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On the Laurent polynumial rings

D. STEFANESCU

ABSTRACT : We describe some properties of tne Laurent
polynomiai rings in a finite number of indeterminates
over a commutative unitary ring. We study some sub -
rings of the Laurent polynomial rings. We finally ob-
tain two cancellation properties.



1.

A ring R = A[xq,q‘,....ln.g"], where i is a commu~
tative unitary ring and X.‘,...,X:l are irdeterminates over A, is
called a Igurent polynomisl ripg (sometimes it is called a to-
rus extension). 4 laurent polynomial ring can be realized as the
ring of quotients of ar usual polynomial ring with respect to
the multiplicative syatem gemerated by the indaterminates 11,..
.,xn. Therefore it is natural to stuly vhat properties of the
polynomial rings oan bde extended to the Laurent polynomial rings.

Ve 2l1s0 shall obtain some cancellation properties of these rings.

4,lesma. Let A be s domain agd Xqv..-,X, indetermis

pates over &, 1¢ realx, ..., , =Y jo invervivie 4 ALx,,
x;‘,...,xn,g“] ihen there are s €A ipvertible in A and ®ge...,
By B, '

n, €% gych that ¢ = oX,'...X D,

Proof. Let's first remark thet it suffices to prove
the leama for n = 4. et X = X, and let f,;ebﬁ,ﬂ be such -
that fg = 1. 8ince 1 is homogeneous in ALX, X" Y 1t follows that
£,g are homogeneocus, Therefore f = aX®, g » bIZ, where a,b €A,

m,n €Z. Nence gb = 1 and n = ~-m,

Remark. The proof of the lemma 4 is standard, We in-
¢luded it here because it is usefull for the rest of the paper,

2.Froposition. Let A be s domain and X en indetermi-
npte over A, Then Aut‘(nﬁx,r"]) - {t:A(,I,!"‘]  —— Al:x,r'J

p t(2) = ax®, where a is ipvertible in A apd -6{-1,1}} .

Proof., let teLutA(L'f,x,r"]) and let s = t"“

suppose that

o Vo may



3 ro..se I® b +...40 X2
(X .._o_..;l:’i-__, on « ST,
vhere .‘.b: €4, a,n,u,v€X, q. # o, bn £ G. Thérefore
2.8(X)' = b + Wgt(X) & ..o 4 bnt(l)n 1)

If deg t(X)) 0 from (4) it follows that deg s.deg t
= 4. Therefore deg s = deg t = 4, If ord ¢ = 4 then t(X) = aX
snd from (1) it lollows that 8(X) = bX and ab = 9 (a,d€A), If
ord t§ 0 from (1) it would follow that € = (n-v)emsd t, which ie
iwpossitle,

if deg t <O from (1) it follows that 1¢+v.ord t =
n.ord t. Therefors 4 = (n-v).ord t, hence ord ¢ = -4, Since
deg t <O .t follews that ¢rd ¢ = dog t = -1, Then (X) = 3 ,
where a€:\ {0}, From t(a(X)) = X it follcws that a is inverti-
ble in A.

3,lvpma. Let A be a commutetive upitary ring, X an

X
indeterninate over A gpd YE&ALX, X Y gueh that A -
' Balz, ¥

x(:l'.!sr' T - Zosn ALx, XY - a7, Y gng ¢ esur Galr, ),

yhexe (Z) = ¥,
. Progf, let a,h&l[!,‘!’"], UgyVy éLLX,fﬁ, ca,daé
R(4) rueh that

X = a(Z) » % °3“3(n ’

£

QUMDY SR > 4y7,(X).

R |



3.

Let n be the ideal generated ty °1"‘°'°ﬁ’d1"'."dt

in A. Since n is @ nilpotent ideal an: A[X,X” 1]CL[!,I'1] +
oAlx, X% it follows that alx, % - alr,vH.

It remains to prove that Y is an indeterminate over
A, Let a_,...,a €A be guch that a°+u.‘!+...+an!m = 0. Let B be
the subring of A generated by 11"0"""11:' the coefficients of
Y in A(X,X" N and the coefficients of X in A[I,I’tl. Let
t: BLX, X1 ——— B[X, "] be the B-morphism defined by
t(X) = Y, Bince B is noetherian then B[I,x"h is also noetherian

and the surjection t is also an injection.

4,Propogition. Let A be a commutative upitery ring
and X an indeterminate over A, If ¢ éAutA(ALI,r 1:l) ther

o}

t(X) = aili, where a; € N(A) for i # s, a, is invertible

in A 5-11.

Proof. Let A® = ;%‘—)- and let’'s consider the csnoni-

cal map ut AutA(A[x,!"1]) - Aﬁt‘.(A'CX,r"‘]). e

)eAut‘.(A‘[x,Id]) let yélﬁx,r1] be such that y mod N(A) =

s(X), Therefore —‘-L!‘-x:—a- - _ALM;.?J_ o It follows that
!(A[I,r' !“c’ay J

there is g €Aut,(ALX,X"Y1) such that g(X) = y. Then u(g) = s ,

so0 the map u is onto.

Let's remark that ker u = in GlutA(Af.x,I'*J)t n(X) =

a_.x"+...+ 8, + 24X ¢o.. 4 0 X7, aie!(l)\ . Bince u is onto



5,

‘ut‘(lu’x‘ﬁ )

ker u

it follows that Aut,.(A*[X,X" )= . Therefore,

if tEAutA(A[X,r1]) then t(X) = g(I) + n(X), where geAut,,(a°[
a

1,1'1]) and n(X) = . aixi, a; €¥(4) (i = -m, -m#1,...,0).

A= =R

Bepark. The prorosition 4 shows that the structure
of AutA(LEI,I'1]) is not far from that of Aut, (ALX]) (cf.with
0.

S.Lemma. Let A,B be domains, K = Q(4), AcB. If there
is re€B\ A such that BCKL’.,I"“] then f is invertibjie jp B or £

is irreducible in B.
Sroof. Let.'s suppose that f is not invertible in B,

If there are g,h €B puch that
f = g.h (1)
84 Bq
then g = r h = i where gq,hy €K[f], u,vel.
Prom (1) it follows that

81h1 - r1+u+v 2)

Bince f is irreducible in K{f] there are m,n ¢X
such that g4 = f', h, = £ (modulo the multiplication by an in-
vertible eloment). Therefors g = £~ °, b = 207V, 8ince £~1¢B
it follows thet meu ) O, n-v »0. From (1) we deduce that m-u = 0
or n=v = 0, i.e. g or h is iavertible. in B. Therefore f is ir-
reducible in B.

6.Proposition. Lot A.B be domaina, K = Q(A) snd X, ,
«ssX, indetermipgtes over A such that ACBCAEX1,I;1....,Xn.
I:‘]. If B is a GCD-domain and there js fc B\A guch that B C
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E(t,£-7) apns ar~ & B for every a €2\ {0} then B » ALf].

Proof. From the lemma 5 it follows that f is irredu-
cible in B.

Let bEBCﬂt,t'ﬁ. Then there are 8,8 .08, €A,
a ¥ 0, t,n €N such that )

abft = ‘o 4 ..qf L oolc L %f- (1)
If t>0 then £ divides 8, in B. Therefore there is

neBCELr,2~1] such that

a, = £.h (2)

Since we may suppose that b ¥ O, we may dssume that
a, #4 0 if t > 0. Therefore from (2) it would follow thet h =

aof'1 €B, in contradiction with the hypothesis. Therefore ¢ =« O
and the relation (1) becones "
1)
ab = a_ + 84f 4 ... + 0 f (3

Ve shall prove by induction over m that in (1), a
divides CPY PYRRRTL S

If m = O then ab = a_, therefors b €K m[x,,x;“,
S 3 ol EUW

Let'e prove that "m 8" implios "m=se¢i®,

Since t = O it follows that b eKk[f]. But K[f] »
K[f+a] for eve.y a €K, 80 we may suppose that f is without cons~
tant term. Then there is c €A such that

8, = ac | (4)

o
It follows that

.(b - 0) - f(.1 4 o0 # 5"4) (,)



B8inva ¥ i» irr,ducidble in B apd B inm a GCD~domsin

then there 3o 4 3B such that

b~ ¢ = 4af (6)
Then
da = aq + o0 + a.f‘“'1 (7)

By the induation it follows that a; = ac;, vhere
CareoeySy @l. Therefore
n
a(d ~ 0 - eyf = seo =0 ) w0 (8
BSinee af O and B is a dowain it follows that b =
¢ + c4f + 000 40 " €ALr]. Vo deduce that B = 4Lf].

Bezark. If A CB CACL‘,x;“....,xu,x;ﬁ. scxlr, Y

and there is @ €4 \{0§ such that af~' €B then it ie possible
2
that B ¥ ALf}. For isstance, let A = 8, B = 3[ -;1; ’ ;2; ],

-ﬁ.monZBZ 919v*]ongus-1jv -1“_5‘
4 %, 2cC c._[.x':q L5 d 4 g =,

&3, 2t~ -;:—enau B¢ alf] -g(f-xl].

7. Propusition. lex AuB be domsine, K - G(A) spd X
an_indeterminste over A such that A CBCALX X 1. ir Bis g
GCD-dowain and there ig f€B\A guch that BCKLL,2~Y) thea
B = ALf] oz B = ALax™, 5™, wpere a,bc4 {0}, meg°.

Proof. It 'k @B then £ - aX™, where 2 ip imvertible
in A and ngZ%Z. 8ince £ ¢ A we have mng ¥*. Tbereforse

ALax®, 2”11 c3ckLax®, &~ M.
Bince BCALX, Y 14 follows that & = ACaX®, XM,

Ir £"'& 8 trom the lemma 5 it follows that f is ir-
reducible 1a B, If az"V & B for every a4 (07 then B = 4Lf]
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by proposition 6. Let's suppose that there is w4 \{0} guch.

that «f” | ¢B. Ve reexamine under this hypothesis the relatiows
(1) and (2) from the proof of the proposition 6. It B £ ALf] then
ve may suppase that a, # O, hé&B and

s, = f.h €,
Since a, is homogeneous it foliows that f,h are homo-
gensous in A[x,f1], hence £ = cX® L = AX"®, where c,daA {0} ,

cd = 8, 86 i \{0}. The relation (1) froam the proof of the pro-

position € becomes

) | m
4 it T et ™t )
- e - - N - ¢
LI 8t — X (1)
a ci—t
4= i
But from beAlX, X" '] it follows that —€A for

every i = 0,1,...,m. Toerefore we may suprose that there are
c,d €6AN40Y , 8¢HE* such that
ALex®,ax"®) CBc ALX® X" °) (*)
Let o X%, ezx’eB\{O} . Then (e4,8,)X° €3 -40% ,
where (01,02) is the greatest common divisor of e, and a, in B.
Lot M =|b€B; b = 0,X° 6,6 AN{O}} , ¥~ JDCB
b rdr', rden\ko}'; .
Prom the above it follows that there are 9,f¢ 4 such
that NIALeX®], BSALLX®]. From (*) it follows that

ALex®,r1%) _BCALox®, X ] (**)

Bence B = ALeX®,£X™®].

8.Froposition. It k be o commytative field, Xyy...,
¥, indetermigates over k and A a domain guch Wbat k<4 c(L,,I;)
voey xn,x;":!. 1f dim A = 1 then there is ap ipdetermipate Y



8.

ovar X such shat XcAcaly,r .

Proof. let ® = WX, X7, ... X ,xY] and let p -
(g1 eoe X ~1)RNA, Because (X4-1,...,X =1)R is & maxinmal
ideal in R it follows that p 68pec A, The rest of the proof is
similar to that of 5.6 from [1].

9.Corollary. Lst k. be a commutative field, l.‘,...,ln
indeterminates over k and A a GCD-domain such thet k cACK(X,,
e X, XXM, 12 dim & = 4 then & is isomorphic to K[X,J or
so KX, X3,

Proof. By proposition 8 there is an indeterminate X
over k wuch that kclcﬂ,fﬁ. Prom proposition 7 it follows
that A = x[(XJ or 4 - k[a!',brsl, where a.h‘k\{O\ y BEN®,
Bince k[X®,1°®] - x[ax®,bX"%] 1t follows that A is isomorphic
to t[!1] or to k1, ,K;“].

Remark. If k is algebraically closed, A & normal af-
fine ring of dimension 4 and n = 4 our corollary 9 follows also
trom 4.1 of [&].

40,Proposition. Let A be a domain, X an inde i
over A and B an UFD sush that A 2BcALX,X"%). Mhep B = A or B ip
isogorohie to ALXY or to AleX,ax™ ], where c,d 64 ~(0} .

Proof. Let‘s suppose tbat 4 ¢ B. Let K = Q(A). There-
fore

K cE9,Bcklx, 1.

8ip.e KiAB is a GCD-domain from the cerollary 9 it
follaws thet thexse is tE€EBB K such tha¥ 0,B = K[t] or X6,B
- eL1,r79,

Tet 8 = AN [0f . Then K =614,



g.

Let's suppose that K9,B = E[£]. Because K[ f] = ER[arl
for every 8 8 we may suppose that f €A[X,X” 1]. Therefore f &
A[X,x'1] N (K8,B) = A[.I,X'1J ns~1B - B, hence feB. Since K§,B
- K[£] it follows that B ELf]. Ir £~V B it follows that f
is irreducidble in B, From the proof of the proposition 6 it fol-
lows that B = A[£f], hence B is isomorphic to ALX].

1t ~Y¢B then BcXfe, =M.

Let's consider now the cese K3,B = kLf,r~"]. Because
K[f,f"’] - K[af,(-i’)""] for every s¢S, we may suppose that f €
A[I,x"‘]. Pherefore feA[X,r"'] N(E,B) = B, hence f &B. Bince
K9,B = K[!,f"‘] then BCK[f,t"“]. Therefore B = ALf] (and B is
isomorphic to A[X]) or there are c,d6AN |0Y ,meX* such that
B = 4[eX®,aX™™], hence B is isomorphie to A[cx,dx"‘].

11,Corollary. let A be a domsin, X en ipndetermisnatce

gver A gpd B g nostherian UZD s acscalx,r Y. fmen s
is g UED.

Proof. It suffices to remark that B is a graduate
ring, B = B;, where Bo = A,

i€3

12.Proponition. Let A be g dowaipn, X4y...,K, jnde-
terminates over A and B a UFD, If ACBcAlx,xY,...,x ,°h

and tr.deg.;B 1 then B = 4 or B jp isomerphic o ALK oF to
A[cx,ax‘”l, where X i eterminate o A, 0,64N{0} .,

Proof.,
Let K = Q(A). Then

¥ cxe,8 CElx,, 3%,...,x 11,
If %r.deg.,B = 0 then din(K®,B)( tr.deg.x(K® B) = O,




10.

Hence B CK, therefore B = A,

Let's suppose that tr.deg.,B = 4. Then dim{KQAB).£1.
ir dim('KeAB) = 0 thex B = A, Therefore we may suppose that
dim(KQAB) = 1. From the corollary it follows that K& B ie iso-
morphic to K[x.'] or to X[.I.‘ .X;1]. Then there ie an indeterminate
Y over XK such that K@,B = K[Y] or K¢,B = K[I,Y'“].

If K9,B = KLY] then B<cELY], hence B is isomorphic
to BLY].

It Ke,B = E[Y,T"¥] then BcE[Y,T""], bence B is iso-
worphie to A[Y] or to A[c!,d!""], where c,d6 A\ {0} .

43, Proposition. Let 4 be a UFD, ACB g ring extension,
X,Y,% jpdeterminates over A apd T an indeterminate over B, If
s, ™Y - alx,r,7,v,2,57Y7 gng 20X, ") B spen B is iso-
morphig to one of the fo inggs u:x,x"], ALI,X'1,!‘],
alx,x1,cv,ar"], where c,8 €4\ {0} .

Proof. Bince & is a UMD it foliows that BLT,T"73
- AI.'.X,I"“,Y,Y"",Z,Z""] is a UFD, hence B is a -UFD.

Ve may suppose that Z & B, Indeed, if Y,Z&3 then

32, « alx,x1,7,2300 2 e 5y, 5 Vst (1)
where 8 is the m:77iplicative system generated dy Y,Z.

From (1) it would foliow thet 4+dim Bl dim B{T,T M
& dim 58 £4@im B, a cintradietion.

Bince 2 € B it follows that

Bn (3 ~ 1Bz, 7N . (0) )

Indead, let u B ﬁ(h‘!)ﬂ&,fﬁ. Becauge 2-1 €
B{2, 7T\ {0} there 1s u(?) €BLT,F M\ {0} such that 2-1 = b(®),
Therefore there ia g(i‘)ﬁntr,f"q] smeb tbst u = h(Pal(?). If
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u £ 0 ther g(T) £ 0. Bince u &B it would follow that h(T) =
247", &(?) = BT ", where b,,by EBN{P} , mGZ. Thersfors Z-1 =
qun. But Z is bomoganeous in 3[2,1'1]. Therefore m = 0O, hence
Z&B, a contradiction. Therefore u = J and (Z) is proved.

It followrs that we have the following ring extension

-1 1 R
I X ; . A X _.,!!r.._ﬁ,'.._’],sf' 2.2 1 . arx,x,1,r 1.
(z-1)B[2,7" ') (Z-)Alx,x" ', Y, Y ',2,2

Therefore

IR et TS TH s & ali s R ety | (3

Since B is a UFD the proposition results from (3)
and the proposition 10.

Remarks, i) If in the proposition 13 the ring A is
noetherian ther B is isomorphic to ALY X, X N or to Alx . X~ 1,c!,
dY'h], vhers c,d €4~]0} .

ii) The proposition 13 is similar to an analogous
result on polynomial xings.([9]).

Definition, A commutative unitary ring A is called

strongly n-torus invariant if from the equality of Laurent po-

[

lynomial ricgs ALX, .x;’,...,xn,x;“] - BC!1,T;1,...,‘ID,!;1] it
follows that A = E.

We shall give two sufficient conditions feor the
strongly torus invariance,

Por tue first result we nesd the following lemma.

A4.Lemna. Let A, B be commutative domsins, x,,....xh
indeterminates over & ugd Y4,...,Y, indeterminates over B, Ig
A[11.x;4,...,'(n,rl;1] - B[Y,.T;’,... ,ID,Y;1] then therse ape po-~
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1 2
Begencous forms v 4 €40X,,X0%, 00 Xy, Xy .---,x,,.g‘l. v;4€Bl1,,
r; ’o’oo’!a.!; poee ’In’!;h end .id’fia eg such tgt Ii = ViJYJ ’

4
i
“133

\
Proof. lot 4, = ALz, %, .2 .Y, .. x Y,
AN

B - 3[11,1;",....13,131,...,1,1,1-“:!. mor. A, [x, X711 - 3,01,

1'5‘ J and we apply lemms 1.

15,Proposition. Let 5,B be cogmutative dompins, X.,
osnyk, be indetermipgtes over A and Y,,...,Y be indeterminates
0'.3 B! 1z Q(i) ‘.':.._Q(B) 2_‘.9_ Arx,i’qj;-ae,’n,r;13 - BEI.Q',I-;1QOQQ,
T, 0.1 then 4 - B.

Proof. Let's firat resark iike i» the proof of 3.1
ot {8] thet from the hypothesis it folliows :Shet AL B. Indeed,
let x A, hence x Q(B). Ther x = !' s Where b, W& B, L' £ 0O,

]

1

Bince b,b' are homogenecus of degree zero in BC‘L,,!I" ,....,!n,

!“13 we have degy yx =0, hence x €5. Therefore AS B,
n qreeey

Since AC B we have B(!,‘,!;",...,!n,r:] - A[Iq,l';‘,
viey n,r“] CB[X,‘ q“.. o K X ol | Q!;Y..',!;“.r_,.,!n,r:j, because
,X:i PP 4 I"1 éB(Y1,!"1,..., ,Y;‘] by the hypothesis.There-
fore

331’ o ,...,xn.x;ﬂ] b BCI“,rﬂ,...,l' ,!;1], herre

-1‘-1
2y ‘1 q ’ﬂoexuo '] - ¢k 4 1~". {::'J
= 3[21, ';"'*‘0!“'!;_13 (1)

We shell prove by inductiou c~a: n thet 24 » B.

If o 4 502 D&EB, henco * = 8, Y_‘* Cinee X, i8

‘\
/



1.

algebraically independent cver B and b,aiEB it follows that
b= a,, hence b€A. Therefore BCA, i,e. B =4,
Let's suppose the result proved for n-1 indeterminates

end let's prove it for n indeterminates. Becsuse A CB we have
1 1 4 1
S TECRRTIYS W T o) L0 T TA TR T st B
1 1 -4 - 1
Bince :u1.x; ,...,xn_,‘,I;_.‘][xn;xn ] - Bu,‘,q gvo'xn_1 ’x.n._.‘]
[In,l; ] it follows that AE!,,',I‘; ,...,Xn_.‘,I;L] - B{I,"l;",...,
In_1,2;21], hence by induction A = B,

16.Corollary. Let A be p domgip end A' jtp
integral closure, If A' is strovgly p-torug invariapt then A ig

strongly n-torus invariant.

Remark. For n= 1 our proposition 15 and corollary 16
are proved in 3.1 and 5.2 from [8]. Our proof of the proposition
415 18 diverse from that of 3.1 from [8]. The corolilary 16 can
be deduced from the proposition 15 like 3.2 is deduced from 3.1
in L6l.

17.Theorem. Let k be & comuutative infinite
field an¢ i a k-algebre which is s dompin, I card(Autk(A)) <
card(k) then 4 is stroogly n-torus ipvariant.

Proof. Let R = Alx,,x;%,...,x ,x%1 -y, ,v77,...,
In,Y;h. For mek \{0} we define ¥ :R ——— R as follows:

Fo(¥y) = aTy (§ = 4,2,...y0), P (b} = b, DEB.

Let's remark that ¥ €Aut(R). We also hLave

8, e e
u 13y o o 43 71

P(X) = Py(vy T M) e w M Moy (v ). Btace vy

is homogeneous in !‘,,...;15_1,!3’1,...,1 it follows that we

R
deg vu
have l'-(vi .1) ] oV T Tavrelore


file:///Ctjj

14,

e. .+ deg vy

degy X 0.
- i b
F'm(.x::.) n

e. .
J‘vijyjld = m = m 1.11, where e, =

degy1' "”Yn Xj « It follows that

R = B (0K, ..., 1,1,

Let p: ACI,,I;q,...,Xn,X;q] ey A L@ defined by
p(Xq) = oeo =P(X ) = 1, p(a) = a, 2a€4 and let i C—rd
A0xy, G, K, 01 be defined by i(a) = 8, agh. W dofine
8yt A——> A4 bys = p-F ri. Therefore 8y €End(A).

We shall show that B, is surjective. Let a€A. Bince

acghclk :rm(A)[I1,I;1,...,Xn,1';1] there are a ¢A guch that

Jqeeody
. P (a ', CP, Then a = p(a) = \ p(P.(a, )
a o' 31...;’!1 oooxn . n & p a P o 331... P
finite
Let a' = ‘31-"3,1 €A. It follows that s (a') = p(F (a')) =

p(I’m(ad"".dn)) = a, hence s_ is onto,

The map 8, is also injective. Por proving this let's
remark that ker p = (11-1,...,!"-1)3. But l‘:‘(n;- p(\rn(t)) -

-t
(n 111-1,,,,,. “X,~1)RNA = (0), hence ker pNF () = (0).
Therefore ker s = (0), i.e. 8, is injectiva.
Let 8 = {5, § mEk™ {0} . Ve shall prove :nat if

A ¥ B theh ocard B)card k, which 12 in contradiction wish the
hypeshesis.



15.

Lst uia i P("‘ia) €L, via « p(vu)EA. Bince X, =

8, b 4 L] e £..9

1 = vipi M, nemes uf, 40, vi, £ 0.

et o -£ 1=0, ,.{
Hecause Fm(uiJ} !i(v 3 13-!3 i3 id) -

<

-1, .08 % - deu £ 1=e, . L 10, f
| ij WJov 113.2: iJ 13.13 1374 . ] i i"'.u“ it fol-

Rl

1-4

b4
lows that ”m(uij’ n

ul
* 13.

If thnere is (i,3) such that ""ifij # O ther car® 8
s, card k&, in contradiction with the hypothesis.

if ‘1-«111:1 = 0 for a1l (i,3) thea °ifi:j = 4, Henceo

T,
i + :
ZJ = ui)"jxi , where £, = = 1 and {, = fi.j = a,. Thongore R 'tq P
(EI AR L R ST AN Rt e B Ve SANCI SO
L S =1
TTPLIE ST S J.
If A # 8 then froa the proposition 15 it follows
that there 1s s €A &8, ThereZore there are b&, 4 €B guch that
fwa n

£. 3 2 3
a = Y— ba d (“1&1) 10.-(%%3) B (1)
/ ‘.1090 n

8ince a€A B we have a # O, therefore l-(l) £do
because s is injective. Therefore there is (J,.....Jn) apeh
that p(bé”_.h) # 0. Bincs ujqy..., 0, # O ond she field k is
infinite from (1) ebd the empression of s_(a) 1t follows that
card(S) )oard k.

Therefore we must have A » 3 and thus A is stromgly

n-torus invariaunt.

18.Corcllary. + @ co 4 4 24 and A a



“6e
dopain that eonteing x. If fut (A) is intipite ther A ig etron~
gly rv-torus iuvariact.

Penark. For n =« 4 our corolliary 48 foilows from 3.8

or [&].

Aaother sufficient sondition for the strcng’y torus
invariance can be oltained wich the unelp o5f tho btelow defined
pseudo~-locally nilpotsnt derivationsg.

Defipition. Let A be a rixg, We call s ppeudc-locsl-~
1y nilpotent derivation on A en infinite sequence of endomor-
phiemg D = (Di) LeZ deZined on the mdditive groupr (A,+) such
thet: -

1) For evary e €A there are Ma) ,M(a) €Z such that
Dga) = 0 if 2> X(s) ar n<H(a). ’

11} o (ad) = /: Di(e)Dj(h} for every a,b €A,né€3.
tc—-—

iejen
A pssudo-lceally nilpotent derivation D = ()1) Yy
is ealled triviplly if D, = id, snd D, = O for 1 # O.

Remazrk. The former &efinition is sizilar to that of

the locally nilpotent derivations from [7].

19.Proposition. Let 4 be @ comsutative ring that
contains gp infinite field,If on A {here are me pseylo-locally
riviglly nil t dexivasions A1 ODgly n-torus
snvarient for every n.
100J, Jet's supposs that thers vere a someutative

ring B A, Zyyee.y8 indctoruinates over A end Tqeee+,3, inde-

o]

!

tecninates nver B otisa that



1.
aqlqﬂlWOo‘InOx;ﬁ - u!"!;1,-o-,!n,!;h-
Let A“\ ". Then there i= t(!1.oo..!n)ex!1’q1-’
eeesXgsTo T3V B such that
a = f(!,‘,...,xn>.

" nay lﬂppose that t(!,"ooo.!n) - SJ(IZ’...’In)!%,

Jmmy
woere 83(!2'""!!1)EBEIZ'IE“'"'{IniY;“Jf '14“218‘1(12,...,111)
¥ 0, gmz("I ""’!n) %0, ny or m, ¥ 0.

Let T be a new indeterminate and let's consider the
morphisn Gt BT, 17,7, 0 —— Ay, rl,.r 00y,
defined as follows: G(I,‘) = 1,T, G(YZ) - 12,,,,’g(yn) = I_.Taen

% .

G(a) = sJ(!z,...,Yn)YgTJ.

Jem,

L.t 83(!2’...’1‘)12 - hd(X1’-ot’xn) eA[x"’r;1’tot’xn,
§1]O rh.n %1(x".no’xn) “ 0, h.z(x1’.o.,xn) ‘ 0.

If m, # O let a4,...,8 €4 {0} be such that
hnz("‘!"""n) ¥ O (this choice is possible because A contains
an infinite field). If w, = O then m, ¥ 0 (because B =m0
would imply a €B) and let 84900098 € AN {0} be such that
% (.1,...,‘!1) “ Oo

! 1 ]

Let t: Al:x,,,x;",...,xn,x;",r,r 3 > ALT,

be the A-morphism defined as follows: t(X,) ~ Bgpeeeyt(X) = o,

t(?) = 2, (Ve may suppose that 849+..48, AT'€ NON~Z6ro elements
from en infinite field included in A, Hence that R rseeyly ATO
iuvervivie). Let 15 A alr,, 57,0, 0,0, Y ve
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the canonical inclusion and let's consider f1A — A[2,7 1],
¥here fi= tolGei.
Then f is a ring morphism arcd we have

n>
f(a; = hd(q,...,an)TJEA[T,T"‘]\A because n-2(a1,...,an)

Jou,
¥ 0 or h“'(¢1,...,an) £0(ir m, § 0 or m, = O,m, # O).

Let f(&) = uki'l‘i. Iet's consider Di(‘*) e oy

finite
Since f‘is a ring morphism it follows that (Di)iez is a pseu-
do locally nilpotent derivation om A, Because f(a) & A it is
not trivially. Therefore B = A, and 4 is strongly n-torus inva-

riant for every n.
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