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We consider the SchrSdinger operator on L (if) 

H - --fi2 i-, + V(x) 
dx* 

with Dirlchlet boundary condition at x » 0 when V has the form depicted 
in fig. 1 ; more precisely we assume : 

A) 1) VSC2{ R + \ {0} ) 

2) V > 0 

3) Mm V(x) » 0 
x-»w 

4) 3!x 0 , 0 < xQ such that 

V'(x 0) = 0 , V»(x0) > 0. 

r i * 

It Is a common belief that the well around x_ will be res-
o 

ponslble for long lifetime resonances as "fi---* 0. He have started our 
Investigations on this problem In ( [l] , [2] ,[3]) where additional Infor
mation can be found. We also refer to 6. Jona-Lasinio, F. Hartlnelli 
and E. Scoppola [4] for a different approach using stochastic methods, 
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H. BaUmgartel [s] , H.S. Asbaugh. E.R. Harrell II ( [19] ) > and 
R. Lavine [6] for a very promising approach using the local spectral 
density concept. On an elea^ntary mathematical level this can be under
stood by adding a fictitious Dirichlet boundary condition at some point 
b separating the well (region I) from the tail of V (region II) ; for 
example one could take b = b where V reaches its maximum on (0,04). 

I II Then one gets a new operator HQ having the direct sum form HQ « Hiflli . 
The part Hi has pure point spectrum ; the lowest eigenvalues have the 
well-known asymptotic behaviour (see e.g. [7].[8] >[9"j )• 

1) E D"> = v 0 *Mn+\)\Frr(*0) + oe«2).n - o.i... 

The operator H' has absolutely continuous spectrum (0,00 ) 
so that HQ has mixed spectrum with all eigenvalues embedded in the 
continuum. One expects that as the Dirichlet perturbation is removed 
these eigenvalues will disappear but that some of them will turn into 
resonances. A perturbative description of this phenomenon requires at 
first a suitable operator setting for Dirichlet perturbations. Instead 
of Green's formula we found it more convenient to use a related form of 
it due to Krein [lo] : 

(H-a)"1 - (H n-af 1 =\ 2) (H-a) * - (H„-a) - =A(a) P(a) 

where P(a) is a rank one operator with kernel F(x,b;a)F(b,y;a), with 
F(x.y;a) the Green's function of H, and / ( a ) = F(b,b;a) . For a 
mathematical description of resonances i t is convenient, in the situa
tion analyzed here, to use the notion of exterior complex scaling Ql2j. 
Consider the mapping : 

f x,0£ x <Jb 

'^b + e S (x-b) , x>b . Be R 
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It Induces a unitary mapping IAQ on L ( R +) ; the operator valued 
function H(ô ) = U ^ H U ' Q is analytic in the strip S^ 4&/|lni6| <«<\ 

under the condition : 

B) V restricted to region II is dilation analytic in S.([l3j) 

Then the statement about analyticity of H(Q) follows from the fact 

that H D(Q) obviously has such a property and from the extension of 

2) to complex values of 9 (see also [ll] ). The spectrum of H D ( 0 ) is 

the union of the spectra of Hp and H " (jj ) (fig. 2) 

<r(r£ce>) 

So it consists of a set of isolated real eigenvalues which 

are those of Hi , a continuum e" ° R + and possibly some complex 

eigenvalues In the sector] z,-2Im6^Arg z£o\ . Such eigenvalues cor

respond to resonances due to the tail of the potential V in region II. 

In order not to have to deal with the complications of degenerate per

turbation theory we will impose some condition or V in order that such 

resonances are not'too close" to R + in the classical limit ; In con

trast the "shape resonances" arising from the perturbation of the real 

eigenvalues of HÂ have exponentially small imaginary parts as expected 

from the order of magnitude of the tunnel effect and as the theorem 

below shows. The condition on V Is essentially a non-trapping condition 
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on its tail which reads as follows : 

C) 3 6 (b) , 0 < i ( b ) $ 2 such that 

0(b) V(x) + xV'{x)^0 for all x> b 

A condition of this genre Is known to Imply absence of posi
tive energy bound states ( [ M ] ) . Also for 0 = 2 the quantity on the 
l.h.s. of the inequality is proportional to the virial of V ; then 
condition C) implies a negative time delay which already strongly indi
cates absence of close resonances. I t turns out that i f V In region I I 
is positive the condition C) is a stronger requirement which jointly 
with B) implies that the numerical range of H p ( 0 ) , ImS^O, lies 
outside a sector around the positive real axis of the form : 

J h = U | - cfi"Z< Argz< 0 1 

This last result (not optimal in general) opens the way to 
a perturbative treatment of Eq. 2) through the Welnstein-Aronsjan deter
minant formula. Let e^n) =(E^n'- a)" 1 be an eigenvalue of (HQ - a)" 1 ; 
then the corresponding perturbed eigenvalue of (H-a) satisfies the 
equation 

3) A A (a) Trace (PfaHr 0-!)" 1) = 0 

where rQ = (Hp-a)" 

Existence of a solution in a complex neighbourhood of eAn) 
1s provided by Rouchë's theorem and Lagrange's formula using the analy-
t ld ty properties induced by assumption B). Our main result is the 
following : 
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Theorem 

Let V satisfy conditions A, B and C and let E^ n) be the n- h 

eigenvalue of H«, Pi n' the corresponding spectral projection operator. 

Then there exists a complex number 0 with 0<( Im ${,d, such that H(6) 

has an eigenvalue E' n' given by the convergent series 

E(n)= E(") +£ îP C p 
D P=l p! 

for'ff small enough where t = A ( a ) Trace (P(a) pj n') and the C 's are 

h dependent. The C's are polynomialy bounded 1n^~ and the "Tunneling 

parameter" t obeys (see [3] ) 

ds t = 0(exp - zpu'1 V V(s) ds (fl<l) 

The proof of this theorem requires In particular estimates 

on the boundary values of (HJ - % ) as Imz—>0. ForfT^ 0 existence 

of such boundary values as bounded mappings between suitable weighted 

Sobolev spaces is a well-known problem of Scattering Theory (see eg. 

[Î5] ). Obviously such boundary values, whose existence requires some 

type of elliptldty for H, don't exist at -fi = 0. It has been shown by 

D. Robert and H. Tamura [l6j, in connection with the problem of semi-

classical asymptotics for the scattering phase, that such boundary 

values behave like'fi' (i.e. as for V=0) provided some non-trapping con

dition is satisfied. To deal with this difficulty we have adopted a 

variant of a commutator method due to R. Lavlne [17] and further deve-

lopped by E. Mourre [l8]. It allows a rather detailed qualitative ana

lysis of the local as well as global properties for solutions of 

(Hp-z) u = ip (in particular of scattering solutions when Imz-*0). 

The basic equation reads : 

< u , f(E-V)' u^+ h 2 < u ' , f V ^ « 2Re<fu\(H-E)u> 
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where E - Rez, Imz t 0 and f is an arbitrary C function with f ^ ). 

This allows to get estimates on | | f ' ' u j | i f e.g. 

4) 2 f (E-V) - fV'^«( f for some^O 

It can be shown that under assumption C there exists an f 
such that 4) holds for all positive E. From this one can recover a 
more general form of the OftT ) behaviour result of Robert and Tamura 
for the boundary values of (Hi - z) and show that the estimates on 
such boundary values are in fact improved with respect to the situation 
with V = 0 ! this is another indication that the non-trapping poten
tials satisfying C) accelerate particles. 
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