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Abstract

Self-sustained synchrotron oscillations are ob-
served in electron storage rings. In general Che theo-
retical description of the saturation of an instability
for large oscillation amplitude is a difficult problem,
and techniques have not yet been developed which yield
analytic approximations to the appropriate nonlinear
Vlasov or Fokker-Planck equations. In this paper, a
single point bunch interacting with the wake field from
a single resonant node of an RF cavity Is considered,
and the averaging method of Bogollubov and Mitropolsky*
19' used to Btudy the saturation of the Initial exponen-
tial growth of the oscillation aaplitude, due to the
nonlinearity of the wake field. The determination of
the limiting amplitude of oscillation is discussed both
in the presence and in the absence of radiation damping.

Equations of Motion

In a storage ring, the electrons in a bunch exe-
cute synchrotron .aaclllatiOTs with angular frequency
u>8 about a synchronous electron having energy Eo

and revolution period To. Suppose there is only a

single bunch of H electrons in the ring, and that this
bunch Is Interacting with the wake field due to a reso-
nant mode of an RF cavity. The resonant frequency of
the mode is ur, its shunt impedance Is R and the qua-
lity factor is Q. The wake field w(t) vanishes for e <
0, and for t > 0 Is given by

w(t) - 21R exp(-rt) lcosurt - i j sin^t] (1)

where r - ur/2Q. We shall assume that Q is large

enough to allow neglect of the sin urt term In Eq.

(1). At time t - 0, the wake field w(0) - TR.

Let us assume the bunch length la short compared
tc the wavelength of the resonant mode so the consider-
ation of a point bunch is Justified. We denote the
time displacement of the point bunch from the synchro-
nous particle by T ( C ) , which Is taken to be positive
when the bunch leads the synchronous particle. Assum-
ing the change in one revolution of the synchrotron os-
cillation phase and amplitude is small, the difference
equations describing the interaction of the bunch with
a discrete cavity located at a particular azimuth in
the ring can be replaced by the differential equation
of motion:

T (t)
a Ne2 -c I w(pT
o o p»o

T(t-pT , (2)

whore ac Is the momentum compaction of the storage

ring and e Is the charge of the electron.

It is convenient to Introduce the dimenaionless
variables:
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We consider u

order of unity
(2) Is well approximated by:

« 1 , o - u T » 1, and TT on the

If r-r(t) « 1 for all times, then Eq.

d2x(s)/ds2-hc(s)-A I exp(-prTo)cos(pa*i(s-pu)-3t(3)), (3)
P"l

where the p - 0 tern has been dropped since It only
corresponds to a change of the stable phase. Introduc-
ing action-angle variables J,9 by

xCs) -

dx/ds - -

cose(s),

sin8(s),

we make Che approximation,

x(s - pu) - x(s) - /T (cos(6 - pu) - coa9), (5)

In Eq. (3), which will be valid for small enough p, if
the wake field does not alter the synchrotron motion
rapidly compared Co the synchrotron frequency. Assum-
ing that values of p for which Eq. (5) is violated make
a negligible contribution to the sum on che right hand
side of Eq. (3), the equations of motion for J and 8
arc found Co be:

dJ/ds—
p-i

sin(8-E|))

(6)

de/ds-1- i-cosB
•fJ p

expi-pTt )cos(pa+2/jsln£i{sin(e-£ji) j .
1 C 2 2

The lowest-order averaging approximation is
obtained by averaging the right-hand side of Eqs. (6)
over 0 £ 6 <_ 2i . Thi3 will be valid when A Is small
enough Co assure that tha wake field produces signifi-
cant change In Cli • synchrotron motion only on a time
scale long compared to the synchrotron oscillation
period. Upon averaging the right-hand side of Eqs. (6)
over 8, we obtain

(7)

- l - -^ - I exp(-prT0)sin^lnpaJ1(2/jsinE|),
/jp-1

where Jjd) is the Bessel function of order unity.
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In the limit of small oscillation aaplltude,
1, Eqs. (7) can be linearized and we obtain

dJ/ds - AJ I exp(-pFT )slnpu slnpa ,
p-1

(8)

d6/ds - 1 - — I exp(-prTQ)(l - cospu)sinpo ,
p-1

which corresponds to an exponential growth of the
action, J - exp(2s/u> t ] and a shift In the» gr-1

oscillation frequency dS/ds - 1 - Sui/w,. Defining
the complex coherent frequency shift

a - 6u + l/T r (9)

we see chat Eqs. (8) imply

2 - - | I exp(-PrTo)3inpa(exp(ipu)-l) .
8 p-1

(10)

Writing this in terms of the impedance Z(u>) • Z*(-u),
which is che Fourier transform of the wake field, one
finds

I [(nuo+<ii3)Z(nwo+(i>g)-n<JoZ(nti>o)] , (11)

where iu0 - 2n/T0 is the revolution frequency of the
bunch. Eqs. (10) and (11) are the well-known results
valid in the regime of exponential growth.

The saturation of the exponential growth occurs
because the Bessel functions appearing In Eqs. (7) are
linear only tor small values of their arguments. As
the argument of the Bessel function Increases, Ji(z)
increases more slowly than linear, and i t eventually
turns over and decreases to zero and then negative
values. The limiting value of the action J ia deter-
mined by the vanishing of the sum on the right-hand
side of che first of Eqs. (7), assuring dJ/ds - 0.

A Simplified Model

In order to simplify the algebra in the following
discussion, we shall keep only che p - 1 term in Eqs.
(6) and consider the factor axp(-i"To) to be absorbed
into the parameter \. Then Eqs. (6) reduce to

dJ/ds - - 2X.<Tsin6cos(a + 2/jsin -j sln(S - -jj.))
(12)

d8/ds - 1 - ~cos8cos(a + 2/3sin -Ij- sin(6 - i ) ) .
/J 2 2

Bogollubov and Kltropolsky have shown how the averag-
ing method can be formulated to obtain a systematic
asymptotic expansion In powers of A. To proceed, one
considers the right-hand side of Eqa. (12) to be ex-
panded in Fourier series,

dJ/ds - X I G (J)exp(inS) ,

d6/ds - 1 + k I A (J)exp(ln6) ,

(13)

end transformed action-angle variables I and * are
introduced via.

J - I + «U.1O + 0(Az),

a - t + AU(I,«O + o(x2) .
(.U)

Then 5 and t) are determined from the condition that the
equations of motion for I and * have the fora

di/ds - « ( I ) + A2X.(I) + OU3) ,
(15)

where the right-hand side of Eqs. (15) are Independent
of i>. One finds that

G (I)
C - I - T T — exp(in*) ,

n*o

A (I)
U - I —2—— exp(ln*) ,

(16)

and

dG (I) .
dl/ds - AG (1) - A2 I [ " G (IK- +

o ; l dl -o In

d<i/ds - 1 + U o (I ) - A2
dA.(I)

n*o

(17a)

(17b)

The Halting aaplltude of oscillation can be
determined from Eq. (17a) without reference to Eq.
(17b). Computing the Fourier coefficients Gn(I) and
An(I), we can rewrite Eq. (17a) as

dl/ds - 2A/lslnacos •- JjU) + X2sin2u f(z,a) , (18)

where

f(z,o) -

and

' 2 , " 2
a J, J (z) + 2 cos^o I J , . (z) , (19)
lt-o iK*1 k-1

i - 2/E»ln(u/2) .

Note that f(z,a) is always positive.

(20)

Let the radiation damping doe for synchrotron

oscillations be Tra<j, and far now suppose A is snail

enough to allow neglect of the second-order ten,

A2sin2u f(z,a), on the rlgnt-hand side of Eq. (18). It

then follows that

(21)

where l/?gr Is c n e initial exponential growth rate
in the absence of radiation damping,

™ - —— ualact ,
8r

(22)



and we have made Che small angle approximation sinu
u. Of course, slna Is taken to be positive so that
one has exponential growth, not decay.

When t • < t the oscillation amplitude will

increase until It reaches the Halting value /T o

determined by

rad

Uhen t Is not too much less than T .gr rad

and uhen Tg r < Trac)

u/T - z 1 '

(23)

(24)

(25)

where zi - 3.83 is the f irs t zero of J i ( z ) .

In the case, T < T when the radiation
' gr rad

damping Is negligible. I t Is of Interest to keep the
second-order tern on the right-hand side of Eq. (18),
so that we can determine the dependence of the Halt ing
oscillation aaplltude /Tj. on the i n i t i a l exponential
growth rate l /*g r . One finds

Action-angle variables J ,8 are Introduced vian n

ie
(29)

where K - 2(1 - cosu). In terms of an, the recursion

relat ions of Eq. (28) become

irt-1
u(an + talnpj . (30)

For X - 0, the action variable J -Kq + p ( p - K q )

is a constant of the motion, but for X > o it increases
with the initially exponential growth rate J - exp(Xn).

We have found numerically that in the case of K - Q.01
and \ - 0.002, the value of /J for n> 20,000 fluctuates

n
with a variation of less than 0.5Z about

/ J - 3.83 . (31)

In i t i a l conditions of q - 0.1 and p " 0 were taken.
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where /T • z, /u.
o i

Concluding Remarks

(26)

Within the lowest-order averaging approximation
the self-sustained synchrotron oscillation has Che form
r( t ) - A sin u s t , where the amplitude A is determined

by the considerations of the previous section. The
signal Induced on a pick-up electrode located at a
fixed azimuth of the storage ring is proportional to
the bunch density

P(t) - I «(t - nT - ABln u c)

• f I
lnu t

M
-iku t

(27)

where iu - 2n/T Is the angular revolution frequency,o o
Although the synchrotron oscillation is sinusoidal with
frequency u>s, the hlger-order sidebands at k<i>8 (k>l)
will be observed on the pick-up for large amplitude A.

We have made a numerical check of the averaging
approximation by considering the recursion relations:

"n+1
(28)

+ "n+l *
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