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ABSTRACT

Making use of the generating functional of the non-Abelian flavour anom-
alies of QCD we construct a gauge invariant phenomenological Lagrangian of
pseudoscalay and vector mesons, which is equivalent to the extended Wess-Zumino
Lagrangi@a in the low energy approximation. The gauge kinetic term of the
hidden local symmetry is necessarily present and the gauge coupling constant
is determined by the equivalence.

AHHOTANIMA

NocTpoeHO KaNMGBPOBOYHO-HHBAPHAHTHHA >0deKTHBHHA JlarpaHxXHaH lNcCeBOOCKaNAp-—
HHX H BEKTOPHHX ME30HOB C NnoMnmb HeabGesieBOR aHoManHu, CH ABAAETCA 2KBHBANEHT-
HHM C pacnpocTpPaHeHHHM JlarpaHxuaHoM Becca M 3yMHHO B HH3KOIHEPTrHYECKOM NpHG-
nuxeHnn., KnHeTHYeCKkas 3HEPrua KalHOGPOBOYHHX GO30HOB CKPHTON CHMMETPHH, MOAB~
nAeTcA aBTOMAaTHYeCKH B 20PeKTHBHOM JlarpaHxuade H KOHCTAHTA CBA3H 30PeKTHBHOR
KanuGpoBOYHOR TeopHH omnpenesieHa 3KBHBAJIEHTHOCTHY .

KIVONAT

A nemabeli anomalidk generAtorfiiggvénye segitségével megkonstrudljuk a
pszeudoskalAr- és vektormezonokat egyarant leird mértékinvarians fenomenolb-
gial Lagrange-fiiggvényt. Megmutatjuk, hogy ez ekvivalens a kiterjesztett
Wess~Zumino féle effektiv hat&ssal az alacsonyenergils kézelitésben. Az ek-
vivalencia kévetkeztében automatikusan megjelenik a Lagrange-fliggvényben a
rojtett lokdlis szimmetridk mértékbozonjaihoz tartozé kinetikus energia,és
az effektiv mértékclmélet csatolasi Allandéja meghatfrozhaté,




in a recent paper [4] it was shown that &£, , the usual
non-linear & -model lagrangian based on the manifold G/H
where G = 53U, (2)xSUy (2bU(4) and H = UL) is equivalent to
a Lagrangian Lo posasesing Ggyea * Hieas Symmetry. The gauge
bosons of the hidden local symmetry H,,, has been success-
fully identified with the vector mesons ¢ ,w . The equiva-
lence holds in the absence of a gauge kinetic term for the
vector bosons. The main assumption of {1] was that this term
is somehow generated by the underlying dynamics of QCD.
After adding this term to Lo by hand, the vector bosons be-
came dynamical but the exact equivalence between the two
theories has been lost. Howe~er, their equivalence was still
valid as the zeroth order approximation in a low energy ex-
pansion.

In the present paper we will show that the emergence of
the gauge kinetic terms is the consequence of flavour anom-
alies of QCD. Following the method of Wess and Zumino (2]
but making use of both the usual, Bardeen, and the "spurious”,
non-topological, anomalies the effective Lagrangian -f.‘ has
been constructed [3,4]. The full Lagrangian &£,+£, describes
the interactions of pseudoscalar mesons in the presenca of
external electroweak fields up to first order in the low
energy approximation [5]. We shall construct the locally
gauge invariant Lagrangian ° orresponding to L,. L4 auto-
matically contains the gauge .. netic terms and is almost
uniquely determined by the equivalence.

First we extend the quadratic lagrangian Lo of [1] by
introducing in addition to the gauge vector field V,. an axial
vector field AP as well:

Lo = < fa T {lem et o2 T ((epam, 5 27))

(1)
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where §, and $5 are U(2) valued scalars satisfying the
constraint det ¥, = det §, . ‘U'f. and J’,. are matrix valued
flavour vector and axial external fields, respectively.
Under the Ggue) % Hi,) Symmetry our fields are transformed”
as follows:

{2)

)
T = Lo Toqm9y, hoyeH o,
+ .
' ;.(,) = Ax)V p) L ) & L(ﬁ)')r{j}n' (9.,9a)60 giekal (3)
A pl) s Lok ped Ko,

The gauge 1s fixed by demanding

}‘-’I:-’}p (4)

where 3§ can be expressed in terms of the chiral Goldstone

bosons:

jl e'%P , F: -;—; "‘.d. 0'4.1'3) ;" 53H‘V' (5)
Using (4),(5) and the identification

W= g*

+ of course the presence of V',. and J’r breaks Ggeval « How=
ever, part of it can be gauged, supplementing .(3) by the
corresponding transformations on 1 p and J',- o Though in
the applications we shall consider its U(4) subgroup only,
corresponding to the interactions of mesons and photons,
the general expression (2) proves to be useful in what
follows,




the first term in (4) becomes the gauged & -model

lLagrangian:
L,z T T{putorui, (6)
where D'a‘= :ru "'lru - uxr, £r= ";_-"J ’ 1f= 1’;— “'r.

The second and the third terms in (4) are identically
zero if we use for V,. and A,. the classical equations of
motion:

(1]
Vn

ct
r

A (1)

"

- %(‘.r"'fr) .

Thus c‘—. and Ly, are equivalent, though the latter con-
tains two, so far arbitrary, constants a and b . However,
when the gauge kinetic term

Liin = ':%*'T"iwr" WY e =W Ve[V, VL] (8)

is added, the special value & = 2 is preferred. As it was
shown in (1] this choice yields

(a) Gean * 9 € universality (6],
(b) Lo 2%?. . {: KSRF relation (7], (9)

(c) vector meson dominance in YXX coupling.

Now we turn to the construction of L4. We recall that
the calculation of the effective Lagrangian l.,, proceeds
in two steps {3,8,9]. First one looks for local functionals
Zwa[Upsbyp) and Zy[UT,,I"] whose chiral variations are
the Bardeen (40] and the non-topological (44] anomalies, re-
spectively. Then the gauged effective lagrangian is t.' =
lor + &\ with

Lua U Uy by ) e Z,,,[;G,?',f,!’] = Lnlv; 4, ]

£ur (U0 o) Z”"[ﬁrv- ‘;rt']‘ Zm-Wr.Jr] .
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where vrj and J’: are the chiral transforms of V'
and J"r with respect to Y'=fQ :

75" + +
Le = 3£4,.77 + Topy M)
S1Y | et -
Xp =1 Jl,-? + T 9r§ .
The Z functionals are determined only up to chiral invari-
ant terms, but -(“_ and ‘w do not depend on this ambi-

guity. we note that 2,y and Zg, are vector gauge invari-
ant. 2,y is given by [3,11]:

Zar = ot Tr{ LW W= dpd, W= 4(0,07)*
R T ol LV L (12)

Z 4 1is local only in five dimensions. In the language of
differential forms it is given by [9] :

(5) -

Zyy =

R T (3W A+ 2WP DU + 143, (13)

We 100k for Ggponal * Hioeqy invariant Lagrangians L gy
and Lya which are equivalent to &£,y and L“ up *to first
order in the low energy approximation. That is we have to
require

L"(‘u ’ Ur o‘}r) = LNT((.r,‘T'r‘ v’:c. A;() (44)
et
in.(“o U'r ""r)"' Lm“h*r W vAFt

Apart from uninteresting selfcouplings of the external
fields (44) is satisfied 1f we choose

(M)
Lm = ZN'.[VP, Ar] + ZIW [vr ’ Ar]

Lug = 2‘2‘[ V., Ar] + z“'w’\,[vr , Ar] ,

since from (7) and (44) we have

o ~ oy e ~efr
Vr = UIJ ’ l\r. = \.J’r- . (46)

“5)
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and Z'f.,\_, denote chiral invariant contributions
to (42) and {43), respectively. They do not contribute to
&1 but they are present in L, in general. The most gen-
eral choice for them is

*® v (s) _
A ;:;;T—riLr,Lr + Rr,ﬁ""i , Zoay 2O , 47)

where L,.q and R,.v are the field strength tensors of

r
Thus our complete Lagrangian

L=1Le+ Lyp+ Lyg #s)

contains the arbitrary constants a ,b and % . We choose
a =2 as in {4] to maintain the propertr (9c). Moreover,
we choose ®=141 in order to cancel the ‘rong momentum de-
pendence in the S$AX coupling thus maintaining propertiec
(92) and (9b) as well. The parameter b can be determined
from the axial meson mass.

With this choice we have

Lyy(x=1) = 5= Tr § Lo W+ £ (Dp 4, D, A NDF A= D"AF)

F 3 a
-4(op A (apat) (19)
3] -4 s 3 2 3 ,§

Ly = .G;T-ri.?ovl A +2WA%° + (DAY A + 5 A 3,
The physical vector and axial fields are g; ) Z"r , where

V S - i& S° 6“

,-r .L F as0,14,2,3. (20)

. _\ga1 e o

Ap = _39.1& v g,
Here

~ A

Rp=ap-%9P . (21)

These fields together with n® diagonalize the quadratic
part of L.




From (49) we see that the vector and axial vector
kinetic terms are necessarily present in L, as a conse-
quence of the equivalence between L‘ and the extended
chiral Lagrangian ‘C" . Moreover, the values of the vector
and axial coupling constants are also fixed by the equiv-
alence. They can be read off from (49) :

,:u g.=2.r2:.‘l b4

From (4) and (22) we can calculate the ¢ mass:

mg =2Znfn = 82CMeV .
We have also calculated some decay width using our effec-
tive Lagrangian L., Table 1. contains the numeric¢al vresults
of these simple calculations together with the corresponding
experimental values (42].

Our results are only sligntly different from those of
earlier calculations [43,44,45]. The difference is mainly
due to our use of (22) while in other calculations ¢ = 9oxx
was calculated from the €—IaX width,

The rather good agreement between our results and ex-
periment supports the hypothesis that the vector mesons
g ,w are indeed the effective gauge bosons of the
hidden local symmetry of (CD, So far it is not known whether
this is a general phenomenon, i. e. In all strongly inter-
acting theories if some global chira. symmetry G breaks
down to a smaller one, H with the emerr~ence of composite
G/H massless Goldstone bosons then among the other com-
posite states there are always present massive vector
bosons corresponding to a hidden and spontaneously broken
Heoeat #auge symmetry.

Finally we would like to comment on an attempt [14]
to directly identify the § and A, meson fields with
the vector and axial fields present in the gauged wess-

(22)

(23)



Zumino Lagrangian L= L(“ ,11',.,&'.) . The authors of ref.
{44] concentrated on the Lagrangian & wp and intro-
duced the interactions between vector, axial and pseudo-
scalar fields by using, instead of (45), the Lagrangian

Twa = 2% Lv¥, Al - v, 4]
Wwhile it is evident that (24) and (45) are entirely dif-
ferent functionals, there can be effective vertices which
turn out to be the same. This happens to be the case with
the VVP vertex which is the most important one in the phe-
nomenological applications. It is given by

Ly = %a Tr{dv )aP Y = 2 aT-{Wv )P}
in both cases.

However, it has oeen noted {45] that (24) is incon-
sistent in that in seneral it fails to reproduce the low
energy theorems of current algebra incorporated in LWI'
On the other hand, we consiructed our Lagrangian (45) so
as to reproduce Ly (and Ly ) when (7) ana (46), the
equation of motion of the vector and axial fields in the
low energy approximation, are used.

The authors would like to thank I'. liraské and i,
vlargaritis for numerous interesting discussions.

(24)

(25)




r Decay Calculated Experiment

‘ width from L

: M(g-»an) 463 MeV 454t 5 MeV

i M(A28n) 420 MeV 345 £ 45 M7
P(w - »°y) 877 keV 864 60 keV

_ P(¢»ny) 92 keV 74 & 9 keV
Fw-*3n) 7.25 MeV 8.90% 0,27 lie.

Table I. The calculated decay widths of vector and
axial mesons and the corresponding experi-
mental values [42].




hE R 44 - -
nelerences

{4] M. Bando et al., Hiroshima preprint RRK 84-22 (4984).

[2] J. Wess and B. Zumino, Phys. Lett. 37B(4971) 95.

{3] J. Balog, Phys. Lett. 49B (4984) 497.

(4] K. 5ao, Gifu preprint GWJC-4(4984).

(5] J. Balog, KFKI-Budapest preprint KFKI-4985-06.

[6] J.J. Sakurai, Currents and Kesons (University of Chicago
Press, Chicago, 4969).

[7] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 46
(1966) 255;

Riazuddin and Fayazuddin, Phys. Rev. 447 (4966)4071.
{8] N.K. Pak and P. Rossi, Nucl. Phys. B250(4985) 279.

{9] J.L. Petersen, Niels Bohr preprint NBI-HE-84-25(4984).

(40) W.A. Bardeen, Phys. Rev. 484 (1969) 4848.

{41] A. Andrianov and L. Bonora, Nucl. Phys. D233 (1984) 232;
3.,~K. Hu, B.-L. YToung and D.W. McKay, Pthys. Hev. D30
(4984) 636;

A.P. Balachandran et al., Phys. Rev. D25 (1982) 2743.
{42] Particle Data Group, Kev. Mod. Phys. 56 (4984) 34.
{43] P.J. O’Donnell, Rev. Mod. Phys. 53 (4984) 673.

{14] 0. Kaymakcalan, S. Rajeev and J. Schechter, Phys. Rev.
D30 (4984) 594. '

{45] S. Rudaz, Phys. Lett. 445B (1984) 284,




Xiadja a K6zponti Fizikai Kutatd Intézet
Felelds kiadé: Bencze Gyula

Szakmai lektor: Luk&cs Béla

Nyelvi lektor: Révai Jénos

Pé1d&nyszém: 385 TUrzsszém: 85-252
Kész{ilt a KPKI sokszorosité lizemében
Felelds vezetd: TOreki Bé&l&né

Budapest, 1984, 4prilis hé



