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51. Introduction 

The low-B insertions that are incorporated into most storage ring 

designs result in the chromaticity to a higher value.which may serious­

ly modify the performance of the machine and must be corrected by an 

appropriate arrangement of sextupoles. 

From an optical point of view, it is very difficult to compensate 

the chromaticity, since the very large chromatic aberration, due mainly 

to the insertions,where the dispersion function n is usually zero, has 

to be compensated in the arcs where n is not zero. Therefore, the 

chromatic perturbations arising from the insertions will propagate into 

the main lattice and make compensation complicated. It becomes clear 

that chromaticity correction with sextupoles must be incorporated into 

the design of some storage rings. 

Compared with other similar-machines, the natural r.m.s. energy 

spread of the TRISTAN phase I main ring ' is somewhat large and the 

dispersion function is somewhat smaller, so the chromaticity correction 

in the TRISTAN phase I main ring is rather difficult. 

Chromaticity corrections for the former TRISTAN phase I main ring 

versions have been described in Ref. (2). 

In the TRISTAN phase I main ring version 11, besides a low-B 

scheme, a mini-B scheme will be adopted. The uncorrected chromaticity 

is larger than former versions and a stronger sextupole field is need­

ed. The arrangement and strengths of correcting sextupoles have to be 

adjusted carefully in order to reduce some undesirable effects of the 

correcting sextupoles. 

This report will deal with the chromaticity correction for the 
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TRISTAN phase I main ring version 11 including a low-B scheme and a 

mini-B scheme. The results obtained show that particles with trans­

verse initial amplitudes of at least H o in both planes and with a 

synchrotron oscillation of 7 a remain stable over 9 times the damping 

time. These results demonstrate the validity of the correcting sextu-

pole schemes adopted. 

12. Correction Scheme 

The chromaticity correction method adopted here is based mainly on 

the W-correction, which attempts to correct the strong first-order 

chromatic effects arising from the low-B insertion doublet. 

According to the definitions in Ref. (4), the chromatic variables 

in either transverse plane are 

B = M = B(S) - B(0) (1) 
B /B(6)B (0) 

A = aU)B(O) - q(0)B(i) ^ (2) 

•B(«)BlO) 

where 6 is a momentum deviation =2-. 
P 

The equations of motion for A, B are 

§ - - 2A if <3> 

f = B AK + 2B j j l , ' (4) 

a 

where AK = K(s) - K(0), $ = j U{s) + +(0)1, K is the gradient para-
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mini-s scheme. The resu1ts obtained show that particles with trans-

verse initial amplitudes of at least 11a in both planes and with a 

synchrotron oscil1at1on of 7 a~ remain stable over 9 times the damping e 
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pole schemes adopted. 

~2. Correction Scheme 

The chromat;city c~rrection method adopted here ;s based mainly on 

the .W-correction， whi ch attempts to correct the strong fi rst・order

chromatic effects arising from the low-s insertion doublet. 

According to the definitions in Ref. (4)， the chromatic variables 

in either transverse plane are 

B = å~ τ 
B(δ)・ B(O)

lsT6亦布了
(1) 

Aα(~(QL-_a. (O)B( Ii) 

必π而刊了
(2) 

where o is a momentum de山 ion与
The equations of motion for A， B are 

品
百

向
百nn 

q
t
 

(3) 

均
百円。

内正+
 

vh 
A
U
 

o
p
 

品
一
白

(4) 

1 (.，_， • .，~，' 
where aK = K(o)・K(O)，~ =言 l~( 占) +中(O)j，K is the gradient para-

-2・

可'・



meter. Other parameters have their usual meanings. 

In an achromatic region, where AK = 0, it follows that 

£& + 4A = 0 (5) 

W + 4B " ° (6) 

and W is invariant, i f 

« - HBv + Bh + Av2 v A h ] V 2 • M 

where v and h represent the vertical and horizontal plane, respectively. 

If the chromaticity from the normal cell is rather small, which is 

corrected in the usual way with sextupoles located close to each quad-

rupole, and the chromaticity from the RF section is also small, we can 

see from the eqs. (5) and (6) that the very large chromatic perturba­

tions arising from the low-B doublet oscillate at twice the betatron 

frequency and propagate into the main lattice through the RF section 

without change, except in phase. The perturbations A and B at any 

given point in the main lattice are just functions of the phase advance 

between the insertion quadrupoles to that point. 

The value of W defined by eq. (7) is evidently a measure of the 

overall chromatic error in both planes. According to Ref. (4), if at 

the first sextupole in the regular lattice, Bj= 0, B = 0 and A. A < 0, 

the sextupole will minimize the first-order chromatic error, with 

minimum higher-order effects. As a result, the perturbations produced 

by the low-B doublet are reduced towards the main lattice. 

The above conditions strongly depend on the phase advance between 
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and W is invariant， if 

Mzt(B3+Bt+A3vAA11/2 (7) 

where v and h represent the vertical and horizontal plane， respectively. 
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the perturbation and the sextupole, so a f l ex ib le Lunable inser t ion , in 

which the phase advance can be adjusted over a wide range, i s very 

important for chromaticity correction. 

When the above conditions are sa t i s f ied , the f i r s t -o rder chromatic 

error w i l l be decreased to i t s lowest value, but not zero. In order to 

maintain a higher luminosity and reduce the higher-order chromatic ef­

fec ts , we impose the condition that the W = 0 at both the interaction 

point and the centre of the arc. ' Therefore, 4 families of sextupoles 

are required. Considering that 2 other famil ies of sextupoles arc 

needed for local correction of the main l a t t i c e , then a to ta l of C 

independent families of sextupoles are necessary for correcting the 

f i r s t -o rder chromatic perturbations. Calculation of the strengths of 

the correcting sextupoles required for the above conditions have been 

wri t ten into the program MAGIC at KEK.6' 

Besides correcting the f i rs t -orderchromat ic perturbations, some­

times non-linear variations of the B functions and tunes must he 

further investigated. 

As is well known, the general equation of motion for the B func­

t ion i s : ' 

£ ( B 1 / 2 ) • KB1 '2 - B"3 / 2 = 0 . (8) 

Putting K -»• K + AK and B -»• B + AB, and keeping terms up to second order 

in AB and AK, we have: 

§Z 1$) + 4v2 4 | = . 2 v2B2A K . V2AKB2 A | + 3 u2(AB)2 % (g) 

where <|i = $f\>, y being the betatron tune. 

If we only keep the linear terms on the right hand side of eq. 
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Putting K ~ K + oK and s + s + os， and keeping terms up to second order 

in 66 and 6K， we have: 

d~ (66，... il.，，2 66 _ ?..2o.2AII _ ，，2Ak'R2 o6 ... 'l ..2(o6，2 d~"Z (τ) + 4vτ= ・2v262oK-v2oK6γ3 v2(τ) <. ， (9) 

where ψ=中fv，v being the_betatron tune. 

If we on1y keep the 1inear terms on the right hand side of eq. 
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(9), it follows 

%z (±|> + 4 v ^ = - 2v> *| AK . (10) 

which is the linear Courant-Snyder equation for B. The solution of eq. 

(9) can be written as 

AB _ /AJB»(D + /AB^(2) 

(-g-) is the linear part of ^S-, which corresponds to the solution of 

eq. (10). The problem of using linear theory to minimize -jr has been 

discussed. (-jr) 1S the term which is quadratic in -jj. When the 

working point is close to a half-integer value, the maximum variation 

of B with 5 can be written as ' 

,iBx = / A M D + /ABx(2) • . . . . 
v B;max V B;max lT ;max U 1 > 

(^max = T T ^ F | anl 5 ( 1 2 ) 

l^lll = f T T T ^ F C | a n l + T ? r r W l a n l 2 ] 6 2 • <13> 

where C = - j - /B(K - K'n)ds, n is the integer closest to 2v and a is 

the half-width of the half- integer stop band at « = i , 

an = - 1 _ / d s B ( K - K ' n ) e - i n * . , (14) 

where n is the dipersion function, K' is the strength of sextupole. 

From eqs. (12) and (13), we can see that: (1) the second-order 

variation of B is propotional to C. It shows that a higher chromati-
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dZ ，lIs 
~(τ) + 4¥12す

~ lI6 
・ 2¥1Zす lIK (10) 

which is the linear Courant-Snyder equation for B. The solution of eq. 

(9) can be written as 

帯主(宅)(1) + (警)(2)
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e叫q午.(1川0川). The problem of uSing linear theory to m1nim1zeす hasbeen 

discuss札(警)(2)is the term 
wor‘king point is close to a half-integ巴rvalue. the maximum variation 
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where n is the dipersion function， K・isthe strength of sextupole. 

From eqs. (12) and (13). we can see that: (1) the 5econd-order 

variation of 6 15 propotional to C. It ShOW5 that a higher chromati-
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city will result in larger non-linear chromatic effects. (2) the 

second-order term varies inversely as the square of (2v- n ) 2 . This 

shows that the tunes should be chosen to be far from the half integer 

values. (3) the maximum variation in the B function with 5 strongly 

depends on the laj, so we must adjust the strengths and arrangement 

to make |a | minimum; sometimes this is very effective in reducing the 

nonlinear chromatic effects. 

§3. Chromaticity Correction in TRISTAN Phase I Main Ring Version 11 

As stated above, in this version the mini-B scheme will be adopt­

ed. The first insertion quadrupole magnet will be replaced by a super­

conducting quadrupole magnet and the distance between the quadrupole 

and the interaction point is as short as 2.7 m. The beta-function at 

the interaction point is reduced to.B* = 0.05 m vertically and B* = 
y x 

31 -2 - l 
0.8 m horizontal ly and the luminosity is about 9.3 x 10 cm s . 

Due to the small beta-functions at the interact ion point , the B 

near the interaction point is about 180 m and 160 m in vert ical and 

horizontal planes respectively; the uncorrected chromaticities fo r th is 

version are c y - 61 and c y - 95 in the two planes for the mini-B X i> y % r 

scheme, and c y - 67, c„ y - 95 for the low-B scheme. These values 
X *« y *\* 

make the chromaticity correction more difficult than former versions. 

The procedures for the chromaticity correction are as follows: 

(1) For the requirement of the chromaticity correction, the low-B 

insertion and the dispersion suppressor have been rematched. 

In the version 11, 21 families of quadrupoles are used in the 
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whole ring, in which 7 families are for the dispersion suppressor, 6 

families for the low-B insertion and 2 families for the RF section. 

When matching the suppressor into the low-B insertion, the strict 

periodicity of the B function is kept in the RF section. There are 2 

degrees of freedom in parameters to be used for adjusting the phase 

advance when the dispersion suppressor is unchanged. In order to give 

more freedom in the parameters for changing the phase advance, we use a 

somewhat different matching procedure to rematch the low-B insertion 

and the dispersion suppressor. 

i) In the dispersion suppressor, the number of families of quadrupoles 

is reduced from 7 to 5 under this circumtances of keeping the necessary 

flexibility. 

Calculations ' using the program MAGIC show that we can match the 

normal cell of 54°, 60" and 90° in phase advance into the low-B inser­

tion without additional aperture, and the beta functions in both planes 

are quite smooth. 

ii) The condition which keeps the strict periodicity of the B func­

tions in the RF section is given up; 8 families of quadrupoles are used 

to match the dispersion suppressor into the interaction point. Besides 

matching the Twiss parameters, there are still 4 degrees of freedom in 

parameters for changing the phase advance. This enables the working 

point to be adjusted over a wide range, while keeping the rest of the 

optics unchanged. The results show that v can be adjusted from 31 to 

33, v from 37 to 39 and the beta functions in the RF section are 

almost periodic. The ratio of horizontal and vertical B function at 

the interaction point can be held constant while the B functions at the 

interaction point are increased by a factor of 3. 
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According to such a matching procedure, 19 families of quadrupoles 

are used in the whole r ing . 

Some parameters of th is version are given in Table 1. 

(2) In the chromaticity correction for th is version, 6 independent 

families of sextupoles are adopted. As stated above, we require that 

the W-value be zero at both the interaction point and the symmetry 

point of the arc. According to these conditions, the strengths of the 

sextupoles can be calculated. A total 240 sextupoles are used in tho 

whole r ing. 

At f i r s t , the phase advance between the insert ion quadrupole 

doublet and the f i r s t saxtupole i s adjusted over quite a large range in 

order to f ind a- favourable region where 

i ) part icles with larger transverse i n i t i a l amplitudes remain stable; 

over at least one damping time. 

i i ) the perturbations produced by the low-B doublet are reduced 

towards the main l a t t i ce . 

i i i ) the necessary strengths of the correcting sextupoles are as low 

as possible and the non-linear effects of the sextupoles are tolerable. 

9) 

A useful guide in choosing the linear optics is that ' the horizon­

tal and vert ical phases across hal f of the insertion d i f f e r by ir/2. In 

some situations, this condition can be used to minimize the strengths of 

the correcting sextupoles. 

After a preliminary choice, there are two regions of the working 

point which are favourable for chromaticity correct ion, one of them is 

v £ 33.7 and v % 39.7, where larger betatron and synchrotron ampli­

tudes are allowed and the strengths of the correcting sextupoles are 
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are used in the who1e ring. 

Some parameters of this version are given in Table 1. 

(2) In the chromaticity correction for this version， 6 independent 
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sextupoles can be calculated. A total 240 sextupoles are used in thn 

whole ring・
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A useful guide in choosing the 1 inear optics is that9) the horizon-

tal盈ndvertical phases across half of the insertion differ by Tr/2. In 

some situations， this condition can be used to min;mize the strengths of 

the correcting sextupoles. 
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acceptable. 

(3) In order to improve the non-linear effects of the correcting 

sextupoles, a further adjustment w i l l be necessary which includes: 

i ) adjusting the working point carefu l ly . 

i i ) adjusting the strengths and arrangement of the f i r s t two families 

of sextupoles while keeping the natural chromaticity zero. 

i i i ) changing the d is t r ibut ion of the & functions and the arrangement 

of the correcting sextupoles in the wiggler sect ion. 

Because the program PATRICIA can compute the half-width of the 

half- integer stop band a at v = n/2, and indicate which sextupole 

makes the largest contribution to a n , a l l the above adjustments must 

make a minimum. 

(4) Since the beam-beam interactions apparently cause the part icles to 

have very large transverse amplitudes but the momentum dis t r ibut ion 

remains Gaussian and fa l l s of f very rap id l l y , ' the s t a b i l i t y of the 

part icles with as large as possible transverse amplitude and with a 

synchrotron osc i l la t ion only within bucket height (corresponding to 7 

o ) is given more attent ion, e 3 

The s tab i l i t y of the betatron osc i l l a t ion in the corrected machine 

has been investigated by means of the program PATICIA, which tracks the 

trajector ies of test part icles over 9 times the damping time. 

(5) The chromaticity corrections for several schemes in version I I 

have been studied and the results are as follows: 

- 9 -

acceptable. 

(3) In order to improve the non-linear effects of the correcting 

sextupoles， a further adjustment wil1 be necessary which includes: 

i) adjusting the working point carefully. 

ii) adjusting the strengths and arrangement of the first two families 

of sextupo1es while keeping the natural chromaticity zero. 

iii) changing the distribution of the s functions and the arrangement 

of the correcting sextupoles in the wiggler section. 

Because the program PATRICIA can compute the ha 1f-width of the 

half-integer stop band a
n 
at ¥1 '" n/2， and indicate which sextupole 
n 

makes the largest contr・ibutionto an， a 11 the above adjustments must 

make an minimum. 

(4) Since the beam-beam interactians apparently cause the partic1es to 

have very 1arge transverse ampl itudes but the momentum distributlon 

10) rema i ns Gauss ian and fa 11 5 off very rapi d11y， ." I the stdbi1 i ty of the 

particles with as large as possible transverse amplitude and with a 

synchrotron oscil1ation on1y within bucket height (corresponding to 7 

Oe) is given more attention. 

The stabi1ity of the betatron 0宝cil1ationin the corrected machine 

has been investigoted by means of the program PATICIA， which tracks the 

trajectories or test particles over 9 times the damping time. 

(5) The chromaticity corrections for several schemes in version 11 

have been studied and the results are as fol1ows: 
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i) mini-B (I) B*x = 0.8 m B* = 0.05 m 

Cx = - 60.79 ?y = - 94.98 

the stability limits: 11 ox, 11 o , 7 oe 

ii) mini-B (II) B* = 0.9 m B* = 0.055 m 
x y 

5X = - 58.7 5y = - 88.93 
the stability limits: 12 oy, 12 o . 7 o„ 

x y e 

iii) low-B B*Y = 1.6 m B*„ .= 0.1 m 
x y 

5X = - 66.52 5y = - 94.87 
the stability limits: 11 o , 11 a , 7 a 

The stability regions found by tracking the particles for various 

schemes are shown in Figs. 1, 2 and 3. Figure 4 shows the phase-space 

diagrams for up to 800 turns (~ 4 times of the damping time), in both 

planes, for various schemes. The variations of the B functions and 

dispersion function n at the interaction point with momentum devia­

tion Ap/p are shown in Figs. 5, 6 and 7. 

The typical arrangement and the strengths of the sextupoles are 

given in Tables 2, 3 and 4. 

§4. Conclusion 

A flexible insertion which can be tuned over a wide range of phase 

advance is very important for chromaticity correction. Some strategy 

which includes changes in the strengths and arrangement of the first 

two sextupole families is very useful for chromaticity correction when 

- 10 -
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The stability regions found by tracking the particles for various 

schemes are shown in Figs. 1 t 2 and 3. Figure 4 shows the phase-space 

diagrams for up to 800 turns ('" 4 times of the damping time)， in both 

planes， for various schemes. The variations of the s functions i1nd 

dispersion function n at the interaction point with momentum rlevia-

tion ap/p are shロwnin Figs. 5， 6 and 7. 

The typical arrangement and the strengths of the sextupoles are 

given in Tables 2， 3 and 4. 

54. Conclusion 

A flexible insertion which can be tuned over a wide range of phase 

advance is very important for chromaticity correction. Some strategy 

which includes changes in the strengths and arrangement of the first 

two sextupole families is very useful for chromaticity correction when 
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the W-correction method is adopted. 
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Table 1 General parameter of TRISTAN main ring V 11 

Beam energy 

Circumference 

Average radius of curved section 

Number of coll. point 

Revolution frequency 

Synchrotron oscillation frequency 

Damping time 

Partion number 

Natural energy spread 

Natural horizontal eraittance 

Bucket height 

Betatron oscillation tune 

mini-B 

low-B 

Phase advance per normal cell 

Natural chromaticity 

mini-B 

low-B 

Luminosity 

mini-B 

low-B 

Beta function at coll. paint 

mini-B 

low-B 

xo 

Eo 
c 
R 
N 

'rev 
f s 
Tx 

TE 
Jx 

= 
= 
= 

= 

_ 

= 
= 

= 

= 
JE " 
<VE0 " 

: 0.1798 

AE/E = 

30 GeV 
3018 m 
480.34 m 
4 
99.33 KHz 
10.058 KHz 
2.08 ms 
2.08 ms 
1.04 ms 
1.00005 
1.99995 
0.164 x 10"2 

x 10" m rad 
1.089 x 10"2 

v x / v y = 33.79/39.72 

v x /v = 33.7500/39.7496 

Vo = v.. = 60° 

= - 60.79 
= - 94.98 
= - 66.52 
- - 94.87 

L = 9.315 x 1031 c m ' V 1 

L = 4.657 x 1031 c m ' V 1 

B*x/B* = 0.8 m/0.05 m 

B*Y/B* = 1.6 m/0.1 m x y 
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Table 2 Lattice Layout (Mini-beta) 

Name Length (m) 

Mini-B insertion 97.4728 

and RF section 

Dispersion suppressor 61.63 

LCO 

LC4 

LRF 

3 

LRF 

BXW 

L.55 

L.55 

L425 

L.55 

QCSH 

QC4H 

[QRDH 

QRFH 

L.55 

QS4H 

SOI 

SFl 

SD3 

LCI 

LRF 

LRF 

LBF 

2 

LBF 
L.55 

L425 

L.55 

QC1H 

QC5H 

QRFH 

[QS3H 

BX 

BX 

BX 

BX 

LC2 

LRF 

LRF] 

LBF 

L.55] 

LBF 
L.55 

LBF 

QC3H 

QC6H 

QRDH 

BX 

QS5H 

QS6H 

QS7H 

Normal ce l l 193.44 4 ( c e l l (SF2, SD3) c e l l (SF3, SDl ) , 

c e l l (SF l , SD2)] 

Wiggler c e l l 24.7171 QW4H L425 SF2 L425 BX L.55 

QW3H L.55 SD3 L.55 BX LBF 

' QW2H L425 SF3 L425 LW2 QW1H 

LW1 

Cell 

Name 

LCO 

LC2 
LRF 

L425 

LW2 

(SF, SD) 

Drift 

length (m) 

2.70 

11.4366136 

6.0736219 

0.425 

1.647043 

QFH 

ODH 

lengths 

Name 

LCI 

LC4 
L.55 

LBF 
LW1 

L425 

L.55 

1 

SF L425 

SD L.55 

ength (m) 

0.8 

5.0 

0.55 

0.3 
4.5 

BX 

BX 

L.55 

LBF 

- 14 

Table 2 Lattice Layout ( Mi ni -beta ) 

Name Length (m) 

Mini・sinsertion 97.4728 LCO QCSH LC1 QC1H LC2 QC3H 

and RF sect;on LC4 QC4H LRF QC5H LRF QC6H 

LRF 

3 LRF QRFH QRDH 

lRF QRFH lBF 

Dispersion suppressor 61‘63 BXW L.55 2 [QS3H LBF BX 

L.55 QS4H LBF BX QS5H 

L.55 5D1 L.55 BX LBF Q56H 

L425 SFl L4Z5 BX L.55 Q57H 

L.55 SD3 L.55 BX LBF 

Normal cell 193.44 4[cell (SF2， 503)凶 1(5F3， 501)， 
凶 1(5F1， 502)] 

Wiggler cell 24.7171 QW4H L425 5F2 L425 BX L.55 

QW3H L.55 503 L.55 BX LBF 

QW2H l425 5F3 L425 U/2 QW1H 

LW1 

Cell (5F， 50) QFH L425 SF L425 BX L.55 

OOH L.55 50 L.55 BX LBF 

Ori ft 1 engths 

Name length (m) Name length (m) 

LCO 2.70 LC1 0.8 

LC2 11. 4366136 LC4 5.0 

LRF 6.0736219 L.55 0.55 

L425 0.425 LBF 0.3 

LW2 1.647043 LWl 4.5 

-14 -
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Table 3 Lattice Layout (Low-beta) 

Name Length (m) 

Low-B insertion 97.4728 

and RF section 

Dispersion suppressor 61.63 

LCO 
LC4 

LRF 

3 

LRF 

BXW 

L.55 

L.55 

L425 

L.55 

qciH 

QC4H 

[QRDH 

QRFH 

L.55 

QS4H 

SDl 

SFl 

SD3 

LC2 

LRF 

LRF 

LBF 

2 

LBF 
L.55 

L425 

L.55 

QC2H 

QC5H 

QRFH 

(QS3H 

BX 

BX 

BX 

BX 

LC3 

LRF 

LRF] 

LBF 

L.55] 

LBF 

L.-55 

LBF 

QC3H 

QC6H 

QRDH 

BX 

QS5H 

QS6H 

QS7H 

Normal cell 193.44 4(cell (SF2, SD3) cell (SF3, SDl), 

cell (SFl, SD2)] 

Wiggler cell 24.7171 QW4H L425 SF2 L425 BX 

QW3H L.55 SD2 L.55 BX 

QW2H L425 SF3 L425 LW2 

LW1 

L.55 

LBF 

QW1H 

Cell (SF, SD) QFH 

ODH 

L425 

L.55 

SF 

SD 

L425 

L.55 

BX 

BX 

L.55 

LBF 

Drift lengths 

Name 

LCO 

LC2 

LRF 

L425 

LW2 

length (m) 

4.5 

7.9366136 

6.0736219 

0.425 

1.647043 

Name 

LC2 

LC4 

L.55 

LBF 

LW1 

length (m) 

1.0 

5.0 

0.55 

0.3 

4.5 
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Table 3 Lattice Layout ( Low-beta) 

Name Length (m) 

Low-s insertion 97.4728 LCO QC1H LC2 QC2H LC3 QC3H 

and RF section LC4 QC4H LRF QC5H LRF QC6H 

LRF 

3 [QRDH LRF QRFH QRDH 

LRF QRFH LBF 

Oispersion suppressor 61.63 BXW L.55 2 (QS3H LBF BX 

L.55 QS4H LBF BX L.5S) QS5H 

L.55 50! L.55 BX LBF QS6H 

L425 SF1 L425 BX L..55 QS7H 

L.55 503 L.55 BX LBF 

Normal cell 193.44 4{ω1 (SF2. S03)凶 1(SF3， 501)， 

ω1  (SFl， S02)] 

Wigg1er cel1 24.7171 QW4H L425 SF2 L425 BX L.55 

QW3H L.55 SD2 L.55 BX LBF 

QW2H L425 SF3 L425 Ul2 QW1H 

LW1 

Cel1 (5F， 50) QFH L425 SF L425 BX L.55 

ODH L.55 SO L.55 BX LBF 

Dri ft 1 engths 

Name 1 ength (m) Name 1 ength (m) 

LCO 4.5 LC2 1.0 

LC2 7.9366136 LC4 5.0 

LRF 6.0736219 L.55 0.55 

L425 0.425 LBF 0.3 

LW2 1.647043 LW1 4.5 
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Table 4 Sextupole parameters 

mini-B ( I ) 

Name 

SFl 

SF2 

SF3 

SD1 

SD2 

S03 

Name 

SFl 

SF2 

SF3 

SD1 

S02 

SD3 

No. 

40 

40 

40 

40 

32 

48 

mini-

No. 

40 

40 

40 

40 

40 

40 

-B ( I I ) 

Strength 

- 0.33194 

- 0.56680 

- 0.67137 

0.23539 

1.28292 

1.40219 

Strength 

- 0.32508 

- 0.52978 

- 0.64015 

0.27415 

1.17849 

1.32184 

( fen- l , M-2) 

<feB"4 ' H-2) 

low-B 

Name 

SFl 

SF2 
SF3 

SD1 

SD2 

SD3 

No. 

40 

40 

40 

40 

48 

32 

Strength 

- 0.35250 

- 0.53649 

- 0.75326 

0.29849 

1.25178 

1.50000 

(Jj.B'-t.H-2) 

- 16 -

Name 

SFl 

SF2 

SF3 

S01 

502 

S03 

Name 

SF1 

SF2 

SF3 

S01 

S02 

S03 

Name 

SF1 

SF2 

SF3 

S01 

S02 

S03 

Table 4 Sextupole parameters 

mi ni -s (1) 

No. Strength (むs"R.， M-2) 
40 -0.33194 

40 -0.56680 

40 ー0.67137

40 0.23539 

32 1.28292 

48 1.40219 

mini-s (1I) 

No. Strength (長山， r2}

40 -0.32508 

40 -0.52978 

40 -0.64015 

40 0.27415 

40 1.17849 

40 1.32184 

low-s 

No. Strength (計九 r~・2)

40 -0.35250 

40 -0.53649 

40 -0.75326 

40 0.29849 

48 1. 25178 

32 1.50000 
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(Mini-Beta 1) (Mini-Beta II) (Low-Beta) 

Fig. 1 Stability limit vs. synchrotron oscillation amplitude. 

o : number of standard deviations of transverse amplitude, 

o : number of standard deviations of momentum deviation. 

(xσ) ( x σ) (xσ) 

15 

unstable unstable unstable 
一一一-...:

一一一イ
10ト 4 

stable slable stable 

5 5 

r、.
{ 

O E E E E E ' O E E E E E E I 

2 3 4 5 6 7 2 3 4 5 6 7 
o 

2 3 4 5 6 7 
(xCTe) (x 句] (X 勾)

(Mini ・seta1) (Mini -Beta II) (Low-Beta) 

Fig. 1 Stabi1ity liOlit vs. synchrotron oscillation amplitude. 

c1 number of standard deviations of transverse amplitud巴.

日巴 numberof standard deviations of momentum deviation. 
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amplitude and 0 and 7 momentum deviation. (Mini-Beta I) 
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Fig. 3 Phase space diagram when tracking with the program PATRICIA. 

Particles are shown with 12 standard deviations of transverse 

amplitude and 0 and 7 momentum diviation. (Mini-Beta II) 
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Fig. 4 Phase space diagram-when tracking with the program PATRICIA. 

Particles are shown with .11 standard deviations of transverse 

amplitude and 0 and 7 momentum deviation. (Low-Beta) 
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