COMMISSARIAT A L'ENERGIE ATOMIQUE

CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF - - 7867 Service de Documentation F91191 GIF SUR YVETTE CEDEX K5

بالمنابذة والمسا

A GENERALIZATION OF THE LIVOLANT-JEANPIERRE THEORY FOR RESONANCE ABSORPTION CALCULATION

REUSS, P. - CEA, CEN Saclay, IRDI, DEMT

 $\bullet.$

Communication présentée à : International meeting on advances in nuclear engineering and computational methods Knoxville, TN (USA) 9-11 Apr 1985

the contract of the contract of

 λ

 \blacktriangleleft . The same is a set of \mathcal{A}

 $\bar{\mathbf{y}}$

 $\overline{1}$

A GENERALIZATION OF THE LIVOLANT-JEANPIERRE THEORY FOR RESONANCE ABSORPTION CALCULATION

P. Reuss

Centre d'Etudes Nucléaires de Saclay Institut de Recherche Technologique et de Développement Industriel Département des Etudes Mécaniques et Thermiques Service d'Etudes des Réacteurs et de Mathématiques Appliquées 91191 Gif-sur-Yvette Cedex (France)

ABSTRACT

Because of the large number of heavy nuclide resonances a detailed neutron flux calculation in the epithermal range cannot be made by standard nuclear reactor codes : it would need several tens of thousand of energy points. However, by using pre-calculated effective reaction rates only a few tens of groups are sufficient for accurate spectrum and reaction rate calculations, if a consistent formalism is used. Such a formalism was elaborated in the 1970s by M. Livolant and F. Jeanpierre (L.-J.)1 for the "one resonant nuclide - one resonant zone" problem, and was implemented in the APOLLO code.²

In practical cases there are several resonant nuclides and often resonant zones of different characteristics, e.g. a lattice constituted with different kinds of pins, a lattice with irregular "water-holes", a fuel element with temperature (therefore Doppler effect) gradients,...

Since these problems cannot be correctly treated by APOLLO, a generalization of the formalism was derived. The basic principles were retained, and our aim was to construct an algorithm which would not require too expensive calculations.

After a brief recall of the L.-J. theory, equations for the most general case are presented, somme approximations for practical calculations proposed, and numerical tests on significant examples commented.

L.J. FORMALISM¹,3

HOMOGENEOUS CASE

Let 0 be the resonant nuclide and 1 the non-resonant nuclide(s). The flux is given by :

$$
R_0 \phi + R_1 \phi = (\Sigma_0 + \Sigma_1) \phi
$$
 (1)

 $\mathbf{H}=\mathbf{H}+\mathbf{H}$.

where R is the slowing-down operator, the other notations being as usual. Let

1

us write :

$$
\phi = \varphi \psi \tag{2}
$$

where φ is the fine-structure and ψ the macroscopic (regular) flux. An adequate choice is :

$$
\psi = R_1 \phi / \Sigma_1 \tag{3}
$$

for Σ_1 is pratically constant and R_1 (a long range integral operator) smoothes ϕ . Since 0 has a short range slowing-down the approximation

$$
R_0 \phi = \psi R_0 \varphi \tag{4}
$$

can be made. Using (2) , (3) and (4) in (1) yields the fine structure equation :

$$
\frac{1}{N_o} R_0 \varphi + \sigma_e = (\sigma_0 + \sigma_e) \varphi
$$
 (5)

which depends only on $\sigma_{\rho} = \Sigma_1/N_{0}$, the constant equivalent cross-section.

It is possible (first step of the calculations) to solve (5) for a few values of σ_{ρ} and store the results (effective reaction rates). It is expensive **but made only once.**

For a new value of σ_e (second step) an interpolation allows to get the ef**fective reaction rates. Re-writing (5) in a (large) multigroup form one can derive the effective cross-sections for the resonant nuclide in such a way that the exact effective reaction rates are obtained in the multigroup form : it is continuous-multigroup equivalence. Finally using these effective cross-sections in (1) re-written in a multigroup form allows to get a very accurate multigroup solution because the equivalence was performed on a fondamental problem (5) very close to the actual problem (1).**

HETEROGENEOUS CASE

Let us now suppose that 0 is in the zone 0 and 1 in the zone 1. Using first-collision probabilities the flux is now given by :

$$
V_0 P_{0C} R_0 \phi_0 + V_1 P_{10} R_1 \phi_1 = V_0 \Sigma_0 \phi_0
$$

\n
$$
V_0 P_{01} R_0 \phi_0 + V_1 P_{11} R_1 \phi_1 = V_1 \Sigma_1 \phi_1
$$
 (6)

If we write $\phi_0 = \varphi \psi$ and use (3), (4) and take the medium to be perfectly re**flected we get again (5) but with :**

$$
\sigma_{\mathbf{e}} = \frac{1}{N_0} \cdot \frac{\Sigma_0 (1 - P_{00})}{P_{00}} \tag{7}
$$

which now depends on Σ_0 **and therefore on energy. However** σ_e **varies only a few percent while** *ZQ* **varies on several decades (figure) and therefore one can replace oe by a constant 7 , and the preceeding procedure can be applied : interpolation in the stored effective reaction rates, then continuous-multigroup equivalence.**

This mean value is generally characterized by the Bell factor $b = \sigma_{\bf e}/\sigma_{\bf e \infty}$ where $\sigma_{\mathbf{e}\infty}$ is the limit value of (7) for large $\Sigma_{\mathbf{o}}$. The $\overline{\sigma}_{\mathbf{e}}$ is defined such that

 $\Gamma = \Gamma$.

 Γ , Γ ,

 ± 1

(5) written with the true $\sigma_{\mathbf{e}}$ and with $\bar{\sigma}_{e}$ give the same absorption rates : **i t is the heterogeneous-homogeneous equivalence . Usual approximations such as the narrow resonance assumption, are used to implement this equivalence .**

It is easy to show that a more complicated heterogeneous case can be treated similarly as far as there are only one resonant nuclide and one resonant zone.

We now consider a general case with any number of resonant nuclides, nonresonant nuclides and zones (zone : volume small enough for a flet-flux assump**tion). The subscripts x,y,... stand for the resonant nuclides ; i,j,... for the non-resonant nuclides ; £,m,... for nuclides of any kind. In order to simplify the formalism we put a nuclide subscript for the fluxes, but it is clear that the fluxes are the same for nuclides mixed cogether in a same zone, and this fact is taken into account in the practical calculations.**

MACROSCOPIC FLUXES AND FINE STRUCTURES

The equations to be solved are :

 \sum_{m} **v**_m **p**_m **R**_m ϕ _m = **v**_{**n**} Σ _{**n**} ϕ _{**n**}. **(8)**

Here V_{ℓ} is the volume of the zone containing nuclides ℓ and $P_{m\ell}$ is the **first-flight collision probability for neutrons born isotropically and uniformly in volume m to undergo a collision with nuclides** *I.* **After use of the reciprocity relation for the** $P_{m,\theta}$ **, this equation reads :**

$$
\sum_{m} P_{\ell m} \frac{R_{m} \phi_{m}}{\Sigma_{m}} = \phi_{\ell}.
$$
 (8a)

For the non-resonant nuclides we define the macroscopic fluxes :

$$
\psi_{i} = R_{i} \phi_{i}/\Sigma_{i}
$$
 (9)

Alike the ψ defined by (3) the ψ_i have no fine structure.

To get φ \neq 1 between resonances one must define the resonant nuclide macros**copic fluxes by :**

$$
\sum_{\mathbf{y}} P_{\mathbf{xy}} \psi_{\mathbf{y}} + \sum_{j} P_{\mathbf{x}j} \psi_{j} = \psi_{\mathbf{x}}.
$$
 (10)

We will see later that the $\psi_{::}$, also, have no significant fine structure.

3

Putting $\phi_x = \varphi_x \psi_x$ and assuming $R_x \phi_x = \psi_x R_x \varphi_x$ we get :

$$
\sum_{\mathbf{y}} P_{\mathbf{xy}} \psi_{\mathbf{y}} \left(1 - \frac{R_{\mathbf{y}} \varphi_{\mathbf{y}}}{\sum_{\mathbf{y}}^{\mathbf{y}}} \right) = \psi_{\mathbf{x}} (1 - \varphi_{\mathbf{x}}) \tag{11}
$$

Since the slowing-down uniformizes the neutron distributions, the $\psi_{\mathbf{i}}$ and therefore the $\psi_{\mathbf{x}}$ are very close to each other for a given lethargy. Assuming $\psi_x = \psi$ ($\forall x$) we get the fundamental situation :

$$
\sum_{\mathbf{y}} P_{\mathbf{xy}} (1 - \frac{\kappa_y \varphi_{\mathbf{y}}}{\zeta_{\mathbf{y}}}) = 1 - \varphi_{\mathbf{x}}
$$
 (12)

y all or mur prises **GENERALIZATION OF THE BELL FACTOR**

As in the simple case it is useful to introduce quantities varying slowly with Σ _v. This goal is reached if we define :

$$
A_{xy} = P_{xy}^{\text{II}} / \Sigma_y
$$
 (13)

with

$$
P_{\ell m}^{\mu} = P_{\ell m} + \sum_{y} P_{\ell y} P_{y m}^{\mu}
$$
 (14)

 $P_{\hat{k},m}$ can be interpreted as the collision rate on m for one neutron born in \hat{k} when absorption by the resonant nuclides is replaced by scattering. $A_{\rho,m}$ is the corresponding flux in $m :$ its fine structure is not significant because resonant absorption has been eliminated (a mathematical justification is proposed in the third part). **in the third part).**

These quantities allow us to write the solution of (10) as
\n
$$
\psi_x = \sum_j^m \frac{p}{x_j} \psi_j
$$
\n(15)

which shows that indeed the ψ_x have practically no fine structure.

This leads to a new form of the fondamental equations :

$$
\sum_{y} A_{xy} (\Sigma_y \varphi_y - R_y \varphi_y) = 1 - \varphi_x
$$
 (16)

The A matrix generalizes the equivalent cross-section $\overline{\sigma}_e$: since it varies **very little (see numerical examples below), it can be replaced by a constant matrix A obtained by a generalized heterogeneous-homogeneous equivalence. We propose in the third part a simple procedure to perform this equivalence easily.**

TABULATIONS

y

The reactions rates for the fondamental problem can be obtained by interpolation in tables. Of course these tables depend on a greater number of parameters than in the L.-J. case, but simplifications can be suggested.

RESOLUTION OF THE ACTUAL PROBLEM

At the present stage we know the reaction rates for the fundamental situation. Thanks to a continuous-multigroup equivalence they can be used *as* **precee-**

the control of the control of

 $\sim 10^{-1}$

 $\mathbf{H}^{\mathbf{1}}$ and $\mathbf{H}^{\mathbf{1}}$ are all the set of

 $\mathbf{I}=\mathbf{I}$.

dingly t o get the se t of effectiv e cross-sections which will be used to solve the actual problem (8).

An alternativ e way which allows t o avoid this second equivalence consists of calculating directly the macroscopic fluxes. We derived the equations for these functions. They contain only the P'.\ and the effectiv e reaction rate s :

$$
\alpha_{\mathbf{x}} = \Sigma_{\mathbf{x}} \varphi_{\mathbf{x}} - R_{\mathbf{x}} \varphi_{\mathbf{x}} \tag{17}
$$

which are very clos e to the absorption rates and that can be tabulated :

$$
\sum_{j} \frac{P_{ij}}{\Sigma_j} R_j \left[U_j - \sum_{x} \frac{P_{jx}}{\Sigma_x} U_x \alpha_x \right] = U_i
$$
\n
$$
= \sum_{i} P_{ij} \psi \dots
$$
\n(18)

where $U_{\ell} = \sum_{i} P_{\ell j} \psi_{j}$

These equations are similar to the initial ones (8a). But the absorptions do not appear in the same way (left instead of right hand side).

Note that $U_x = \psi_x$, therefore an actual reaction rate is obtained by multiplying U_v by the effective reaction rate.

SIMPLIFIED PROCEDURES AND NUMERICAL TESTS

EXAMPLES OF A MAThiCES

We calculated the elements of A for three typical PWR situations.

i. Cylindrical Cells of Various Sizes

Four examples were chosen with the following characteristics, the radius of the pin being the unit of length :

'c" is a standard PWR cell. For "d" the Dancoff effect is suppressed. and "b" are representative of a very and a slightly undermoderated PWRs. The unique element of A is given in table 1 as a function of the macroscopic cresssection I in the pin. In column "d" we find *Oeoo/o^e ** **2/b, where b is the usual Bell factor. It can be noticed in the other columns that the Dancoff effect only shifts of an approximatively constant amount the "d" values. As a similar remark can be made for the following tests we will only report the results for "a" where this effect is maximum.**

 $11-1$

 ± 1

ii. Chessboard Pattern of Two Types of Pins

The calculation was made with the usual Roth approximation which is sufficient to appreciate the variations. Table 2 presents the results as functions of Σ_1 and Σ_2 , the macroscopic cross-sections in these two types of pins (note that $A_{21} = A_{12}$ $\overline{\text{and}} \ A_{22}(\Sigma_1, \Sigma_2) = A_{11}(\Sigma_2, \Sigma_1).$

A₁₁ practically depends only on Σ_1 and behaves similarly to A in table 1. **A._ is almost constant.**

iii. Cell with Two Zones in the Pin

T..is case is the same as the first one but two zones of equal volumes are distinguished in the pin. Table 3 shows that A₁₂ and A₂₂ depend only on Σ_2 , the macroscopic cross-section in the peripheral cones, but A_{ll} depends on both cross**sections. All the variations are always similar to the preceeding ones.**

This fact can be easily understood if we assume isotropic currents at the interfaces : then one can indeed establish that

$$
A = A^+ + (1 - C^+)^{-1} C^+ \overline{\ell}
$$
 (19)

where A[†] is the value without Dancoff effect, C[†] the Dancoff matrix (independant **of the resonant cross-sections) and X the mean chords (diagonal matric).**

We conclude that the present and well tested procedure for the "one resonant zone" problem, i.e. replacing A by a constant \overline{A} , remains valid for the general **problem where A behaves very similarly.**

SIMPLIFIED HETEROGENEOUS-HOMOGENEOUS EQUIVALENCE

The goal of this equivalence is to obtain the mean value A of A. For the case of a single resonant nuclide this value is given in the L.-J. theory by the equation "effective absorption rate with A function of $\Sigma_{\mathbf{x}}$ " = "effective absorp**tion rate with A constant". This equation is simple when the narrow-resonance** (NR) approximation is used to express both terms. This approximation appears to **be sufficient to get a correct value of A (if necessary, a better intermediateresonance approximation could be used).**

For the general case the equivalence equation is more complicated, even in the NR approximation, because of the greater number of unknowns. This is the reason why an approximate "one-by-one:' procedure has been considered : supposing that only £ne nuclide x_ is resonant, we carry out the present procedure which gives one A value. From A we get \overline{S} by (14) and (13) written with x only. Simi- $\frac{1}{2}$ are $\frac{1}{2}$, \frac y' z' \cdots then we can get the n_{xy}

We have tested this approximation for a mixture of two resonant nuclides in a pin (we have seen that the A functions are similar whatever the geometry is ; also, if the procedure is correct for 2, it is -recurrently - correct for N **resonant nuclides). For the sake of simple numerical calculations we represented both resonant cross-sections by sets of three values of equal probabilities (see** table) and used the NR approximation. In column α we give the errors on the total **effective reaction rate with this procedure (first of all** Σ_1 **is calculated with** Σ_2 \bullet 0 ; then $\overline{\Sigma}_2$ is calculated with $\Sigma_1 = \overline{\Sigma}_1$: it is the reason why the cases 2a

TELEVISION

and 2b, for example, have to be distinguished). These errors are smaller than 1% but for two cases where the effective reaction rate is small. The results are generally better when the more absorbing nuclide is treated first (for instance, 2a is better than 2b), but not very significantly. In columns 6 and Y we give the errors when the procedure is iterated $(\overline{\Sigma}_1$ is recalculated with Σ_2 ***** $\overline{\Sigma}_2$; etc...). No si**gnificant improvement appears (the iteration converges but not towards the exact result).**

SIMPLIFICATION OF THE EFFECTIVE REACTION RATE TABULATIONS

Equations (16) relative to the fundamental situation contain a great number of parameters if several resonant nuclides are taken into account. The effective reaction rate tables should be built with all these parameters and therefore they would be very large and expensive to create and to interpolate from. It is the reason why we suggested a factorization approximation in order to have only binary (two resonant nuclides) factors to calculate and store ; that is to say : we assume that interference effects between resonances are practically uncorrelated.

Y+Z+t+... Let T ""b e the effective reaction rate for x in presence of y,z,t,... $d f'$ **+** f' **=** f' \bullet f'' f'' f'' be the interference factor (f' is relative $\begin{array}{ccc} \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} \end{array}$ **X X X X** f'' **b** f'' **b** f'' $\geq f''$ **^f yw.. . B y^f z^f t _**

It is clear that heterogeneity effects are independant of these interference effects. Consequently numerical tests were performed with a homogeneous mixture. We chose the following one with a 20b non-resonant cross-section (which gives

the errors around these mean values.

Remark. R_{. 2}Sanchez and J. Mondot⁵ proposed another method : calculate the inter**ference f£ - "• factors with the wide resonance approximation. The precision** is similar (differences for the same examples $: -0.1 ; -0.2 ; 2.3 ; 1.27$) ; **the amount of data to be stored is also similar.**

7

 ± 1

 \pm 1 \pm

CONCLUSION

The generalized formalisa herein proposed will allow to treat with the same proved precision than the L.-J. theory any complicated situation. It will be introduced in the entirely new version of our code, APOLLO 2, presently in progress. Then we will at least be able to correctly calculate the well known difficult problems drastically imposed to the physicists by the designers of nuclear **reactors !**

REFERENCES

- **1. F. Jeanpierre and M. Livolant, "Autoprotection des résonances dans les réacteurs nucléaires ; application aux isotopes lourds," Rapport CEA.R.4533, (1974)**
- **2. A. Hoffmann et al, "APOLLO, code multigroupe de résolution de l'équation du transport pour les neutrons thermiques et rapides," Note CEA.N.1610, (1973)**

A. Kavenoky, "APOLLO : A General Code for Transport, Slowing-down and Thermalization Calculations in Heterogeneous Media", Mathematical Models and Computational Techniques for Analysis of Nuclear Systems. Ann Arbor, Michigan, April 9-11, 1973 (CONF-730414-P1)

- **3. J. Bussac et P. Reuss, "Traité de neutronique," Hermann, (1978)**
- **4. J. Mondot et R. Sanchez, CEA, internal paper**
- **5. R. Sanchez and J. Mondot, "A Model for Calculating Multigroup Self-Shielded Cross Sections for a Mixture of Resonance Absorbers in Heterogeneous Media," ANS Topical Meeting, Chicago, September 19S4**

 $1.11 - 1.11$

Table 1 : A for Cells

 $\overline{}$

 \mathbf{I}

 $\overline{}$

 $\bar{1}$

 \mathbf{I}

Table 2 : A for a Chessboard Pattern

 $\vert 1 \vert = \vert 1 \vert$

 $\bar{1}$

 $\ddot{}$

9

 $\hat{\Gamma} = -\hat{\Gamma} = -\hat{\Gamma} \hat{\Gamma}$

 \mathbf{L}

 $\bar{1}=1$

 A_{22}

 $\ddot{}$

 $\mathbf{1}=\mathbf{1}=-1$

 A_{11}

 $\hat{\mathbf{r}}$

 $\ddot{}$

 \bullet

 $\bar{\Pi}^{\pm}$

 $\hat{\mathbf{r}}$

$A_{12} = A_{21}$	0.1	2.01	2.07	$\begin{array}{c} \n2.24\n\end{array}$	2.50	2.52
	0.5	1.99	2.06	2.23	2.50	2.52
	$\overline{2}$	1.99	2.05	2.22	2.51	2.53
	10	1.99	2.06	2.23	2.51	2.52
	50	1.99	2.06	2.23	2.51	2.53

Table 3 : A for a Cell with Two Zones in the Pin

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 \mathbb{F}^2 \sim 1. 10

 $\sim 10^{11}$ m $^{-1}$

and the control of the control of the con-

 $\label{eq:3.1} \mathcal{A}(\mathcal{A}) = \mathcal{A}(\mathcal{A}) = \mathcal{A}(\mathcal{A}) = \mathcal{A}(\mathcal{A}) = \mathcal{A}.$

 $\mathbf{u} = \mathbf{u} \times \mathbf{u}$

Case	Σ , set		Σ_2 set			Errors (7) (See text)			
						α	ß	Υ	
	0.1	0.5	2	0.1	0.5	2	1.6	2.1	1.3
2a	0.5	2		1010.1	0.5	2	-0.8	0.8	0.8
2 _b	0.1	0.5	$\overline{2}$	10.5	$\overline{2}$	10	1.2	0.9	0.8
3	0.5	2		1010.5	$\overline{2}$	10	0.6	0.1	0.2
4а	$\overline{2}$	10		50 0.1	0.5	$\mathbf{2}$	0.3	0.0	-0.0
4b	0.1	0.5	$\mathbf{2}$	$\overline{2}$	10	50	0.8 -	0.3	-0.0
5a	2	10	50¦	0.5	$\overline{2}$	10	0.5	-0.2	-0.3
5Ь	0.5	2	10	$\overline{2}$	10	50	0.2	0.3 \blacksquare	-0.3
6	2	10	50	$\mathbf{2}$	10	50	0.4	0.2 \blacksquare	0.3

Table 4 : Errors from an "One-by-One" Procedure

Effective Resonance Integral in the Mixture (barns).

" : : . 237 Without Np in the Mixture.

 $\Gamma = 1$.

 \perp

Table 5 : Errors from a Factorization of the Interference Factors

 $\mathbf{T}^{(1)}$

 ± 1

 $\left(1-1\right)$

 \mathbf{r}