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I feel that magnetism is one of the most interesting and challenging

fields in condensed matter physics. There are a wide variety of magnetic

phenomena and measurements provide a test of the many-body theories that

are necessary to understand condensed matter physics of all types. Indeed

the famous theorem guoted by Van Vleck1 as "Miss van Leeuwen's theorem" tells

us that classical statistics applied to any metallic system results in no

magnetism so that quantum mechanics is necessary to even get started. The

magnetic moment of neutrons makes them an excellent probe of magnetic

phenomena and very direct information is obtainable with neutrons. In fact

the generalized susceptibility is directly given by a neutron scattering

experiment, and this quantity tells all there is to know about a magnetic

system. The purpose of this paper is to serve as an introduction to a series

of papers on magnetic excitations. I will thus establish the necessary

neutron scattering formalism so that it will not have to be repeated by each

author and discuss briefly various types of magnetic systems. The symbols

used will be consistent with those used by Marshall and Lovesey.2 Extensions

and full discriptions of some of the cross section derivations can be found

in their book.
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The magnetic field caused by an electron moving with velocity v e is

We can thus define an interaction potential between the neutron and the

electron by

- Y M N » v H (2)

where 1/2 S is the spin of the neutron, y^ is the nuclear magneton and

T = -1.91. The neutron cross section in the Born approximation is given by

x 6(Energy) (3)

where k and k' are the incoming and outgoing neutron wave vectors, x and A1

denote the quantum numbers required to specify the initial and final states

of the tarqet and P, and P are the initial state probabilities.
A a

If we insert the potential given in (2) into the cross section formula

(3) and perform some algebra, we arrive at

x 5{Energy) (4)



where Q is the total magnetic interaction operator. The cross section is

often written in terms of a similar operator Q defined by Q = Kx(Q x K),

K being the scattering vector k - k1. We then obtain

{5)

a and g being the Cartesian component index.

Perhaps the easiest magnetic system to deal with is one in which a

crystalline field splits a qround state degeneracy into a series of discrete

levels. If the exchange interaction is weak, it is sufficient to consider

"the cross section for scattering by a single isolated ion. If the crystalline

field has cubic symmetry and we let r be the irreducible representations of

the cubic group, the cross section for a transition r •*• V is given by

I , Pn <rnvl3«+lrnVnvfynvv , v

where we have denoted the wavefunctions by |r > where v distinguishes the

degenerate wavefunctions. If we only consider dipole transitions,

0 = 1/2 g F(k)J, where g is the gyromagnetic ratio, F(k) the magnetic form

factor or the Fourier transform of the magnetic spin density, and 0 the total

angular momentum spin operator. Conveniently for us, Birgeneau3 has worked
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out the cross section for J values of interest, and graphs are provided for

each J giving transition probabilities in terms of the Lea, Leask, and Wolf

parameter w. The number w is just the ratio of the fourth and sixth degree

terms of the Stevens operator equivalents.

Crystal field spectroscopy has now been performed at a number of labora-

tories. Time-of-flight is an excellent technique for making the measurements

since data can be taken at all K. The high energy neutrons available from the

pulsed source may enable new materials to be studied, especially transition

metal compounds where the crystal field splitting may be near the electron volt

range. Certain of the actinides may also display crystal field transitions

at high energies, the best cases probably being the heavier materials of the

series.

As the exchange between ions increases, the discrete crystal field levels

will broaden and eventually magnetic long-range order will occur. The simple

crystal field description is then no longer satisfactory although many mate-

rials exist in the intermediate range where broad but still visible crystal

field levels can be observed. Additional factors affect the magnetic ground

state such as valence fluctuations in materials like SmS or some of the cerium

compounds. In this case the magnetic scattering may consist of quasielastic

scattering or rather diffuse scattering extending to high energy transfers.

M. Lowenhaupt will discuss neutron spectroscopy from these types of systems.

There has always been a great deal of interest in the magnetism of tha

iron group transition metalss Fe, Ni, and Co. The crystal field effects are

large in these materials so that L,S coupling is broken down, and since the
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expectation value of L for any nondegenerate state is 0, only spin needs to be

considered to first order. Spin-orbit coupling results in some orbital con-

tribution to the neutron cross section which is important at the higher momen-

tum values, but I will neglect it in the following discussion.

We know the electrons responsible for the magnetism in Fe, Ni, and Co

give a large contribution to the low temperature specific heat and that the

moment values are nonintegral so that the electrons are at least partly

itinerant in nature, and proper cross sections for neutron scattering should

be developed from band theoretical considerations. The Hamiltonian for this

case is of the form

u s T i— r2 + V(r)+ Y (7)

where p and r are the momentum and position operator for the ith electrons

and V(r) is the periodic crystal potential from the ion cores. The first two

terms consist of the kinetic energy of the electrons in the periodic potential

of the crystal. The eigenfunctions of this part of the Hamiltonian are the

block functions. The third term is the coulomb interaction of the electrons.

One then assumes narrow bands and that the Wannier functions overlap from

site to site is small. The Hubbard Hamiltonian can then be obtained and using

second quantization formalism it is be given below

H = I Et ct cu + 3-/2 l I ct ct c* c- (8)
t k ko ka ^ lo lo la la

where a represents the electron spin index. The first term represents the
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band energies and the second term the Coulomb interaction of electrons of

opposite spin at the same site. From this the susceptibility can be calcu-

lated in the random phase approximation.

For the spin only case the magnetic interaction operator Q used in the

cross section reduces to

Q = I e i K' r* S. (9)
l *

where the sum runs over the lattice sides t of the crystal. In this case

<X'|Q|X> = I e l K' r* F(K) <x'|Sjx> (10)
4

It turns out to be convenient to include the energy 5 function directly into

the cross section. Using the integral representation of the 6 function the

cross section can be written in the form

/ dt e-1"' <S°(0) S_BR(t)> (11)

g being the gyromagnetic ratio.

Quite often it is useful to write the cross section in the form of the

generalized susceptibility

dt eia)t <[Sa(t),Se(O)]> (12)
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The cross section then becomes

(a,6 a V Im

a,3

where 1/g equals Boltzmann's constant times the temperature.

The result of a calculation of the transverse component of the susceptibility

for the itinerant electron system is

where

v, 1 r
 fK+q f ~ fR *

xx () (gg) ¥ I L .
Ko 9 K+q

i£

v_ is penerallv called the noninteracting susceptibility. It contributes to
Ko

the cross section when its denominator has zeros so that excitations fan out

from an energy which is the splitting parameter for up and down spins. These

are called single particle excitations. The zeros of the denominator of the

interacting susceptibility give us an excitation that goes to zero energy as

K + 0 and this is called the spin wave mode of the itinerate system. This is

shown in Fig. 1 where the excitation spectrum consists of a spin wave which

increases in energy from K = 0 and rises to meet the single particle excita-

tions that spread out from A.
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Fig. 1. Excitation spectrum expected for an itinerant magnet. Single

particle excitations spread out from the spin splitting energy

A spin wave mode rises from E = 0 at K = 0 and disappears as it

enters the region of single particle excitations.

ihe most detailed measureroents have been made on Ni. Figures 2 and 3

show contour maps of the measured scattering. The spin wave intensity clearly

drops off rather rapidly with increasing energies for the [111] direction, and

it appears that the spin wave is entering the region of single particle exci-

tions around 25 THz (100 meV) at which point it becomes strongly damped and

disappears. For the [1003 direction the spin wave also weakens at higher

energies but anomalous behavior is found at about 30 THz. This behavior is
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Fig. 2. Contour map of the scattering from the [111] direction for nickel

at room temperature. The spin wave loses intensity rapidly as it

enters a high density region of single particle excitations.
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Fig. 3. Contour map of the scattering for the [100] direction for nickel.

Structure near 31 THz ~ 120 meV suggests that an optical spin wave

branch may cross the main acoustic spin wave branch.
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J
in good agreement with a prediction by Cooke and Davis1* that an optical spin

wave should cross and interfere with the main spin wave branch at about

this energy. Unfortunately the optical spin wave has not been seen directly

despite repeated attempts. Calculations using the local density approxima-

tion by Callaway et al.5 show no optical spin wave at 30 THz but do suggest

the possibility of such a mode at a considerably higher energy. It would be

very desirable to see the optical mode directly and perhaps the large number

of epithermal neutrons produced by the spallation source would make this

possible.

One can also write the susceptibility for longitudinal excitation of

the itinerant electrons and the longitudinal noninteracting susceptibility

is given by

R+q

The interacting susceptibility is given by an equation similar to (14). It

is obvious that these excitations are nothing like spin wave excitations, and

it is interesting to study their behavior. Shirane and Als-Neilsen6 have

apparently observed these excitations in iron for temperature slightly below

Tc; however, additional experiments to further study their behavior would be

useful.
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Spin wave behavior is usually thought of in terms of a Heisenberg

Hamiltonian with an external field along z.

H = - lf J(i - £') S^Sgl - gWp IS* (17)

This can be written

H = - I J(;i - I') SZ $* + S^ ST. - pu H I SZ (18)

and then one can solve the equation of motion for the operator S'

in l\ = li\, H] (19)

which yields the spin wave energies

hu>_ = gpD H + 2S(J(0) - J(q))q P

J(q) - I J(i) ejq'1 (20)

The cross section for spin wave creation is then

I (n_ + 1) 6(tf«_ - 4fu) 6{R - q - T) (21)
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where n_ is the spin wave population factor, Vo is the unit cell volume and
q

T is a reciprocal lattice vector. The longitudinal cross section in this case

leads to no inelastic scattering.

The temperature dependence of magnetic excitations of ferromagnets

especially near and above T c is a topic of great recent interest. Figure 4

shows the spin wave spectra and transition temperatures of three ferro-

magnets. The maximum in the spin wave energy for EuO and Gd is equal to

kTc so that the ferromagnetic transition can be thought to be the result of

exciting all spin wave modes. Clearly this is not the case for Ni and the

nature of the transition in this material is of special interest.

In the region near and above Tc the cross section is often decomposed

into the isothermal wave vector dependent susceptibility x- and a spectral

weight function Fa(K,w). In this case the cross section for inelastic

scattering is given by

d2a ye2 k'

where

(22)

If one assumes an instantaneous spin correlation function of the form
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Fig. 4. Spin wave spectra for EuO, Gd, and Ni compared to their transition

energies kTc. Note that EuO and Gd become paramagnetic when all

spin wave energies are excited but that kTc for Ni is much lower

than the spin wave energies.

then the isothermal susceptibility is given as

(24)

If further the time dependence of the spin correlations are diffusive in

nature

<Sa(q,O) Sa(q,t)> = <Sa(q,O) Sa(q,O)>e-
rq2t (25)

and
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in this case

We then have that

(27)

Measurements above T c for nickel have found a ridge of scattering that

for higher energies looks similar to the scattering found below Tc« Figure 5

shows the temperature dependence of the center of this ridge. Uemura et aT.7

claim that the cross section derived from Eq. (27) explains this ridge for all

measured energies. I disagree with this assertion as an equation based on dif-

fusion results in line shapes unlike those observed in constant energy scans.

Figure 6 shows measurements of spin waves in Ni for AE = 40 meV ~ 10 THz. I

feel the dotted lines resulting from a diffusion based equation do not satis-

factorily explain the observed data.

Because of the importance of neutron scattering from transition metals

and the need for high energy neutrons for these studies, talks are to be given

on this subject by Lynn and Uemura. No doubt differing viewpoints on the

nature of the excitations in these materials above Tc will also be expressed.

The susceptibility of an isolated ion is given by

Xn ~ 1/3 (guj 2 s ( s + *)& • (2S)
0 p

The isothermal susceptibility can then be obtained as below
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Fig. 5. Magnetic excitation spectra for nickel at various temperatures. A

ridge of scattering is found above Tc that for high energies is

similar to the low temperature excitations.
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Fig. 6. Measurements of the magnetic excitations for nickel at room ten-

perature and at 1.08 Tc. The measured line shape above Tc does

not resemble that given by the diffusion equation as shown by the

dashed line.
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This gives a measure of the correlation range above T c which is an

important ingredient in choosing correct theories to describe the properties

of transition metals. Capellmann will discuss experiments based on (29) but

using polarized neturons to avoid nonmagntic processes.

Buyers will mostly discuss magnetic measurements in actinide systems.

These systems have energies between rare earth and transition metals and

incorporate the difficulties of both. The magnetic electrons can be rather

itinerant in some materials and more localized in others. Certainly it is a

rich area for the investigation of magnetic phenomena.

I hope that I have shown the power of neutron scattering techniques in

investigating magnetism in a wide range of materials. The subject of mag-

netism is a difficult one and the joining of theory and experiments are

gradually pointing directions toward solutions of these challenging problems.

We hope that the new spallation sources will make possible additional mea-

surements, particularly at higher energy transfers and thus add to our know-

ledge of magnetic materials.
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