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Abstract

Self-gustained synchrotron cecillations are ob-
served in electron storage rings. In general the theo-
retical description of the saturation of en instability
for large oscillstion amplitude is a difficult problem,
and techniques have not yet baen developed which yfeld
analytic approximations to the sppropriate nonlinear
Vlasov or Fokker-Planck equations. In this paper, s
single point bunch interacting with the wake field from
a single resonant mode of an RF cavity 1is considered,
and the averaging method of Bogoliubov and Mitropolsky”
13 used to study the saturation of the initial exponen-
tial growth of the oscillation amplitude, due to the
nonlinearity of the wake field. The determination of
the limiting amplitude of oscillation is discussed both
in the presence and in the absence of radiation damping.

Equations of Motion

In a storage ring, the electrons in a bunch exe-
cute synchrotron oscillations with angular frequency
wg about a synchronous electron having energy Ey

and revolution period Ty. Suppose there is only a

single tunch of N electrons in the ring, and that this
bunch is interacting wich the wake field due to a reso-
nant mode of an RP cavity. The ressonant frequency of
the mode is wp, its shunt impedance is R and the qua~

1lity factor 18 Q. The wake field w(t) vanishes for t <
0, and for t > 0 is given by

wit) « 2R ex‘p(-rt)[conwrt - -,‘}—d sinurr.] (1)

whera T = w /2Q. We shall assuvme that Q is large
enough to allow neglect of the sin wy.t term in Egq.
(1). At time t = 0, the wake fleld w(0) = IR.

Let us assume the bunch length is short compared
tc the wavelength of the resonant mode so the coniider-
arion of a point bunch 18 justified. We denote the
time displacement of the point bunch Erom the synchro-
nous particle by t(t), which is taken to be positive
when the bunch leads the synchronous particle. Assum—
ing the change in one revolution of the synchrotron os=-
cillacion phase and amplitude 1s small, the difference
equations describing the interaction of the bunch with
a discrete cavity located at a particular azimuth in
the ring can be replaced Ly the differential equation
of motlon:

I w(pr, + t(t-p’l‘o)-r(:)), (2)
peo

s 2 %
T (e +ut(e) = =5
o0

where o, 1s the momentum compaction of the storage
ring and e {3 the charge of the electron.

It 18 convenient to introduce the dimensionless
variables:
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8 = wgt,

x(a) = “rt(s,us)’ DEBS 012514

a = wT,,

W = wgTy,
@ ucNez

A = — 2IR.
uz Eo‘ro

We conaider p = ws'ro €1, a= ero » 1, and I"].:) on the

order of unity. If I't(t) € 1 for all times, then Eq.
(2) 1s well approximated by:

d%x(3)/da4x(s)=2 I exp(-pl“l‘a)cos(paﬁx(s-pu)-x(s)). (3)
p=l

where the p = 0 term has been dropped since it only

corresponds to a change of the stable phase. Introduc~
ing action—-angle variables J,8 by
x(8) = ¥J(s) cosé(s),
(4)

dx/ds = - /J(s) siné(s),
we make the approximation,

x(s = pu) = x(8) = /T (cos(® - pu) - cosl), (s)

in Eq. (3), which will be valid for small enough p, if
the wake field does not alter the synchrotron motion
rapidly compared to the syochrotron frequency. Assum-
ing that values of p for which Eq. (5) is violated make
a negligible contribution to the sum on the right hand
side of Eq. (3), the equations of motion for J and ©
arc found to be:

dJ/ds==23/Taind § exp(—pI‘To)cos(pa'O-Z/.TsinL; sin(e-ﬂz‘-))
p=l
6)

48 /dg=1- 2cogs | expi-plT_Jeos (par2/Tatolls1n(a-2S) ).
J p=l

The lowest-order averaging approximation is
obtained by averaging the right-hand side of Eqs. (6)
over 0 < 6 < 27, This will be valid when X ig small
enough to sssure that thz wake field produces signifi-
cant change in th: synchrotron motion only on a time
scale long compared to the synchrotroa oscillation
period. Upon averaging the right-hand side ¢f Eqs. (6)
over 8, we obtain

dJl/de=20/T § exp(-pI'To)coaL;sianII(Zﬁs mL;] .
p=l
(7

. AT
db/dg=l= — z em(—pﬁo)sin%inpul[zﬁsinlg-] N
J p=l

where J1(2) 18 the Besgel function of order unity.
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In the limit of small oscillation amplitude, ¥J <€
1, Eqs. (7) can be linearized and we obtain

dJ/ds = AJ ): exp(—pl"ro)sinpu sinpa ,
p=i
(8)
-
d8/ds = 1 = 3 Z exp(-pl‘To)(l - cospu)sinpa ,
p=l
which corresponds to an exponential growth of the
action, J = exp(Za/u‘ Tgr] and a shift in the
oscillation frequency d6/ds = | ~ Sw/wy. Defining
the complex coherent frequency shift

Q= Sw+ UTgr (9}

we see that Eqs. (8) iaply

Eln

N
=5 L exp(-plT jsinpa{exp(ipu)-1) . (10}
8 p=l

Writing this in terms of the igpedance Z(w) = Z*(-w),
which is the Fourier transform of the wake field, one
finds

ieuctavuo o
Q. e _E. [(nw po )Z(n6 +o Yma z(aw )], (113

where wy, = 21/T, is the revolution frequency of the
bunch. Eqs. (10) and (11) are the well~known results
valid in che regime of exponential growth.

The saturation of the exponential growth oecurs
because the Bessel functions appearing in Eqs. (7) are
linear only for small values of their arguments. Aas
the argument of the Bessel function iIncreases, J){z)
increases more slowly than linear, and it eventually
turns over and decreases to zero and then nesative
valucs, The limiting value of the action J is deter—
mined by the vanishing of the sum on the right-hand
side of the first of Egqs. (7), assuring dJ/ds = 0.

A Simplified Model

In order to simplify the algebra in the following
discussion, we shall keep only the p = 1 term in Egs.
(6) and consider the factor exp(~i'T,) to be absorbed
into the parameter A. Then Zqs. (6) reduce to

dJ/ds = - 2A/Jsinbcos{a + 2¢/Jain % sin(® - %))
(12)
dé/ds =1 - 'Lcosecos(u + 23810 -;- 9in(® - -;-)) .
5

Bogoliubov and M.!.l:ropolsir.yl have ghown how the averag-
ing method can be formulated to obtain a systematic
asymptotic expansion in powers of A, To proceed, one
considers the right-hand side of Eqa. (12) to be ex—
panded in Fourier serles,

aJ/ds = A [ G (Dexp(ind) ,
-

(13)

d8/ds = 1 + A ] A (Dexp(ind) ,

nm—os

end transformed action-angle variables I and ¥ are
introduced via,

J a1+ (L) + 0A%),
14)
8 = ¥+ AUCI,9) + O(A2) .

Then § and U are determined from the condition that the
equations of motion for I and ¢ have the form

d1/ds = (D) + A% (D +00%)

2 3 (15)
dy/ds = 1 + mo(I) + A nl(I) + 0(2%) ,

where the right-hand side of iqs. (15) are independent
of ¥. One finds that

G (1)
) ?—n- exp(in¥) ,

n#o
(16)
5 An(I)
U= exp(iny) ,
a%o in
and
2 dGn(I) 1
di/ds = A6 (1) - A nzo [ T (I +
S (Da_ (D], (17a)
2 dAn(I) 1
dy/ds = 1 + A (X) = A I ¢ T S (Dt
n#o
A (DA_(D] . (17b)

The limtiting amplitude of ogcillation can be
determined from Eq. (17a3) without reference to Eq.
(17b). Computing the Fourier coefficieats G,(I) and

An(I), we can rewrite Eq. (17a) as

dI/ds = 2A/Tsinacos -ZE J(z) + 2235100 f(z,a) , (18)

where

2

21“_l(z) + 2 cosla kzl JZk(z) , (19)

f(z,a) = 2s1n’a ): J
k=o
and
z =« 2/Tsin(B/2) . z0)

Note that f(z,a) is always positive.

Let the radiation damping time for synchrotron
oscillations be T,.,4, and for now suppose A 18 small
enough to allow neglect of the second-order term,

2Za1n?y f£(z,a), on the rignt—hand side of Bq. (18). It
then follows that

ta 4 LD,
T TS T T @D
gr wT rad

where 1/7Tgy 1s the initial exponential growth rate
in the absence of radiation damping,

1 h's
- =g wsine , 22)
8T



and we have asde the small angle approximation sinp »
u. Of course, sina is taken to be positive so that
one has exponential growth, not decay.

When Tg'r < Trad the oscillation amplitude will
increase until it reaches the limiting value ¢TI,
determined by :

Jxﬂg) T

- . (23)
w'T erad
(]
When tsr is not too much less than Trad
Wi = /8(1 - Tor/Trad) (24)
and when Tgr € Tprgq ,
(25)

Wi, =z,

where z; = 3.83 is the first zero of J1(z).

In the case, T <« T , when the radiation
24 rad

damping 18 negligible, it is of interest to keep the
second~order term on the right-hand side of Eq. (18),
so that we can determine the dependence of the limiting
oscillation amplitude Iy on the initial exponential

growth rate 1/Tgr. One finds

T £(z,,0}
/T-/I—+-°—
L [}

— ———— (26)
gr zl'Jo(z1)|sin a

where /T_ = z /u,
o 1

Concluding Remarks

Within the lowest—order averaging approximation
the self-sustained synchrotron oscillation has the form
t(t) = A sin wgt, where the amplitude A is determined

by the considerations of the previous section. The
signal induced on & pick-up electrode located at a
fired azimuth of the storage ring is proportional to

the bunch density

o(c) = I 8(t = oT - ssin “'s"]
n

-1kus t

inw t
° Je g (nea)
k

-lI--

ie

o

where w, = ZH/TO is the angular revolution frequency.

Although the synchrotron oscillation is sinusoidal with

frequency w_, the higer-order sidebands at kus (k1)
will be observed on the pick—up for large amplitude A.

We have made a numerical check of the averaging
approximation by considering the recursion relations:

Pnyp = Pp ~ an + hinpn

et T Gt Pos ¢

27

(28)

Action-angle variables Jn'en are introduced via

18

/Tne ? o [eiu = lq_ + T (29)

a
n

where K = 2(1 - cosu). In terms of a,, the recursion

relacions of Eq. (28) become

i
441 "€ u[an + lsinpn) . 30
2
F A - -
or A = 0, the action variable J = Kq + pn(pn an)
is8 a constant of the motion, but for A > o it increases
wvith the initially expoamential growth rate Jn = exp(Aia).

He have found numerically that in the case of K = (.01
and A = 0.002, the value of /Tn for > 20,000 fluctuates

with a variation of less than 0,51 about

/T = 3.83 . [&3D)

n

Intitial conditions of q, = 0.1 and Py~ 0 were taken.
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