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RESISTIVE MODE IN ROTATING PLASMA COLUMNS INCLUDING THE HALL CURRENT

ABSTRACT

A new resistive mode is shown to exist in rotating plasma columns. The

mode is localized in the neighbourhood of the radius where the angular

velocity of the bulk plasma is equal to minus half the local angular velocity

of che ions. This singular point is caused by the Hall term in the generalized

Ohm law. The growth rate of the mode scales with n > where n is the plasma

resistivity.

RESUMO

E demonstrado que um novo modo resistivo é instável em colunas de pla£

ma com rotação. 0 modo ê localizado na vizinhança do raio onde a velocidade

angular do plasma é igual a metade da velocidade angular local dos ions e em

sentido contrário. Este ponto singular é causado pelo termo de Hall na lei

de Ohm generalizada. A razão de crescimento do modo é proporcional a nV^ ,

onde n é a resistividade do plasma.



1. mTRODPCTIOH

Resistive nodes are known to occur in magnetic confinement

configuration* in which the magnetic field reverses direction inside the

plasma [1,2,3]. However, the experimental results agree only qualitatively

with the theoretical predictions. In rotating plasma columns,the reversed-

-field configuration tends to stay stable for many growth periods before

becoming unstable [2]. It has been suggested that the rotation of the plasma

column [2], kinetic effects [3], the Hall effect [4,5], or a component of

the magnetic field normal to the neutral sheet [6] may have stabilizing

effects on resistive modes. In this paper, I show that the rotation of the

plasma column 'pother with the Hall effect are destabilizing effects

giving rise ' • , lew resistive mode.

Tit -o-portance of the Hall term in the generalized Ohm law was

long ago recc ./ized by Ware [7], The effect of the Hall current is to tie

the motion < the field lines mainly to the electrons allowing a slippage

of the lin >* with respect to the main fluid even when the plasma

resistivity is neglected. From a more formal point of view, the Hall term,

although sm#\l in comparison with the inductive term in the generalized

Ohm law, introduces a singular perturbation because it increases the order

of the magnetohydrodynamic equations with respect to the equations without it.

In the absence of the Hall term, resistive modes develop in the neighbourhood

of the point where the confining magnetic field vanishes [8,9]. In the

presence of the Hall term, new singular points appear in the ideal

•agnetohydrodynanic equations[10]. Resistive modes can now develop in the

neigbourbood of these points with growth rates that differ considerably from

Che growth race of the tearing mode. This point has so far been overlooked

in Che studies of che influence of Che Hall effect on the tearing mode[4,5].



2. BASIC EQUATIONS AMD EQüILIBEIUH

I use the resistive magnetohydrodynamic equations including the

contribution of the Hall current in the equation for the evolution of the

magnetic field B, i.e.,

p ÍX + p(v-V)V . - ( V x l ) x 5 - 7 p , (1)
9t 4TT

— .= Vx(VxB) - Vx(^- VxB) S Vx[(VxB)x — ] . (2)
3t AT 4it D

i£ + rpv-v + v-vp = o , (3)
3t

^2- • pV-V * V-V- = 0 , (4)
5t

and V-B = 0. Here the Hall parameter cu is given by the mass to charge ratio
n

of the ions, n is the plasma resistivity, r is the ratio of specific heats,p

and p are respectively the density and pressure of the plasma, and V is the

fluid velocity. The equilibrium configuration is an infinite cylindrical

plasma columi. with azimuthal symmetry and confined by a longitudinal magnetic

field B • B (r)z.Then,neglecting the plasma resistivity, the equilibrium
o o

relationship is given by

A Bi
± (p* ) . Pn

2r, (5)
dr 8TT



where r is the radial coordinate of a cylindrical coordinate system (r,8,z).

The Ball tern has not been neglected in the derivation of Eq. (5); it simply

does not appear in the equilibrium equation. This is quite different from

the special equilibrium studied by Kadish [11J.

3. PERTURBED EQUATIONS

I consider only the m«0 mode, i.e., perturbations of the form

V1(r,ztt) = V (r)exp(-iut + ikz), where u is the frequency of the mode and

k is the longitudinal mode number. Then, introducing the variable V =- iuf,

and neglecting the azimuthal component of the perturbed velocity (this

component is irrelevant for the m»0 mode), the following set of equations is

derived from Eqs. (l)-(4).

2I d / . M pw2 dp r \ 2

dr V pu2-k2Tp r dr r pu2 - k2Tp dr TJ r

r[ ^ — I ± (rr
2 2

(r ) £)
pu2 - k2rp r dr r pu2 - k2Tp dr

d ikdB /dr B
± [ r p 2 B M - S - I i (rB)]
dr 4ir(pw2-k2Tp) r 4irk r dr

(ifcdB9/4r)B ikB.
- Pfl2r E 1 B

4ir(pw2 - k2rp) 4« r

and



Br - ik(Ba • 2QCOE • i JSi ( i - 1 r l ! l _ U J i ! l Í B >
r • B r 2 r

(7)

B

r dr dt r2 r

where B is the r-component of the perturbed magnetic field and n and ft

have been assumed constant.

Equations (6) and (7) are solved using a boundary layer approach

as usual in the analysis of resistive modes [8]. The ideal magnetohydrodynamic

equation,

dr V pui2 - k2rp

* 2 " " H '

rp 4ir r dr

, + r 2 r ±
r V dr

( £ ] p

dr 4TT(PUJ2 - k2rp) V àr pw2 - k2Tp

t

- k2rp dr Air(pu)2- k2fp) dr

k2B,
(8)

is obtained by taking n-0, substituting Eq. (7) into Eq. (6), and using

Eq. (5). In the marginal stability limit , ur+0, and when the Hall effect is

neglected, £„ • 0, Eq. (8) has a singular point at the radial position

where B vanishes. In this case, a resistive instability develops in the

neighbourhood of this point with the growth rate of the mode proportional

to n . This node is just the rotational version of the gravitational

resistive mode with the gravity replaced by the centrifugal acceleration[12]

when the Hall effect is not neglected, * 4> 0, the singular point is



shifted to the point r • r, such that Bg+ 2QccR • 0, that is, to the radius

where the plasma rotates with half the local angular velocity of the ions

and in the opposite sense. In the neighbourhood of this point, Eq. (8) has

a singular solution which is given asymptotically by

r r - r
ç .», + ao*n ( - ), (9)

* " ro *0

where

Tp dr ° 2 2

pfi r

ao . + . (io)
2Í2CE dB0

 P

- (r — )
dr o

Now I consider a resistive layer around r=rQ such that n =£ 0

in the.layer. The basic small parameter inside the layer is given by

e « T./T , where T. • rV4irp/(rdB /dr) is the Alfvên transit time andA r A o o o

i - 4ur2/nc2 is the resistive diffusion time. The different variables are

scaled in terms of the small parameter e by defining the following

dimensionless quantities of order one

Ç - Í U T A r - r iB

5 --T Í A l x 1 ; * 1
kr (rdB /dr) e

0 0 0

The constants a, b, and c are determined by requiring that the term

proportional to n in Eq. (7) becomes of the same order as the relevant terms

in Eqs. O ) and (7) and that the resulting set of equations has an

asymptotic solution that matches the ideal magnetohydrodynamic solution (9).

This can be accomplished by choosing a • b • c • 1/2 and tymty0+ e
1/2 4* > ip •

const. Then Eqs. (6) and (7) reduce to

• (A! - A2 x) Ç - A2I|I0 , (11)

dx2



where

nVk 2r 2
0 (rdp/dr)0

Tp p dr

and

2ficeH kV 0

An integral representation of the proper solution of Eq. (11)

can be found using the technique discussed by Johnston13, viz.,

f° A2 *
Ç « t|i A exp(- A,tx + — t3 + A t)dt. (12)L 3

To match the inside and outside solutions, I require that A'|. = A'| .where

is the jump in the logarithmic derivative of \p across 'the singular layer8.

Writing A |. in terms of the normalized variables, the eigenvalue equation

can be written as

,1

dx (1 • x •£- ) « r0A'| . (13)
i ty out

o

Substituting Eq. (12) into Eq. (13) and carrying out the integration, 1 obtain

A : r i'| 12. Then, the growth rate of the mode, y * - iu, is given by

f A/
% ( — > T .

2 Tr A

1/2

This equation ahovs that y scales with n $ which is quite different from

the scaling of the growth rate of the tearing node or the resistive

gravitational node.



4. DISCUSSION

Previous work by Kappraff et al indicate that the effect of the Hall

current on resistive modes in rotating plasma columns is stabilizing [5]. In

this paper, I have shown that this is not a general result. The combined

effects of rotation and Hall current leads to a new resistive mode. The -ode

develops around the singular point where the plasma column rotates with half

the local angular velocity of the ions and in the opposite sense. The growth

rate of the mode depends on the angular velocity ?. through the pararr.uter a.,

which comes in A1| . In closer agreement with experimental results .1-3! ,

and for typical profiles of the confining magnetic field, the r.od<. ^rrv-

slower than the resistive modes usually considered to explain the ir.st•-.':,: ] ; •_ :.

observed in reversed-f ield configurations 1.5,9,17). The effect of vises ity

has been neglected in this paper. However, it is possible that vis*::•••• = i ty p;.

an important role further decreasing the growth rate of the mode 14 . oi\-

on the effect of viscosity is currently in progress and the results vil. .-.rvr

be reported.
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