROOM NEED FOR PREHEATING TUP	1 TEMPERATURE BEFORE START
• WELL ADAPTED TO A THERMAL OUTPUT	WIDE RANGE OF	. CORROSIVE AND PYROPH	DRIC COOLANT
QUASI ISOTHERMAL ANY TYPE OF SEPAR LOOP	HEAT TRANSFER TO ATE CONVERSION	NECESSITY TO PURIFY SEPARATION AND PURIFY GASEOUS PRODUCTS CASEOUS PRODUCTS	THE COOLANT URGE OF THE (HELIUM FROM
LOW VAPOUR PRESSU LITHIUM (0.04 MPA SODIUM (1.0 MPA)	re at 1 200°C)	. TRAPPING OF THE IMPURITIES	SOLID
, LARGE COOLANT HEA CONSEQUENT SIGNIF INERTIA	T CAPACITY AND ICANT CORE THERMAL	ALL CORE INTERNAL AN STRUCTURES WORK AT A EXCEEDING 1 200°C	D SUPPORT TEMPERATURE
LARGE ELECTRIC CO ENABLES THE USE O PUMPS	NDUCTIVITY WHICH F ELECTROMAGNETIC	• COMPATIBILITY WI ALLOWABLE CREEP VESSEL ?	TH AN RATE OF THE
POTENTIAL FOR A P REMOVAL THROUGH T PUMPS	ASSIVE AFTER HEAT HERMOELECTRIC	RADIATIVE PEAT D THE ADJACENT BER FLECTOR	CIENT MULTI- TO LIMIT THE EPOSITION IN YLLIUM RE-
• LOW PUMPING POWER RATIO	TO REMOVED HEAT	CONSEQUENCES OF A CL FAILURE ? (U02/LI INTERACTION)	ADDING

1 I

1.1

1 I I I I I I I I

LIQUID METAL COOLED REACTOR CONCEPT PREHEATING OF THE PRIMARY LOOPS

	PREHEATING REQUIREMENTS	OPTI	ONS	COMMENTS
	START UP & 1 DAY	REACTOR D	IVERGENCE	POWER CONTROL ? (& 5 KW)
	LIMITED UNCERTAINTY	ELECTRIC	APU	RESTARTABLE ?
	REASONABLE MARGIN OF	PRE- HEATING	RTG	n 5 1 150 KG PUC2 ? COST
I REACTOR	TURE ABOVE 500°K	RADIO:SO-		7.5 кg 3Pu02(7 3 Pu02 IN 302
GNLY	T ₂ ≪1470°K WITH ≤ > 0.02 - P≪5.4 KW	TOPES BPU02 AS	FUEL	CONDITIONING ? VENTING ? FUEL DISPERSION ? HANDLING A REACTOR AT 50074
	P = 3 kW 200 * 500°K 16 kWH 200 * 500°K	HEAT SOURCE	SPECIAL DEVICES	HEATING RODS ? HEATING CENTRAL PLUG ?
THAWING OF	P REACTOR & (5.4 + 3 x 0.3) > 6.3 KW	NECESSITY LATION (=	OF AN EXC ≪ 0.05).	ELLENT DUCT MULTIFOIL INSU-
LOOPS BY	ε ∿ 0.02.	CONSTRAIN	TS UPON TH	E DUCT DIAMETER AND LENGTH.
CONDUCTION	THAWING TIME > 9.6 HOURS.	TIME AND (€ → 0.02	ENERGY REG	UIREMENTS FOR A SINGLE LOOP 1.5 M, D \sim 3 to 4 cm)
HEAT GENE- Pated in	REACTOR 45.1 8.8 53.9 3 LOOPS 3 X 0.93 3 X 1.17 3 X 2.1	8 - 10 HOURS AND 2. TO 3 KWH WITH AN EFFICIES. OF 40 % TO HEAT THE LITHIUM.		
THE PEACTOR	TOTAL 47.9 12.3 60.2	ABOUT PRO	PORTIONAL	TO L ^{1.4} .
THAWING BY	ENERGY REQUIREMENT FOR A SINGLE	ELECTRIC	APU	RESTARTABLE ?
DIRECT HEAT DEPOSITION	$(= 0.02, L = 2 \times 1.5 \text{ M}, D = 3 \text{ TO } 4 \text{ CM})$	HEATING	RTG	COST 75 KG 39002 ?
WITHIN THE	0.5 KWH WITH AN EFFICIENCY OF 90 3 TO HEAT THE LITHIUM.	⁸ Pu0 ₂ col	LARS	2 TO 4 KG ³ PU0 ₂ ?
LCCPS.	ABOUT PROPORTIONAL TO L.	HEAT TRAN	SPORT FROM	THE REACTOR BY HEAT PIPES
PRIMARY		ELECTRIC	PREHEATING	Sbil
EXCHANGER	A FEA XAM.	BPU02 HEA	T SOURCE	2.5 KG ³ Pu0 ₂ /KW

PRESENTLY CONSIDERED PREHEATING SCENARIO :

1 11

1

* THAWING OF THE REACTOR CONTENT BY DIVERGENCE AND STABILIZATION AT LOW POWER (\leqslant 5 kW)

* ELECTRICAL HEATING OF THE LITHIUM LOOPS AND OF THE PRIMARY HEAT EXCHANGER AUXILIARY POWER UNIT TO BE DEFINED.

FEACTCR CINTROL AND MASS BALANCE

k~1.05

	Lu0									
0.95.018	CORE	<u>مع</u>	INME	15 ion	AP	G Rin	Poison	WORTH	G Rin on	REALTOR
UQ to	RADIUS Ccm)	ARUNS HZ HZ	ГОО	л Ч	IMMERSION	Pr Pr	Noninal	IMMERSioN	DP HASS PENALTY	(84)
46.4% UO2	36.75	0.946	1.213	1.174	+16.5 %					460
40.6% UQE + 3.8% B, C	48.1	0.978	0.938	0.420	- 4.3 %	25.8 %	18.2%	35.0 %	éopund	890
38.2% uo2 + 6.2%64_03	42.4	- 555.0	1.132	1.102,	+ 7.5 %	7.0%	3.8 %	12.1 %	40 pem/	640
49% UO2	33.9	426.0	1.436.	SAFF	+ 12.5%					4 00
44.8% UOL +4.2% B,C	44.6	£16.0	1- 1- 1- 1- 1-	,	- 3.3 %	21.8%	17.9 %	32.24	60 mg	OEE

L I

A POLATED DE	J.C.F. FEATOR	ES FOR	لا (105 (1007) في ، 0.45 (110)	IN NCANAL IN CASE OF I	CONDITIONS HHERSION
(Vr/ve)%	ACTIVE AUXILIARY	44.4% [B. C. 7.5%		43 / 010 L Active NutiliARY	47 h 1 a & c
<pre>> (cm)</pre>	36.75	4 6.8	53.5	33.9	43.9
СНТ (Mg)	+ 03%	615	1025 1025	400+	545

INVESTIGATION OF LEADING PARAMETERS FOR THE REACTOR CONTROL AND MASS EALANCE - FUEL FILLING FACTOR (NEUTRON LEAKAGE ->40% UO2)

CONTROL WORTH IN NORMAL OPERATING CONDITIONS

- ABSORBER SEGMENTS GEOMETRY AND "B CONTENT - REALTOR VESSEL THICKINESS

CONTROL WORTH IN CASE OF INMERSION

L.

1 11

- POROSITY OF THE CORE / REFLECTOR INTERFACE
- EFFECT OF DISPERSED POISON (Gd, Og-BLC IN THE CORE LATTICE) AND ASSOCIATED REACTOR MASS PENALTY
- EFFELT OF HETEROGENEOUS CONTROL DEVICES (CENTRAL PLUG/CONTROL RODS ---)

REACTOR CONTROL AND MASS BALANCE

L.1.05	Lu0

0.95×018	CORE	as	IHME	15ioN	A P	Gain	Poison	WORTH	Gain Cain	REALTOR
UQ to	Ccm)	SHORA H Z H	г 00	۲ ۲	THHERSION	δY	Noniwal	IMMERSion	De HASS PENNITY	(84)
46.4% .002	36.75	0.946	1.213	1.174	+14.5 %	_				460
40.6% UO2 + 3.8% B, C	48.1	0.978	0.938	0.420	- 11.3 %	25.8 %	18.2%	35.0 %	60 Part	890
38.2% uo2 + 6.2% 64.03	42.4	.555.0	1.132	1.102,	+ 7.5 %	4.0%	9.8%	12.1%	40 pcm/	640
49% UO2	33.9	426.0	1.150	SAFT	+ 12.5%					• 00
44.8% UOL +4.1% B.C	44.6	£16.0	۴- ۲- ۲	326.2	-3.3%	21.8 %	17.9 %	32.246	60 pm	770

I

EXTRA POLATED TE	ALL FLATOR	ES FOR	k~1.65 (w1)	IN NERNAL	CONDITIONS
		And	2 ., 0.45 (.IN)	in case of i	HHERSION
	790 %5.5t	100 (102 J. B. C	**** (nor ****	43% NO2	49 % { 40 c
FUEL POISONING (VY/4)%	ACTIVE RUXILIARY CONTRAL DEVICE	1.5%	36%	ACTIVE AULIENRY CONTROL DE VICE	5%
CORE ARDIUS (cm)	36.75	46.8	53.5	33.9	43.9
REACTOR WIEIGHT (Kg)	+ 37	615	705S	400+	745

LEADING PARAMETERS FOR REACTIVITY CONTROL AND MASS BALANCE

44.44 110	Vm odk		CONTRO	L WORTH			T
W. 4% 002	Ve Ve	MASS BALANCE	CONTROL DRUHS	+ AUXILIARY DEVICES	COMMENTS	6	4
+9% U02 V	21.0.75		NORMAL CONDITIONS	IMMERSION	·		
FUEL FILLING (Vfue /V	FActor (cor)	-60 kg /4.6%	Weatly dependent (Same reactivity -> same leakage)	PONDEITY	Seurch for maximum UD, % Compatible wilk cooling conditions	?	4
MODE RATOR T RATIO (\	o FUEL Im/Vf)			2% (0.34-0.75)	Easier control of the immersed reader with a lower porosity, provided the integrity of the core yearestry be hep		
DISPERSED	40 B ₄ C 2% in UO2	+ 430 kg / 10. 2% + 370 kg / 17.9%	-3.3% /18% (Ven85%) 1-20% / DRof of A RMD LEAKAGE	25.2% / 12.2 % 21.8% / 17.9%	· Inherent safety (Vm/Vy) / h & · Excessive mass perolty for low power reactors (1HW)	? Feit	
Poisoning	Natural Gd203 10% in (102	+120 42/3.2%	-0.9% 40% (V2 11%) (-6%) SLIGHT DROP OF ORE LERWAGE	7 :: / J.2 %	→ Low specific power Minimum penalty → Increase % UO2 → **B or 14Gd	7	s
HETERDGENGOL CONTROL	LENTRHL PLUC- ØN7.5cm	+ 60 hz / 460 hz. + 50 hz / 400 hz	v + 20%		· Upper Cimit upon the acceptable pacity of the first latice + core/plug interface · Complexity of a bric vessel		
DEAIGE 2	CONTROL RODS				. Lomplexity of red actuators and mechanisms . Penetrotions across the reactor ressel		

PRESENT TRENDS : . INCREASE THE FUEL PROPORTION BEYOND 50%

- . REDUCE THE CORE PORUSITY + THAT OF CORE / HEFLECTOR INTERFACE
- THE CHOICE OF THE CANDIDATE OPTIONS TO MAINTAIN THE REACTOR SOLCHITICAL IN CHIE OF INNERLICAL REMAINS OPEN

Liquid METAL VERSUS GAS COOLED REACTOR

AS HEAT SOURCE FOR A REFERENCE BRAYTON CYCLE

		Į –	
START UP ADAPTABILITY TO VARIOUS CONVERSION SYSTEMS	PREHERTING - THAWING	! ?	IMMEDIATE READINESS PRIVILEGED ADAPTATION TO DIRECT GRS CYCLES
FUEL ELEMENT OPERATING CONDITIONS : T ? W AT Pressime Connosion ?	Uhole Structure > 1200°C Quasi isothermal Fission Eas Release	?	Peak 1260 C Axial gradients (vlood Codant
LONGEQUERE OF CLAD FAILORE ? L	IO2/Li - UN ? IELIUM	-!	
STRUCTURE OPERATING T ? TO PRESSURE - LO	>1200 C [Multipart invulient w vapour pressure (+He?]	??	<30% T>1200C Control of peak Temperture Heat Transfer versus Junping
HEAT TRANSFER	Quesi isothermal ell udapted to a wide geof themal cutput	?	Limited potential for un increased specific journer.
REMAL INERTIA	assive (TEH Pumps)		Active (Compressons)
PUMPING AWER RATIO	Low	?	High Deuble passes
DUGCRITICALITY IN CASE OF		?	Quelle malifit
VESSEL THICKNESS FUEL DISPERSION (REENTRY) DRUMS CONTROL WORTH		?	of 2-3 MPa pressurined vessel with allowable Creep sate Thickness & Control wath &
DESIGN OF REFLECTOR AND NEUTRON SHIELD COMPATIBLE WITH THE MATERIALS TECHNOLOGICAL LIMITS			

I I I

1 1 1 1

I I

CRUCIAL ISSUES COMMON TO BOTH LITHIUM OR GAS COOLED REACTORS

, START UP

- . REACTOR SUBCRITICALITY IN TYPICAL LAUNCHING CONDITIONS AND IN ACCIDENTAL CONFIGURATIONS (IMPACT, IMMERSION)
- . REMOVAL OF THE AFTER HEAT
- . COOLING ACCIDENTS
- , DIVISION AND DISPERSION OF THE FUEL ELEMENTS IN CASE OF REENTRY
- . DESIGN OF THE REFLECTORS AND NEUTRON SHIELD COMPATIBLE WITH THE MATERIALS TECHNOLOGICAL LIMITS

TECHNOLOGY DEVELOPMENTS

. MATERIALS { FUEL (REFRACTORY ALLOYS, FUEL/CLADDING/COOLANT INTERACTION) . MATERIALS { LITHIUM (CORROSION)

MULTIFOIL INSULATORS (COMPATIBILITY WITH HIGH TEMPERATURE) REFLECTOR (BE, BEO, B_4C , graphite)

. INSTRUMENTATION

COMPATIBILITY WITH THE REQUISITE OPERATING TEMPERATURE MINIATURIZATION LOW POWER RESPONSE

. METAL/GAS SEPARATION (SPECIFIC TO LITHIUM COOLED CONCEPTS)

1 1 1