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ABSTRACT

A nonconventional extension of the canonical quantization method for
local field theories is presented. Tnis anproach lacks some of the diffi-
cul’ies of the conventional one (e.qg. there are no ultraviolet divergences
in the corresponditg S-matrices).

AHHOTAUMA

JNlaeTCcA HOBHA MeTON pacWHpPeHHA KAHOHHYEeCKOR KBAHTH3aUHH IVIA JIOKAJIbHHX Mo-
nefl. Hacrofimee NPHOGMIXNEHHE HE CONEPXHT HEKOTOPHX 3aTPYyHHeHH{! oGMenpHUHATOrOo
nonxona (Hanpemep, B S-MaTpHue He MNOABAAETCA ynbTpadHoseTOBas OMBEPreHUMA) .

KIVONAT

Lok&lis térelméletek kanonikus kvantalasi médszerének egy nemkonvencio-
ndlis kiterjesztését alkotjuk meg, amelyben a konvenciondlis médszerrel egylitt-
j4rd néhiny nehézséq nem lép fel (pl. nincs ultraibolya divergencia az S-mat-
rixban).

-

—~————



PR

One of the most successful theory of physics is quantum (q) mechanics.
Its mos powerful method is the canonical quantization which algorithm pro-
vides the q version of a wide class of classical (c) mechanical systems. But
the conventional extension of this method for quantum field theory still oc-
cupies an ambiguous status [1]. On one hand it led, appended by the renormali-
zation prescription, in an experimentally very successful theory,[1,2] while,
on the other hand, beside the divergences in the perturbation expansion, fur-
ther researches revealed some fundamental inconsistencies in this conventional
theory [2,3,4] (by Wightman [4] these difficulties in catch words are listed
as (1) Haag’s theorem, (2?) ultraviolet catastrophe and (3) instability of
vacuum) . Considering this ambiguous status of the conventional procedure, the
quest ion arises: Is the conventional procedure the only one for extending the

canonical quantization method for field theories or there exists another way?
Here we mention an affirmative answer for this question in the cases of clas-
sical local field theories (CLFT) given by Lagrangian densities, while the
detailed presentation of this approach will be published elswhere [5,6].

Though the present canonical quantization method can be applied for any
Lagrangian CLFT, [5] for simplicity’s sake, here we presents it for a CLFT of
a single real scalar field ¢ and of Lagrangian

Lit, %) = (33,00 - V(o) (t,%) (1)

Our method maximally exploits the p-.nciple of locality which means that i
this canonical quantization substitute 12 identical c mechanical systems
described by (1) at each point x of the . = constant hyperplane IR3, with
their identical q mechanical counterparts [5,6]., In the presentation of this
canonical quantization method we closely follow here the introduction and '
presentation of the q mechanical canonical quantization in standard text
books {7]. Thus we start with the discussion of the canonical formalism of
CLFT in a completely local fashion. By implementing a Legendre transforma-
tionon L = L(p,d,Vo0) with the use of the ¢ field equation (in what follows
eq.), we obtain the canonical eq.’s

® = IH/3m, - & = 3H/30 - V(3H/3V0) (2)

where H = H(p,n,%) = nd - L is the Hamiltonian density. Eq.’s (2) are equiv~
alent to the c field. eq.. Hamiltonian~Jacobi eq. can also be introduced for
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the action density S = S(X) sdes (e, . Along the c mechanical line of

thoughts we obtain

AS/at

"H(‘pvQS/a(Dpvat) (3)

for S as the function of ¢,Ve and t, where 3S/3p = n. Poicsson brackets of the

local physical quantities F(t,x) = F(w.n,Vw,Vn)(t,§) can be defined as follows
(F,,F,} = Efl EEZ - EEZ Eil (4)

1’2 &p bn &¢ &n

where &8F/6p = 3F/3w - V(3T/3Vyp) or OF/6n = 3F/3n - V(3F/3Vn) is the "func-

tional derivative” of F with resvect to ¢ or n, respectively. Th~ time deriva-

tive of a local quantity F can be expressed, with (2) and (4) as dF/dt =

= 3F/3t + (F,H)}. Poisson’s brackets of the basic local variables ¢, V9, n

and Vn are then as follows

fo,0} = (n,n} =0, {rn,0} = -1 (5a)
{vrn,n} = {Vg,@} = O, {vr,0} = {n,Vo} = (~-7)(-1) {5b)
{vn,vn} = {Ve,V0} =0, {(Vn,Veo} = (-v)2(~1) (5¢)

Then the canonical quantization of the c theory means that we replace the
local quantities (9,Ve,n,Vn) with local observables (a.VG,ﬁ,Vﬁ), i.e., with
self-adjoint elements of a noncommutative algebra, and Poission’s brackets

{5a,b,c,) are replaced by commutator brackets

(0,0] = [n,n] = O, (n,0] = -iD (6a)
(ve,0] = [Vn,n] = O, [vn,0) = [R,V0] = (-1¥) (-1D) (6b)
[VR,UR] = [V6,98] = 0, [(VA,VR] = (~1¥)2(-iD) (6¢)

(here h = ¢ 1 are chosen) [6]. A solution of these canonical commutation

relations (CCR) with linear self-adjoint operators is

o = p-blo,X), o= -130(0,X) /30 (7a)
Yoy = -iVew (9,%), TRy = =1V (=134 (9, %) /3p) (7b)
where ¢ does not depend explicitely on i, i.e., [-iVv,0] = 0, and

w(w,i)ELz(le iR3). By von Neumann’s theorem [3] the solution (7a) of the CCR
(6a) is unique at each point §EIR3, up to unitary equivalence (a more precise
formulation of this statement can he found in ref. 5). We note that our method
provides the canonical quantization procedure for the approach of CLPT’s in
ref. 8. For, the q substitute of the trivial phase bundle lex lR3 x(lR3x IR)
of the CLFT of Lagrangian (1) is the trivial Hilbert bundle LZ(IR)x (IR3x IR);
the q substitute of the c mechanical system of phase space IR2x IR3, de-~

scribed by (1) at (§,t)€lk3 x IR is its q mechanical counterpart of state
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space LZ(IRL Another note is that in this representation the wave functions
¥(o,%) and not the tield depend explicitely on the points of the 3-space
IR3 (as is well-known,(2,3] in the conventional approach the q field w(t,i)
actually does not exist as an operator in a Hilbert space).

The dynamics can be specified in this local approach by the unitary map
t -+ exp{-iﬁt}; Wlo,x,t) = exp{-iat}w(w,;,o) where H = H(o, T, Va) = %ﬁz +
+ %(vé)z + V{p) is the local Hamiltonian of the q system. This prescription
provides Schrddinger’s eq.

aw _ 1232 1 2

d0
This specification of the dynamics is confirmed by the following facts. (1)
Eq. (8) implies a continuity eq. alwlz/at 4+ Div J = O with the current
I = [(1/2) (63*/30 - W*au/30) , (1/2)02 (WTb* - $*70) ). Thus |2 can be in-
terpreted as a nrobability density for a measurement that at time t the field
w at the point x gives the value ¢ when the measurement of the 3-position X
gives the value X. (2) Eq. (B8) implies an Ehrenfest theorem. Namely, the c
field eq. holds true in expectation value

© - 3o =-3V/00 (9)

where, e.g., ¢ = <w|$|w> = fdmd3; v* (@, %,t)® V(®,X,t) etc.. This results can
be derived directly from (8) or in an easier way in Heisenberg’s picture.
Namely, the local observables ; = r(&,&,v&,vﬁ) evolve in time as follows
ﬁ(t) = exp{-iﬁt}' ﬁ(o)-exp{iﬁt} or in differential from dﬁ/dt = aﬁ/at +

+ 1[H,F). Then. by applying (6a,b,c) and (7a,b), we get for © and 1t

>

A A A A A rs - Fs ~
=1i(H,0] = 3H/Im, -n =i[ﬂ,n] = 3dH/dp -~ iV(BH/BV;) (10)

taking into account that V& = -iVG = G( ~-iV) (10) as operator eq.’s are equiv-
alent in form with the c canonical eq. s (2). Using the specific form of fi \
we have & = 7 and 1 = 1V(V0} - 3U/2% or & - A6 = - 3V/36, i.e., the c field |
eq. recovers in the quantized theory as an operator eq.. Taking the expecta- }
tion value of this eq. in any state, we obtain (9). ()) The c limit of (8)
can be performed in the same way as in g mechanics. For this purpose let
w(w,i,ti = A(w,i,t)exp{is(w,§,t)}. Then (8) implies the continuityeg. for
|w|2 and the following eq. for S:

2 2
3 . 13°s .1, _ L2 2, .
w3 ;;7 + i wVS) + Vo) | Ix(gzg + o°A)A = O (11)

If S(w,I,t) is of the form S = S (p,t) + s(x) and s is of the form s = 1lno
then (st)2 = (vw) and so, neglecting the last term proportional to ﬁ

the usual units in (11), we have got back Hamilton-Jacobi’s eq. (3) of the ¢
theory [9].



Up to now we formulated the canonical quantization of CLFT considered
and the local description of the dynamics of the quantized theory. We now
turn to the global description of the quantized system. As we saw the guanti--
zation substitute the "connected trivial fibre bundle” of c mechanical sys-
tems described by (1) with a “"cornected trivial fibre bundle" of q mechanical
systems [5,8] (the "connection® is described by the term (Vw)2 of (1) in the
¢ theory and by the term 02A of (8) in the q theory). We can treat this in-
finite set of connected q mechanical systems globally by the tools of q stat-
istical mechanics [5]. For this purpose we use the following representation
space of the CCR's (Ga,b:c). The wave function can be generated as w(w,;,t)=
= o(w,ﬁ ;,t)x(;), where E -iv. Then the set of the (operator-valued) func-
tions ¢ (v, p,x,t\ equipped with the A-valued scalar product <01|02>
= fdwo’l(w,g,x,t)o (w.p,i,t) constitutes a Hilbert space M" over A where R is
a *-algebraof linear operators in L (IR ) {5,10]. One may consider this rep-
resentation space Hﬁ as the local state s ace of the q system; the clements
® with the property <0]0>3 =1 (1 is the unit in ﬁ) may be called local
states; the local observables are represented by self-adjoint operators (A~
module homomorphisms) in H the expectation value of a local observable F
in the local state ® is F
gets by local measurements [5,11].

A7 the
= <0[FIO>RGA; HK carries all the informationsg one

The global state space of the q system is then obtained by averaging
over the local state space H*. The physically interesting measures for this
averaging are provided by von Neumann’s density operators, O<p<1, in A Then
the global state spaces are the Hilbert spacesH =Trp-HR:={o|QEH~, Tro<® @>2<
<=} equipped with the complex scalar products <01|02>p = Tr5<01|0 >A- The
global states are the rays of Hp, the global observables are represented by
self-adjoint operators in #° (we note that a global observable corresponds
to every local observable in H ) and the expectation value of a global observ-

able ? corresponding to the local one, F, in the global state ¢ is

£ = Tro<o|§lo>ﬂ. H° carries all the information obtained from the infinite
set of q mechanical systems in the q statistical state o of the measuring
apparatus (5,6].

To see some advantages of the present approach we consider the perturba-
tion theory using the interaction picture., Let V(p) = % m2w2 + VI(w). Then
in the interaction picture ®(t) satisfies free field eq. while the (local)

states are governed by the interaction local Hamiltonian H =V (®) according
to Tomonaga-Schwinger’s 2q. 13¢/3t = # 1®. The free field eq. from (10) is
ao + mza = 0. The solution is o(t) = ac(t) + a*te*t), where [a,a ] = 1 and

clt) = fdP(i)(1//§ko)exp(-ikot), ko = /K + mz, and P(k) is the spectral
decomposition of 5. Then the free local Hamiltonian takes the form

ﬁo = (N + 7)p , N = a*ta and p =Q) + m2)1/2' In Fock’s representation H in
Ha = HeA [10] is spanned by Fock’s basis ®(n) = (1//ATNa")"8(0). The local

observable = (N + 7)p can be called the local 3-momentum observable of the
q system (5]. Generelly, we can say that the free field operator eq. describes
a "trivial fibre bundle” of harmonic oscillators, or, another way of inter-
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pretation is that 3‘ creates a Klein-Gordon particle of 4-momentum observ-
able (ﬁo,ﬁ) from the local vacuum ®(0). Thus in the local state ®(n) there
are n Klein-Gordon particles of 4-momentum observable (ﬁo,ﬁ). So the free
field description in the present approach is physically equivalent with the
conventional one. Some foimal eq.’'s of the conventional free field thecry
now recover as mathematically well-defined eq.’s [5]. Thus, =.g9., we have
[G(tl),é(tz)] = -i&(tl—t,) for the non-equal time commutators ofa, where
A _ > 4 -1, 2 2.2x2-1
Bt -t,) = fcjp(k)?c(mi - mSokotk®) x 2 o e
traction of T(tl) and o(t,) we have w(t]1w(t2)=<O|T(w(tllw(t2))l?>3=1AF(t1 -
- t,) where A_ is Feynman’s propagator, 4 (tl—tz) = fdP(k).(2n) “fdk_ -

5 2.2  Foj F °
- AmT-k _+k -io exp[iko(tl-tz)] [57.

For describing scattering problems in the interaction picture the local

exp(iko(tl-tz)]dko, or for the con-

S-matrix is obtained along the usual line of thought and is given by the
expression § = T exp[—ifdtﬁI(t)]. The terms of § can be expanded by applying
Wick’s first theorem and the corresponding terms <an be represented by
Feynman’s graph techniques [2,5]|. These terms do not contain infinite factors
when their matrix elements are taken between any two local (or global) states
from their domain [5]. This statement follows from the fact that in this local
approach only the local interaction Hamiltonian ﬁI s sears in S and not the
total one, "fd3;ﬁ1(;)". Mathematically this implies .at there are no 3-mo-
mentum integrals for the internal lines of Feynman'’s graphs. The remaining
energy integrais have the same structure as in g mechanics, so they do not
produce ultraviolet divergences. Physically, the local Hamiltonian does not
contain contribution of far away fluctuations.

As to the Lorentz invariance of the theory we note that only non-unique
(infinitely many different) representations of the Lorentz group can be given
in the local state space Hﬁ. This and Erenfest’s theorem implies that a uni-
que Lorentz invariance holds only in mean value in this theory [12]. Never-

theless the global scattering amplitudes <01|§02>O = Trp - <01[§02 of local

>a
states are Lorentz scalars anéd thus the aTobal scattering amplitudez of wave-
packets (describing physical particles), too. Furthermore in the cases of

free fields we can select out uniquely local (and the corresponding global)
states which describe relativistic many particle states. Then these states
describe the in and out states of (adiabatically) interacting relativirstic
particles, however Lorentz invariance in the process of interaction is fulfill-
ed only in mean value in this approach (6].

We conclude here that a nonconventional extension of the canonical quan-
tization method for CLFT’s exists, which lacks the difficulties of the con-
ventional one formulated in Haaq’s theorem and in the ultraviole catastrophe
[2,7]. In this approach the interaction picture exists for nontrivial scatter-
ing problems, too. The corresponding S-matrices have the same structure as
the conventional ones and are free of ultraviolet divergences. This formalism
is an explicite example that the g dynamics of a system can be locally im-
plemented, according to the physical measuring situation.
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