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Abstract ; We Investigate the fluctuation properties of the eigenvalues 

of the Laplacian in two dimensions with Dirichlet boundary 

conditions on a stadium. They are found to be consistent with 

the fluctuations of eigenvalues of random matrices (GOE). It 

i s conjectured that this i s true for any boundary such that 

the motion of a free particle elastically reflected by the 

boundary is a strongly chaotic motion. 

Résume : Nous étudions les propriétés de fluctuation des valeurs propres 

du Laplacien a deux dimensions avec des conditions aux limites 

de Dirichlet sur un stade. Elles sont consistantes avec les 

fluctuations des valeurs propres de matrices aléatoires (GOE). 

Nous faisons la conjecture que ceci est vrai en général, pourvu 

que la frontière soit telle que le mouvement d'une particule 

libre réfléchie ëlastiquement par la frontière (billiard) soit 

un mouvement très chaotique. 

English title : Spectral properties of the Laplacian and random matrix 

theories. 

Titre français : Propriétés spectrales du Laplacien et théories de matrices 

aléatoires. 
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The work described in this Letter is a continuation of our 

investigation started in Ref. [11 (hereafter referred as I ; see also 

[ 2 ] ) . In I , we summarized the reasons for believing that the level 

fluctuation properties (departures from uniformity) of spectra, as 

predicted by randoa matrix theories, specif ically by the Gaussian Ortho-

3unal Ensemble (GOE) [ 3 ] , are expected to be very general. Me presented 

results showing that the level fluctuations of the eigenvalues E n of the : 

Laplacian 
i 
j 

{A + E n ) * n = 0 ^ (1) j 

in two dimensions, with the Dirichlet boundary condition i> => 0 on Sinai's 

b i l l i a rd (see Fig. 1), are consistent with GOE-fluctuations. We remember that 

Sinai's b i l l i a rd (free point particle elast ical ly reflected by the walls) shows 

classically a strongly chaotic motion (Bernoulli system) and that in I i t has 

been conjectured that the agreement between GOE-fluctuations and level f luc­

tuations of time-reversal invariant quantum systems whose classical analogues 

are strongly chaotic is a general property. In contrast, for a system whose 

classical analogue is integrable, l ike for instance a circular b i l l i a r d , 

i . e . , solutions of Eq. (1) with Dirichlet boundary conditions on the 

c i rc le, the spectral fluctuations have been shorn to be asymptotically 

of Poisson type [ 4 ] . I t should be noticed that recently, two cases 

showing convincingly the transition in the quantum spectral fluctuations 

from Poisson to GOE type, when the corresponding classical Hamiltonian 

undergoes a transition from the integrable to the chaotic regime, have 

been studied ( 5 ] . In two dimensions, Eq. (1) applies not only to the 
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quantum problem of a free particle in a box but also to the classical 
problem of the transverse vibrations of membranes of different shapes 
whose boundaries are fixed. In three dimensions it applies, with 
adequate changes of the boundary conditions, to the free electromagnetic 
oscillations in the interior of a cavity. 

In the present note we présent results for the spectrum of . 
Eq. (1) in two dimensions with Dirlchlet boundary conditions on the 
stadium : two semi-circles separated by two straight segments (see Fig. 1). 
It is known that a stadium billiard is classically a Bernoulli system 
{ 6 1 and spectral properties of Eq. (1) with a stadium boundary have 
been previously,investigated in the pionering work of He Donald and 
Kaufman [ 7 1 , where, among other questions, the problem of the corres­
pondence between ray and wave description was properly emphasized* ' (see 
also Ref. [ 9 ] ) . The results presented here go beyond the ones of 
Ref. [ 7 ] in several respects : i) we study not only the spacing 
distribution p(x) between nearest-neighbour levels, which is adequate 
to study level repulsion (avoidance of clustering of levels) but also 
other quantities characterizing level fluctuations (spectral rigidity, 
for instance), ii) the number of computed eigenvalues is significantly 
larger than in Ref. [ 7 ] , thereby allowing a close comparison with 
GOE predictions, iii) by computing all the solutions belonging to the 
four different symmetry classes of the stadium, the role of the discrete 
symmetries can be investigated. Besides treating a different billiard, 
this work differs from I in another respect : not only 2-point functions 
are dealt with, but 3- and 4-point functions are discussed as well. 

*' After this work has been completed, we received the Ph.D. Thesis of 
Mc Donald 1 8 ) , in which the results of ref. 171 have been considerably 
extended. 
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We proceed like in 1, except that the parameter characterizing 

the billiard will be kept fixed and that each different symmetry 

c lass , labelled by a, will be treated separately, o takes four different 

values corresponding to the even-even, odd-even, odd-odd, even-odd 

solutions, labelled by a •= •(+, - + , —, + - respectively and one has 

* + + (x.y) = * + t ( - x , y ) = * + + { x , - y ) 

* . + {x,y) =*_ + ( -x .y} = - * . + (x ' . -y ) 

(2) 
* . . ( x . y ) - -*__(-x,y) - - * . . ( x , - y ) 

* + . ( x , y > = - * + . ( - x . y ) = * + . ( x , - y ) . 

The geometrical symmetry .of the problem does not introduce any degeneracy 

in the spectrum. Once the eigenvalues E,. have been determi.ied, we 

unfold the spectrum by the mapping E. „ I—>e< • through 

î,a = V E i , 0 ) & 

where N (E) represents the smoothed part of the staircase function 

number of levels N (E) up to energy E corresponding to the symmetry 

class a. The effect of Eq. (3) is to map the spectrum'{E.J into a 

spectrum' {e^} which i s on the average uniform and with mean spacing 

equal to one. To determine îfa(E) we use the Weyl-type formula [10 ] 

ÏÏ(E) = (l/4ir)(SE - /VE + C) (4) 

where S is the surface of the boundary, £ its perimeter, and C a constant 

containing information on the geometrical and topological properties of 

the domain (curvature and corners of the boundary, connectivity of the 



surface). Eq. (4) applies to the number of eigenvalues up to energy E 

of (1) with Dlrichlet boundary conditions. To determine N (E) we proceed 

as follows. Let K 0(E), Ni(E), N_(E), N +(E) denote the number of eigen­

values up to energy E corresponding to the complete stadium, to the right 

(or left) half of the stadium, to the upper (or lower) half of the stadium 

and to one quarter of the stadium respectively. One has 

N 0(E) = N + +(E) + N_ +(E) + N„(E) + N +_(E) 

N|(E) = N +.(E) + N.JE) 

(S) 
N.(E) = N_ +(E) + N.JE) 

N+(E) = N..(E) • 

For the functions N 0 > N., N_, N + Eq. (4) is valid. By inverting (5) one 

has the functions N in terms of N , Ni, N_ and N + and, applying Eq. (4) 

one obtains ÏL(E). The leading term (surface term) of N (E) is just one 

fourth of the corresponding term of ïf0(E) and independent of a. The 

a-dependence of N(E) comes only through the perimeter and constant 

terms in Eq. (4). Although Eq. (4) is only asymptotically valid, it 

can be seen that in practice it applies all over the spectrum, even 

for small values of E. 

To determine the eigenvalues we use essentially the numerical 

technique proposed in Ref. [11 1 and applied in I 7] : by making an 

integral dipole representation of the wave function the original diffe­

rential equation to be solved is transformed into an integral equation. 

In order to check the numerical accuracy, of the results, we have computed 
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the eigenvalues for the circular case, for which the solutions are known 

to be the square of the zeros of the Bessel functions J v(x) of integer order 

of the first kind. The eigenvalues are determined'with a precision of the 

order of a few percent of the average spacing. The algorithm may fail in practice 

when two eigenvalues are almost degenerate. For instance, for the circular 

case, of the order of 3 % of the eigenvalues are missed. This fraction is 

probably less for the case of the stadium. For the stadium we used a ratio 

of straight line segment length over radius length equal to unity and the 

first 3200 eigenvalues were computed. A stretch containing the first 

1400 eigenvalues of the circle has been computed exactly. 

We now turn to the results. The following quantities are 

discussed : 

a) The spacing distribution p(x) between adjacent levels. 

b) The average over the spectrum Ï 3(L) of â,(L).Aj(L) is defined as 

follows : take an interval te, e + L] ; A,(L) is the least-square 

deviation of the staircase function N(e) giving the cumulative 

density of the spectrum' {E^> from the best straight line fitting it. 

c) The variance £ (L), the skewness y ^ L ) and the excess Y 2 ( L ) of 

the number n(L) of points contained in an interval [e, e + L) . 
2 

£ , Yj and Yj are given in terms of the spectral averages of the 

square, the cube and the fourth power of (n(L) - L ) . 

For the saké of comparison, corresponding values for Poisson and GOE 
2 

spectra are also given [12 1. £ and A 3 are given in terms of integrals 

of the Z-level cluster function whereas Yj and y„ a r e Siven in terms of 

integrals of the (2 + 3)- and (2 + 3 + 4)-level cluster functions. For-

Poisson spectra, £ and A, increase linearly with L, whereas for GOE 

one has a logarithmic increase (spectrum rigidity). 



From the results obtained it can be seen that, in the case of 
the stadium, the level fluctuations corresponding to each different 
symmetry class are, to within statistical errors, the same and consistent 
with GOE predictions. This is illustrated on Fig. 2b, where & ( L ) is given 
for the four different symmetry classes separately. In order to Improve 
the statistical significance of the results, we may consider, Instead of 
four separate stretches of <v. 800 levels, a single stretch obtained by the 
succession of the four stretches (levels belonging to different symmetries 
are not mixed). Results presented on Fig. 2a for the spacing distribution 
and on Fig. 3 for I , YJ and Y 2

 a r e obtained in this way and, again, are 
consistent wlth.GOE predictions. If one considers a stretch of the first 3200 
levels, ordered with increasing value of the energy and irrespective of the 
symmetry class, one obtains the results displayed on Fig. 4. They agree 
with the predictions obtained by superposing four uncorrelated GOE spectra 
each having the same mean spacing. When superposing n uncorrelated 
sequences of n GOE spectra with the same mean spacing one has, for 
Instance, 

[¥ L»'mixed = ^ 3
G 0 E "•/">• <6> 

These results are in perfect analogy with what happens when analyzing 
resonances of the compound nucleus : GOE predictions apply to sequences 
of levels having the same quantum numbers but when states belonging, 
for instance, to different parities are not separated, one must consider 
superpositions of uncorrelated GOE spectra. For comparison, results 
corresponding to an integrable case, the case of a circular boundary, are 
also presented. To avoid degeneracies, we consider in fact the 
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semi-circular membrane. Results are shown on Figs 5 and 3 and are close to 
Poisson-fluctuations. We interpret the departures from Foisson results as 
an Indication that the asymptotic regime has not yet been attained. That one 
expects a Poisson spectrum can be understood from the following heuristic 
argument. One knows that the result of randomly superposing highly correlated 
spectra is to produce a Poisson spectrum. Consider, for instance, the effect 
of superposing at random n picket fences (spectra of equally spaced levels). 
On the interval [0,1] one takes n points x^ (i ».l, 2, ..., n) at random 
uniformely distributed and one constructs an infinite spectrum by attaching 
to each point x, a picket fence of unit spacing. The resulting spectrum, 
in the limit of large n, is a Poisson spectrum. In the case of the semi­
circular membrane we are in a similar situation. The eigenfrequencies 
k (E = kj:) are given by the zeros of the Bessel functions J (x) (v = 1, 
2, . . . ) . Let j„ (s = 1, 2, ...) denote the s-th zero of 0 v(x). The 
j v s's (s = 1, 2, ...) extent from = v to infinity with a density 

and are practically fluctuation-free. Consider now an interval at high 
frequency containing N levels k n (n = 1, 2, .... N) ordered with increasing 
value of k . The successive values of le correspond to of the order of N 
different (and unordered) values of v. The point now is that zeros of J 
and J , with v not too close to v" are likely to be uncorrected. Consider, 
for instance, a stretch of the eigenfrequencies near the 1400th frequency. 
The labelling (v,s) of successive eigenfrequencies Is as follows : (82,4), 
(70,7), (37,18), (46,15), (5,32), (32,20), (3,33), (1,34), (18,26), (60,10). 
Me are therefore in a similar situation as when superposing picket fences, 
which leads to a Poisson spectrum. 
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In summary, the results presented here reinforce the conjecture 
that the spectrum of the Laplacian with Dirichlet (or Neumann) boundary 
conditions on an Irregular boundary has asymptotically (high energy) 
G0E-fluctuat1ons. By irregular we mean such that the corresponding classical 
billiard is a Bernoulli system (possibly that ergodieity is sufficient). 
To attack the conjecture theoretically (for attempts in this direction, 
see [13]) it may be convenient, instead of putting the complication in the 
shape of the boundary, to put it in the metric of the space and consider 
free motion without walls. We remind that the analogy between dispersing 
billiards and geodesic flows in spaces of negative curvature can be explained 
intuitively [14] and that the geodesic flow on a surface of negative curvature 
is a Bernoulli system [15]. At any rate, the following picture seems to 
emerge. At a "macroscopic scale", we have universality properties of the 
spectrum of the Laplacian in a box t the average number of eigenvalues up 
to a given energy depends only on macroscopic features of the boundary, 
such as surface, perimeter. At the other extreme, at a "microscopic scale" 
(scale provided by the mean spacing), fluctuations also show universality 
patterns : Poisson-pattern for regular (integrable) systems, GOE-pattern 
for strongly chaotic systems. One expects that these results also apply in 
more than two dimensions, for instance to the electromagnetic oscillations 
of a cavity [16]. Measurements cf a large number of eigenmodes of microwave 
cavities of irregular shapes, although difficult, seem to be feasible and 
are called for. 
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Figure Captions 

Shapes of the boundaries of different membranes whose spectral 
fluctuations are discussed in the text.- a) Circle ; b) Sinai s 
c) stadium, with the four symmetry classes of the eigenfunctions. 

Results of level fluctuations for the eigenvalues of the stadium : 
(a) Nearest-neighbour spacing distribution ; (b) J, as a function 
of L. In (b) results are obtained from the stretch of levels going 
from the SO-th to 800-th level for each symmetry class. In (a), to 
.improve the statistics, all spacings corresponding to each symmetry 
are included. GOE and Poisson predictions are drawn for comparison. 

Variance s , skewness y, and excess y~ of the number statistic n(L) 
as a function of L, for the semi-circular and stadium membranes. 
For the semi-circular membrane, the stretch going from the Z00-th 
to the 1400-th level has been used. For the stadium, see caption 
of Fig. 2(a). 

Same as in Fig. 2 using the stretch going from the 200-th to the 
3200-th eigenvalue, without separating according to the symmetry 
class. Dashed lines for the 2,-value of Poisson indicate the effect 
of the finiteness of the sample (one standard deviation). Dot lines 
Indicate results corresponding to the superposition of four uncor-
rslated G0É spectra. 
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Fig. 5 : Same as in Fig. 2 for the eigenvalues of the semi-circular 

membrane. The stretch going from the 200-th to the 1400-th 

eigenvalue has been used. Dashed lines for the 5,-value of 

Poisson indicate the effect of the finitcness of the sample. 
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