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ABSTMCT

A ««tarai caatfitfate «e4e1 far * «•««.« theory far

the ••facari frouj) is discasse*. I t satisfies the m i l eltc

trfc-Mfactic sjranetrjr of stag* a»4«1s «a<f i% a c«ntractia« «f

a f««S* «o4«l for tk« ft* Sitter armp. Its field ««.««tioat arc

jtist tht V»»f-mt1s eM«ti«os f«r tti* Pofuctrê ^ro»p. I t **

sktm that tfcts* ««.«atiMs 4* «ot fell*» fraa a La«ra«9*«a.
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i . nmtopucTiow

It 1$ a general belief that gravitation, M r *

than ether Interactions, is closely related to the detailed tex

Urt «9 the space-time manifold. Einstein went so far as to as

$«rt that. v«r* the gravitational «el* eliminated, there would

remain "absolutely nothing, not even * tosologtcal space"1. Nfs

own theory setdon goes to such detailed fine-grained aspects *.

hut the successes of General Relativity * n ««rely at the origin

of that general opinion. Another widespread surmise, a aech

•ore recent one, is that interactions In general art «ediated hy

gavgefields,• conviction supported hy the achievements of the

electroweak gauge theory and by the soccesses of Quantn Chro

Sange models for gravitation endeavor te accoano

date these two ideas, which point aatorelly to the investigation

of these features of space-tine presenting gauge-like character

ist ics. fiencral Relativity describes the gravitational field

essentially as the cwrvatvre of a Levi-Civita connexion.which is

metric-preserving and torsionless, giving consequently a preeart

nent role to the metric structure. In alternative theories of

the gauge type 3 . the central part is played by the connexion

I tse l f , metric or not. This i s , of course, an Imposition of

the gavge formalism, 1n which the basic f ietd 1s the gauge potes

t ia l A, a pulled-back connexion on a principal bundle with the

gauge group as structural group and space-time as base manifold.

This potential is • Lie algebra valued 1- fora: taking (2,1 as

the set of group generators, with [z«, 2b] —1 fceb I c , i t is

written, in a coordinate basis
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Fieids belong to gcrer:) representations of tfie group, end ts

every representation 1s associated t certain fiber bundle. A

connexion defines cavariant derivatives on each one of these b«£

dies. A very special case is the adjoint representation, whose

carrier space is the vector space of the Lie algebra and ta

which A Itself belongs. The field strength F Is th« curva

ture of A, 1. e, its own covariant derivative:

f j P A « <LA - i A A A (i.2)

or» In components»

where

The Hanchi Identity

o V F - M

is a direct consequence of (1.2). In words» it says that the

coveriant derivative of F is zero. Ve can say that gauge

field theories have two distinct facets. One is a geometrical

svbstratua. Introducing all the possible connexions on the bun

die obtained with the chosen gauge group and svauaerized in (1.2)

and (1.4). Another Is the dynaartctl aspect, allowing to * *,

amongst all these connexions, the one really at work i» a given

physical situation *. Introducing the dual of F.

where

*T



the dynamical prescription Is given by the Yang-fHTls equation ,

* O (1.6)

1» the sourceless case. This Is the Euler-tagrange equation ob

taincd fro* the action integral

J (1.7)
Source fields,belonging to representations In the associated bun

dies, contribute with their currents to the right-hand side of

(1.8), and obey the additional dynaaicat equations obtained froa

their free equations via the ainiaal coupling prescription.

Going back to the idea of gravitation as

• spacetiae • rooted effect, we should hope to find structures

in the geometry of spacetiae analogous to those sketched above.

at least the purely geometrical facet . In fact» on any differ^

entiable aanifold (which we shall here consider four- dimension,

al) there 1s always a bundle naturally defined, the bundle of

•ffine frtmtt *. Its structural group Is the affine linear

group Al (4,R) • 61 (4,A)e T4, the seaidirect product of the

linear group and the translation group in 4 dimensions. In the.

case of spacetiae, the restriction to Lorentz fraaes reduces it

to the Poincari group, P • X 9 T3 jt This always-present

structure provides the aost general gauge-like features one can

find which are intiaately related to spacetiac, and justifies

the Interest in Poincari gauge theories. Of course, In order to

accomodate the representations to which the known eleaenfery

Mfticles belong, the Lorentz group X 1» to be viewed as the

covering group of $0(3,1 ), $1(2,C).

A connexion P on the bundle of affine freacs(an

'•ffine connexion') will, just like »ny connexion on any other

bundle, satisfy (1.41 there is, however, se«ething special in



this case. Let us wri te Z,,, , with « . f *1 ,? ,3 ,4 # T«r * * t

generators of ths Loreritz group, and I K for those sf tfs« tr*-s_

la t ion group. The Lie algebra i s , as a vector space, s -*r?et

and i decomposes i t s e l f into two par ts :

r * P + s

where

•nd

The sane happens to the affine curvature,

F c «tf - i PA? - F J d-Hj

with

F . <nr . * P A r (i.i2)

•nd

Th» lianchi Identity

decomposes in this case Into two,

, F ] s

and

first with coi»poi»ents in the lorcntz sector, the second

Of covrse, this discussion his bee* rather sue



ctnt, but K 1v • synopsis of the ««In fundamental properties

concerning connexions on spacetime proper. The for»Pgiven by

(1.9) is really • good connexion tn the lorentz sector, which

foras an independent sub-structure: it Is a connexion on the

sub-bundle of Lorentz frames and F its curvature. Now, on the

bundle of fraaes of any differentiate aanifold there exists a

canonical 1-fora, independent of any connexion, the solder fora.

It is a special characteristic of this bundle and is precisely

the fora S of (1.10). Unlike H , it is not a connexion and

as a consequence the translation sector does not fora an inde

pendent substructure of the affine structure. In reality, an

affine connexion like r can be defined in a huge nuaber of

different ways, with 5 in (1.8) being 'horizontal foras" * of

a aort general type (leading to "generalized affine connexions');

the particular choice of the solder fora 1s convenient because

of its siatple geometrical properties. We shall use S for the

tiae being, and relax this choise later on. A specific proper

ty of S is that its components $ w» are, when S is written

on the base aanifold with a chosen fraae characterized by the

four-legs { k * } * just the eleaents { £ % } of the corre

sponding dual basis of 1-foras. The connexion P defines, as

usval, • covariant derivative; its curvature F fs Its own

covariant derivative. The quantity T given by (1.13) Is the

covariant derivative of $ (remember that the detailed axpres

sion of the covariant derivative depends on both the degree

end the algebraic content of the fora), that is, the torsion of

P . Notice that torsion is always present in the bundle

•f frames-there is not such a question as introducing It or not.

It aay be vanishing (as in General Relativity), but it has con

sequences anyhow. For this reason, equations (1.15) and (1.16)

•re found in differential geometry textbooks under th# ntmtt
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of 'first'snd "second" lianchi identities, fven If v?e starts*

with the homogeneous Urenti croup, the presence of t>>« solder

for» would fores the presence of tcrsfon. Furthermore, the

introduction of spinors on a manifold practically enforces (fr

reveals l l) the presence of torsion. In iny case, the aff>>*

formalism takes all that automatically into account. These nat

urai properties of space-time arc as near as we can wish to

those purely geometrical features of gauge theories incorit-

rated in equations (1. 1-4).

How, what about dynamics? One rain trouble In

building up a gauge theory for the Poincare rrouo rests on its

nonsemisinple character 7. Known gauge models have serisi-ple

groups, whose well-defined Cartan-Kiliing retric can be used to

write an invariant Lagrangean density. This is not the case

here and to obtain the dynamical fzcet one has to resort to

other arguments. One could even suspect that a theory for the

Poinceri group which is really a gauge theory would have *o

well-defined lagrangean (such a suspicion comes out after a few

tentative! to build it up) and that the dynamics is *o be de

scribed by field equations determined in some other wsy. T^e

requirement we shall be using to get the equations is one of

simple coherence with the above ideas of gravitation «s a gauge

Interaction relstad to the diffarentisble structure of space -

t1«e. He have already shown Its purely oe&n-ctrícal aspect; to

get Its dynamical counterpart, we simply require that the field

equations be of tha Yang-Hills form. This means that we force

ourselves to retain one of the most interesting characteristics

which general gauge theories have inherited from etectrodyrtr»

ics: the delicate balance between the "electric" and "magnetic"

components of the fields, «.hfch is ultimately reflected in the

striking similarity of the geometrical ec;;.';ticn (1.4) and t*e

dynamical »qu?ti&n (1.6) In effect, the latter is just the

former written for the dual of F. This Is, of course,tht well
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known discrete duality syi.v-ítry of sourceiess gauge fields .whose

extension to the c«se of non-vanishing sources has been cxt«n

sively examined in the study of conopoles but «hose laport

for the scurceless case (where it is undoubtedly present) has

only begun to be ctarified with the lattice approach •. Roughly

speaking, (1.6) says that» in the absence of sources, tiso the

covariant coderivattvc of f vanishes. Field derivatives ind

coderivatives have, in the lattice formal is», gecMtrfcal coun-

terparts as boundaries and «boundaries in the lattice, and nuch

of the highly symmetric properties to which the approach owes

its power is a consequence of the duality syametry. It is higli

ly desirable to preserve this electric-Magnetic syaaetry of

classical gauge fields for yet another reason: it fixes complete^

ly the field equations In the Yang-Mills fora. Me shall later

on give some «ore arguments supporting the resulting equations.

If these *rt siaply the Sianchi identities written for the dual

field strengths, then (1.14 - 16) tell us that they arc

eO , (1.17)

or

and

These equations have bee» first proposed by Popov and telfcMn •,

who got at the» ey siapljr asking whit the Tang-NilIs equations

would be for the Poineari group. They also pointed out that, ff

we suppose (which would be rather in contradiction with t»e

above philosophy) V to bt aetrie preserving and t«rstont«*s, the

equations reduce to those of fang's aodei for gravitation 1*

s*pty space. More precisely, only the last ter» 1» (I.tf) »•*••



vives, giving Einstein's equation ^ , v i O , and (T.1SJ

redundant. !n this sense, (1.58 -.19) gsnereH?s £<«••«<?;*< tit

ory in empty space. The condi + Tens iapossd on P , howíver.have

bad consequences: fang's equities are known to ntv? *?l-»>e»

heved solutions In the presence of sources, and, of course, all

we have said about the syrostry would be lost. The Rain rs»ic

to look for gauge theories for gravitation is not a purely aes-

thetic or pNylosophical on». It comes frcn the spparer»t allergy

of Einstein's theory to renormaiizatisn tno ta the gauge theo-

ries penchant for it. It is not clear just where this affinity

cones fro» 1Q, but it is a general feeling that conformei ;".v»r^

ance is somehow involved in good short-distance behaviour '*

Gauge novels for the «.onforaal group have been proposed " in

this line of thought. The Yang-Kills equations are conforme!ty

invariant and $9 *rt equations (1.18 - 13). The reason is SÍR-

pie: the only dependence on the space-time metric appears in the

operation of taking the dual of F and T , both of which are ?•

foras. In s 4-di»ens1ona1 space» as can be seen by direct in-

spection, the dual of a 2-form does not really dspend on the

•ttric but only on its conformai class. In the case of a M r o -

tors ion Metric preserving connexion, a new dependence on the *eji

ric appears inside F (which fcecones the Riemann tensor), th«

argument above holds no more and the resulting Einstein equation*

are not confornaily invsrUnt.

There 1s another, indtpsndent argument favoring

the equations above. The Poincari group P ict$ on the t««g««t

space at each point of space-tints and the union cf these «pact!

constitutes the associated Urgent bundle. Each fiber, or each

tangent space. Is Itself a MinkoHski «pact. How, it is a «ofI

known fact that P is a inorC-Uigner contraction of tht 8*

Sitter (CS) group. Unlike P , OS is ser»it1<ti(>1e and it Is net vtry

difficult to build a gauge theory for it. In the associai***
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bundle, to replace P by D5 corresponds to replace each tangent

Minkowski space by in osculating De Sitter space 13. A De

Sitter spacs is characterized by a parameter L , a length relat-

ed to its (constant)curvature l". The contraction process

corresponds to making I go to infinity, In the limit, DS be-

comes ('contracts to*) P and the De Sitter space becomes a

HinkoxsM space. The Lorerttz group, a common subgroup of DS and

P , remains unscathed in the process, but the four remaining

dimensionless parameters of DS get multiplied by L to become the

translation paraueters of P IS. What happens to gauge poten-

tials and fields under contraction has been analysed sose tine

ago l(. A first remarkable fact Is that the Bianchi identities

for the OS theory become, after contraction, Just the geometri-

cal Identities (1.15 - 16} fixing the space-tine purely geometry

cal features. This rtsult suggests that, just as it gives the

geometrical setting fixed a priori, a DS contracted theory would

givt the whole space-tine-rooted theory we are looking for. K

second remarkable fact 1s that the contraction process preserves

the duality symmetry: the Yang-Hills equations for the De Sitter

theory become, after contraction, just the equations (1.18 - 19)

above. Maybe this argument 1s not quite definitive (1t can be

argued that contraction 1s not a very healthy process from the

mathematical point of view) but It would be difficult to accept

as the Poincart gauge theory one which Is not the contraction

Unit of a De Sitter gauge theory.

The DS - contraction procedure will be of great

use in the following, as a guide through the Intricacies of the

Potncari theory. It 1• very important to keep in mind that the

rosults for t h e ? theory are obtained only under the proviso that

all calculations be done first in the OS theory, the contraç,

tion limit baing taken only as the last step.

In Ref. '*, the behaviour of fields 1n the :
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joint representation has besr. examined in some tístait cr.d the

field equations ebove ware obtained under the assumption t*>at

the translations! gauge potentials are to be identified with the

tetrad fields A ^ • There are aar.y difficulties in this inter-

pretation. First, the solder form being a canonical attribute

of all frame bundles, their components í. p are i:i a sense given

a prioriivand do not participate in the description of any specif

1c field. This is related to the fact that, in reality, the tor

sion T Is an attribute of P and not of S . A second diffi-

culty ts of « more prosaic nature: the absence of a gauge inter*

action ii characterized by the vanishing (up to a gauge transfo^

nation) of the potential field*. The tetrad fields cannot vanish

or» In other words, the absence of translation! gravitation

would give place to some "field of singularities". A third prob

lea appears in the presence of source fields: the A^will alwsys

couple to the kinetic energy tern. If they are the fundamental

fields, the source fields will have no pure kinetic energy and ,

so, i.o propagator. In section II, we shall sec how these prob-

lems can be avoided. The solution Is an old one " (the gauge

potential is the non-trivial part of the <$t/»), but in a differ

ent context and appears as a consequence of the DS- contraction

procedure. In analysing this question, a trait peculiar te

theories involving space-time itself, the presence of a " kire -

«atic representation" of the. Lie algebra to which all fields be

long, wilt appear as being of fundamental importance. We s*stl

briefly analyse the contraction procedure in this representation,

so avoiding a repetition of what was done in Rif. 16. In section

III, we prove a rather discouraging result: by using Vafnberj's

theorem 20,21 of functional calculus, which gives necessary ind

sufficient conditions for an equation to be derivable from an

action principle, we show that there is r(-j!)y no Lagrangean fr?«

which {1.18 - 19) follow as the Cuter-lagrange equations. Ways
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to circunvent the diffictUies coning from this fact are briefly

discussed fn the final section.

II. GENERAL DÊSCRIPT1OH Of THE MODEl

A special characteristic of gauge models Invol-

ving spacctime symmetries is the presence of a "kinecMtic repre

sentation', whose generators are tangent fields. At each point

of spacetime, one can choose coordinates (**} for the tangent

space aa and realize the P Lie algebra by the well known gen

erators

The important point is that, at these operators act on sourer

fields through their arguments, «11 fields will respond to

their action. Spinor and vector fields will belong also to

other representations and their total response to Lorentz trans,

formations will be governed by

tt}>

Scalar fields, however, will be singlets In any other represen-

tation, and their "kineaatical' response Is the only possible

explanation for the universality of gravitation In a gauge pie

ture. The presence of this representation is, consequently, a

fundamental difference between the present ease and that of

other groups.

The transformation* generated by (2.1,2) wfl?

change points In the fiber (i«. in the tanoent tpac»}. For an
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fnffni tcsfnaT change with paramatsrs { J«/;? t e<£ )

At • fixed point ", w« shall write th« corresponding change of

• scalar source field as

For the OS Lie a'gefcra, the "k1ne«atJc'Bener8tor$

b>l,...,5) are 15:

where L Is the OS length parameter and x = s * * . The 10

groNp parameters can be grouped as \w •*.- w j , they art,

of course, dinensionless. The contraction is obtained by redeftn

«nd proceeding to the limit L-j.ee . The inf1n1tes1n«1 change

under a DS transformation,

btcoaes just (2.5). In this process, generators and parameters

change th*fr d1wension«l1ties. The gauge potentials " p. for

the DS field will, under contraction, behave in a way analogous

to the group parameter* u: defining
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and

P**r T L"1 B"V , (2.10)

tht A K V and B* r will, after the Haft Is taken, ap-

pear as the P gauge potentials. The covariant derivative for

the OS case Is

For a scalar field.

tvrns Into

Notice that we have been using {**) (with the first «reek let-

ters) as coordinates In tangent space» and {*p) (with the

stcond half of the greek alphabet) as coordinates on spacetiae.

They can be aade to coincide but It Is «ore convenient to keep

the* apart by now. The covariant derivative (2.12) can be

ten as

r r , (2.13)

where

can be regarded as a fourieg field. This expression corns out

naturally fro* (2.11) under contraction, using (2.10). In Rif.

U , (***r had been related to the X*r which Is far less

natural. Now, X>.r is the trivial tetrad when the gau;* "*ten-

tiais vanish.
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For fields belonging also to some other represen-

tation, \m instead of L^g has to be used. l»t us exairire

the case of spinor fields. The DS Lie algebra has ft leautiful

representation in terms of the y uatricss: the generators are

we see that Ys acquires the same status of the other >'» .The

complete generators are now

The covarfant derivative (2.11) gets extra terms; the part i*

P*** Sái /K/ L &/«• —**• vanishes on contraction and t*e

resulting Poincarê covarfant derivative is

Notice that, while the factors L and I*1 in (2.6) and (2.10) co*

pensate each other, allowing the effect of the translatfonal sec

tor to renain in the kinematical representation, no such effect

survives contraction in the spinor representation. A current

related to v"xS would possibly lead to anomalies In the quantv*

ctse.

The behavior of the gauge potentials under trans

formations is obtained from that in the OS theory. There,

with

• „.,„
Of course, the DS group being non-compact, this will not be

unitary for the finite representations we are using.



The double Index rotation allows the use of 5x5 natriees in the

adjoint representation and leads to a direct contact with the

usual notation (as in (2.30) below). Usino

for the Matrix elements, a straightforward calculation shows

that (?.18) can be written as

where Aj. «. (^««OjU • 4 ••"x- • Jj'V*"/*- • t h t

indices being raised or lowered by the DS «trie. In the sane

line, the field strenght covariance

o n be put In the fora

The field strengths are, in detail,

» ^v*<Jr> v" *> ' ^ - l ey* ' v * 1 ew ' ^,(2.22)

The contraction is done by identifying P .»«•»' s ^ 6 » :

P fc s A ^ ; f .̂v s L V* >*v ; tfttr tht 11«it

is taken, it remains for the lorentz sector

(2 -Ml
i

(a tim U v ^ ^ ^ w ' ^ v ^ ^ z disappears) and, for tht

translation sector,
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This is just the eevaMar.t derivative of 6 y , as tfeftrted

by the connexion A. Ths seme procedure, applied to (2.2.0} trsf

(2.21), leads to the gauss tranforoatfons fxir the P theory:

A1 "V . (fi*)\ A*'r A/ - (A")\ V A'? (

* V - (A-f, AW
r *, • (A-)', BV - W\ V

(2.28)

Here • note of caution: one night wonder about the inversion of

the roles of matrices A and A* . The reason for it is t>>*t

we have been considering affine frame transformations in the ten

gent spaces, given by

e.\ & C j A K - o-K , (2.2»)

with the Matrices acting on the right. This convention, bor*

rowed fron the mathematical literature1, corresponds to the co-

ordinate transformations

(2.30)

of which (2 .4) i s the small-parameter version. The above rules

for B'* .̂ and *5* ^ come from (2.20 - 21) by using

ft. s L A ,

of which (2.7) is the infinitesimal case. The above convention

of taking the product of Lorentz transformations and translations

instead of the exponential (2.19) Rakes no difference for t»e

ibove rufes but should be taken into account when con»
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sidering th* change of i source field as, for example, the H

nite version of (2.5).

The torsion T r,will be the covtriint deriva»

tive of the tetrad field (the same as (2.24) with X. r Instead

of B*^ ). Using (2.14) and collecting the terns conveniently,

we find that

The sourceiess field equations for the 0S case

are

and

Redefining the fields prior to contraction, we ste that the

last two ter« in (2.32) acquire 1

Haft. The resulting equation is

last two ttms in (2.32) acquire factors t and vanish In the

The disappearance of these terns will be respoji

slot* for the non-Lagrangean character of the P field equa -

tions, as will be seen in the next section. Fro» (2.33), we

«et

•y & r - A

A direct computation shows that this set of equations is covariant

under the transformation* (? 7* • ?R)
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Equation (2.34) is just (1-18) in components .

As to (2.35), it has the same fora as (1.13) when written in

components, the difference being of course that TS is not the

torsion, but simply the covariant derivative of the field B .

Had we identified f1"^ « L~* X. r , just (1.19) would have re-

sulted. Now comes a surprising result: if we take (2.31) into

(2.35), we find that

• F̂ p̂ JU - ° -

This ts just (1.19) In components and shows that the geometry-

dynamics symmetry used as a guiding principle in the previous

section is preserved in this formulation.

The behavior of the tetrad (2.14) under P

transformations is obtained by using (2.25 , 26 and 30). One

finds that

kt* Y » % B r- A K*f * \" / f ~ r, #2.37)

an interesting result: the tetrad field ignores translations ,

behav4ng (as It should) as a Lorentz vector field. If we vse

•11 the above transformation properties In the reletion(2.31) we

find also that, under a r transformation.

f * ry ' (236)

Looking at the equations and transformation

properties for the components In the Lorentz lector, we see that

1t constitutes a subtheory: «11 the expressions are those we

would find in a gauge theory for the lorentz group. This is not

the case for the translation sector, which clearly is not a

subtheory and exhibits rather awkward transformation properties.

However, if we look more closely Into (2.26 and 28); we find that.
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for pure Lorenti transformations (a?*O}. both B ^ and "Z> »vt>£

have as vectors In the algebra Indices. The awkwardness cones

fro» the coupling between translations and lorenti transforma

tions and Is just what is necessary to endow those quantities

possessing clear geometrical meanings, such as A r and T t.* ,

with a simple behaviour. The set ( F ^ y , X rv ) can be taken

as the field strength despite the strange behaviour of "& f* .

in particular, it allows a good. Invariant characterization of

tht vacuum of the model as F y v S o , T> ,.v = o .corresponding

to gauge transformations of zero potentials in (2.25 - 26).

Usual gauge potentials have the dimension of

•iss and field strengths of (mass) 2 (in «nits t » C s 1 J . Tht

tetrad fields «re disensionless and,because of the redefinition

of fields, & r and T»"̂ .» have dimensions zero and one. If wt

want to get back tht normal dimensions, we mist add • length

factor X to each 8 ^ (equivalent to a redefinition P ^ » H * 6 y

Instead of that previously adopted). Si/ch a problem was to bt

expected because translations, unlike other transformations,

have dimensional parameters. All current densities have dimen*

sion 3, except tht Notther current associated to translations :

tht energy-momentum density has dimension 4 and any theory us-

ing Has a source current will have to cope with this fact. Nt

shall here prefer to keep B j» dinensionless ind adopt the(equlv

•lent) rule of adjusting tht source terms with i factors when-

ever necessary.

Taking the covariant derivative (2.l7)1nto tht

usual free lagrangean for the spinor field (by tht minimal

coupling prescription), It is easy to check that the variations

with respect to B f and A ^» lead to tht tntrgy-aonentun ten-

sor density O^and tht total angular momentum density r1*'V.TN

form of (2.14) Is enough to ensure the usual relationship be-

tween the energy-momentum and the orbital angular momentvm ,



both currents representing the responses of source fields to

transformations ia the kinematic representition. The equetions

(2.34 - 35 and 36) have as sources, respectively. M ' t X~~ti*

and (jla$'v-M"</1'x.ft ).

The equations remain covariant under (2.2S -

28), but the coupling between translations and angular momentum

imposes on © a peculiar transformation lew: for a tranfcr

rnation corresponding to (2.30),

By taking derivatives of the field equations

and combining conveniently the terns, we arrive at the

ant conservation laws

» = O ; It

The angular «onentUM n ' = JL ' + J ' contains the orbital

part X » v . which is inconvenient for a field theory. The

coordinate x . appears explicitly in both the field equations

and the Lagrangean (notice that the source ligrangeans trt

always weti defined and there is no problem to obtain the cur •

rents, even after contraction). N« ca'n follow here the usual

procedure l9 to get around this problem: it is enough to use,

as the point-dependent Poincaré parameters, the set <7w*r and

ix* given by (2.4), Instead of the ten original parameters

év**f and éa. . This stratagem is used without much ado

by most authors but it has some consequences deserving discus-

sion even at the price of repeating some apparently trivial

things.
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Of course, the new parameters are to be considered as function-

ally independent so that now

from (2.4). As

the covariant derivative

becoaes

with a new tetrad field

J k j . » * ^ » -r * y> . (2.43)

For a scalar f ield, of covrse, the last ten In (2.42)1s absent.

Mith the transformations described In terms of the now param-

eters, the fields o^wi l l exhibit a behavior different from

that fiven by (2.26). The simplest way to find the new rule Is

to notice that,If (2.*2) Is to be covariant, l"»*ust behave now

In the same way the expression ^ r ' ^ ' r * i behaved In terms

of the eld parameters. For the Infinitesimal case,

mi* • « r < i V * f •<
" • » » • * • - * w y « .— * » » * * • (2 .44)

In this parametr1zat1on,a pure translation (Jw1^ «o)

changes %*» In a simpler way:

whose finite version Is
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A direct calculation shows that X ~ keeps its behaviour {2.37)

and that (2.38) stii 1 holds for T " * ^ . However, with (2.43) the

relation between the torsion and the field strength % becomes

I .̂v e *• rV •*• v» ^ v (2.47)

where

is a contribution to torsion coining from the Lorentz sector. If

now we Identify the coordfnate systess, so that **-* « .<* /» • we

see that £ -.v measures the asymmetry of the connexion A or,in

other words, its non-fnerttal character, tonnlly, % ^»v is t̂

covariant derivative of the trivial frame >^ »* in the con

nexion A. One would expect a non-inertial effect in the pres-

ence of an angular «owentu» field density, but the gauge non •

linearity «ay create it even in the absence of sources in eo .

(2.34). Another effect of the reparametrization fs to hide t*c

duality symmetry for the torsion:eq. (2.36) Is no «ore valid when

T e A.-f- T> • Notice, however, that the reparametrization .

which Is essential for a future quantization, keeps 8 ^ as the

fundaaental field with the sans relation to %*f* and furthernore

preserves the duality symmetry for the dynamical equations. All

explicit dependence on the coordinates disappears. The sources

1n (2.34 - 35) becoaie, respectively, S"*fv and À* 0 4 V ,where

$**v 1s the new energy-aoaentuit obtained when the new covari-

ant derivatives are vsed 1n the source Lagrangeans.

The reparametrization brings forth a probieit in

the characterization of the vacuum. Before the chance of param-

eters, the vaccvn 1s given by a gauge transformation of vanishing

fields, 6*^»- ( A " * ) ^ >/*»* or, for Infinitesimal transfor-

mations, D > x.- "Jy./<*-" . This should not change by

a reparanetrization, but (2.44) wic» tell us that the gauge



transformation of B ^ s O is now B j» s - [iw1^ "3^* • ^.^

which gives "IJ ̂ v ^ O • ln reality, let us recall that,to

obtain (2.44), we used the fact that B*^ should have, in terms

of the new parameters, the same transformation properties of

( 8 * r - A ^ r « * ) t" terms of the old. This is not to say

that B*f. has been changed to absorb the tern A*y. x> , it

is simply a way to fix its trans formation properties. If we

want to recover the vacuum vi« the transformation rules, we

have to add to it the piece we had extracted, A***.» Xys.^tJw*

Once this is done, we obtain the same vacvwa as before(*1though

written in terms of the new parameters). An Interesting conse-

quence of the change of parameters 1s that the tetrad of the

vacam fields becomes integrable: the absence of gravitational

field is signalled by Its hoionoay.

As a final remark, It Is Important to notice

that eq. (2.35) corns from (2.33) because. In the field redefi-

Ritiofts prior to contraction, every term gains a common factorL

In fact, as ££. «L. -~r • there Is always a factor between

•S and P currents. The same factor appears In those

conjugate momenta which are well•defined.

so that the momenta conjugate to B Hj «re IT ̂  « ~"1Z' * L 1T i

This means that, even if the Lagrangeari 1s not defined .the same

Foisson brackets valid for the DS model hold for the Polnear?

case, as

{***,»'.} « { • ^ (2.50)

In this sense, the road remains open to canonical quantization.



In the previous sections we have s*eo hw» to rut

together two well accepted preconceptions: that gravitatt&i <te.-$

from spacetitne itself, being closely related to the Poincsri

group-, and that interactions in general are mediated by gauge

fields. The approach given above seems to be, of all the possi-

bities allowed by the different degrees of proximity to one or

another, the closest possible realization cf both. Ve shall now

see that the resulting nodel is in contradiction with another

well accepted idea. Despite the fact that some important equa-

tions do not C O M fro» a lagrangean (Navier-Stokes 2C, Burger ,

Korteweg - de VMcs 2 t ) , there is a widespread belief that the

fundamental equations of Physics should be related to an extreoal

principle 2J. As a consequence of Feynman's picture of Quantum

Mechanics, it has even becone a matter of common acceptance that

the Action is, in some sense, more "fundamental" than the equa-

tions of «rotIon, not the least because it takes into account t*e

global characteristics of the system. There are difficulties in

this point of view z", but we shall not discuss this subject. ">«

model above is the (contraction) limit of a nice lagraogean OS

theory. He shell show that, once the limit 1s taken, it is no

more a Ltgrangean theory. More precisely, it will be sh'-n that

no action function exists from which the Yang-Mills equations (2.

34 • 3$) can be derived as the Euler-Lagrange equations. As we

have seen that (2.34) are the Yang-Hills equations for a (lijnn*

g e m ) lorentz subtheory, thj trouble will really come fro» (2.35)

In the analyst Jargon, the operator acting on the fields B>» U

not a potential operator. Without any pretense to real matheeati,

cal rigor, we shall simply state the fundamental Vainberg's theore*

involved 20, suitably adapted to the language of field theory

and show how it vor'/.z for gauge theories. 1» particuUr, it will

become evident that a De Sitter model does satisfy the require

ments for a lagrangean theory.These requirements.however,fall to



be observed by (2.34 - 35). To find that a field equation com-

plies to the Lagrangean conditions is in general an easy task.To

be sure that it does not is often very difficult. In our case,

we shall be able, first, to suspect that the conditions are vio-

lated and then, to show Indeed that they are ruined by the con-

traction process.

Suppose that we have an equation

) = O , (3.1)

where «P is a differential operator and *fC*) a field belonging

to some functional space. The Frichet derivative of \P along sone

field \i*) at the point ^(x) Of the functional space can be

calculated by

and 1s Itself a If near coerator acting on V * > . Given this

operator J^ , Its adjoint is the operator J). such that

T * 0.3)

for any two fields >C*>, *\i*í

Vainberg's theorem says that11 the necessary

and sufficient condition for (3.1) to cone by variation fro*

some action functional is that

in a ball around if . Such a selfadjointness, taken in (3.3),

corresponds to a symmetry of the Fréchet derivative along any

two directions V » ) and ^ U ) trounó fix) ,

[(,><*) (3.5)

and it reniniscent of the Intcgrability condition of calculus25.

Once this symmetry condition Is fulfilled, the
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actton functional can be obtained as
4

c \a*x *f U) f

It 1s an easy exercice to check the statements

above for the simplest cases in field theory: for linear equa-

tions, they are rather trivial. For a sourceless gauge field,

the Tang-Mills equations state the vanishing of

(jr.v*iVA";)(/A'V.W* \\tAV
Y) . ,,.7,

The Frechet derivative of iP is

where D is the covariant derivative f i t ted to each cast:

for a field Y * ^ V C s " H ' t V / * ) i n the adjoint

presentation. Now, for any such f and any *ffcV i

This can be found by using (3.10), performing an Integration

by parts and antisymnetrizing to obtain the covariant derivative

which has the for» (3.9). It follows that

, . (3.12,
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This would be enough to shew the symmetry of the first term

In (3.8) but we can go a step further. We reverse the roles by

putting Hf^v « [D*jo. v *n<l us1n' *9"1n

arriving at

Thi condition for the existence of • Lagrangean

for the equation « P A * » O 1$

. „.„,
That the first term on each side are equal Is guaranteed by

(3.13) For the regaining terns, It Is enough to exchange the

Indices and US9 the cyclic property of the structure constants

to- show that

So. the requirements are «ore than satisfied,

as the syimetry conditions (3.13) and (3.15) hold separately.

Notice that. In gauge theories. 1t Is the sumiation on tht

components that wakes the syametrization possible. The Tang •

Mills Lagrangean 1s obtained fro» (3.6) In the fora

\V •**
Let us now consider the lanj-Mills equations

for the P group, (2.34 • 35 ). Applied to (2.34) alone, the

above treatment would lead to the existence of a good Lagrangean

like (3.16) , still a manifestation of the fact that the Lorentz

•tctor constitutes a gauge theory by itself. The problem con-

cerns the whole set of equations. Consider tht Frtchet derive-



tive ef the differential operator in (2.35) alonç P s (P 5 ^ ,

•Ar¥s L P * v / *t the point ( A ^ , %\) <" the .'unction

«I space:

P"
 V

For (2.:>4), tit . . IS^IJ is of the form (3.8), the only

differences coating fro» our use of double indices for the l*e

algebra components. We take then another direction in the fvnc

tional space, say *f ai^f*,^ u,\^ and check to ttt whether

or not

= JAJ (3.18)

As expected, the lorentz sector «lone satisfies the symmetry

condition. Neither i\ nor *" really appear in the f irst terrt

In etch side in (3.18). These terns exactly cancel etch other,

and we have to verify if the second terns, which come fro» the

translationai sector, coincide or not. He find that ( i ) sc«e

pieces do alio* for syametrization, such as the last ter» in

(3.17), which contributes with

xx, F < r > V ( 3 J 9 )

to the left-hand side; (ii) some other pieces are not symnet-

rfzabie. It is »1wtys very difficult to be svre that * certain

tern is not somehow cancelled or symmetrized by some other. The
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P tfirst ter» in (3.17) is a good suspect: u>>w P t}, t ^ ' i s not

symmetrical by itself. The best way to see that it is not sym-

metrized by «ny other is to go back to the DS theory tnd trace

what happens during the contraction process, let us write (3.

15) for the DS case: the left-hand side will be

* J (3.20)

The f's are the structure constants for the DS group, written

in a hopefully clear ant1sy»*etrtc-double-1ndex notation and the

numerical factors account for double counting. The first ter»

above Is obviously f »" * T symmetrical; it is a contribution

related only to the Lorenti sector. Also the last ter» fs sya-

Mtrical: by contraction, with Lf < 5 v* «w^, L P ' ^ r ^ It gives

(3.19), related to the last ter» in (3.17). Now, the second

and the third terns are not, each one, symmetrical: they are

"syametrfzing companions", they synaetrize each other when we

svbstitute f for P and vice-versa. The third ont is precise

ly that giving by contraction our suspect first tern in (3.17),

once Ruitipiied by «S^y . So. the suspect ter» would be sym-

•etrized by the tern coaing from the second term In (3.20).That

If where the asymmetry comes from: there Is no such a term. 'If

we examine the equations In detail we see that the symmetrizing

second ten* In (3.20) comes from the Fréchet derivative of the

last two terms 1n (2.32). We had called atention to the fact

that, in the contraction process leading to (2.32),these terms

vanish. Summing up: the term, present in the OS theory, which

symmetrizes the first term in (3.17), disappears during the con

traction process. In this way we can pinpoint how contraction



spoils the symmetry nacesssry for tha theory to be

some terms in the field equations disappear and terms like the

first one in (3.17} find no more a "symmetrizing companion* in

the contracted theory 27. Ke could still think that some air

acle might occur: we have been analysing terms of (3.17) whicN

correspond to (3.15); there are other non-derivative terras,cor

responding to (3.13), which could eventually symsnstrtie or

compensate just the above "cfending* terms. That this is not

the case nay be verified by a direct term by term comparison .

Consequently, there Is no Lagrangean leading

to the dynaaical equations (2.34 - 35). The argument above can

be Hne-^y-Hne adapted to equations (1.18-19).with t!ie sane

result 2B.

IV. H U M COMMENTS

A Poincar? gauge theory will be always kept

•part fro» the usual gauge models by two peculiarities:the ncn

senisiHtpl* character of the group and the presence of the kin£

•atic representation. Concerning the first of these features t

there are two main consequences: the potentials related to the

abelian sector have unusual transformation properties and there

Is no b1-1nvar1ant metric on the group. A metric which is only

right-Invariant may suffice to build up a Lagrangean but the re

suit is anyhow an atypical gaug? Lagrangean leading to field

equations which are not of the Yang-Hills form 29. As to the

second peculiarity, all local transformations in that repreJen

tation may ultimately be seen as translations and the trouble

1s that there is no such a thing as "gauging" translations in

the usual way: jwf[«^VlÍ 1*' " f ( * 4 a ) becomes false as soon

as OL becomes point dependent. The simple idea of "gauging*

by imposing •» lui^l symmetry does not apply. Some of the ideas

currently associated to th« expression'gauge theory" will havt
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to bt forsaken. What is tv<? essential characteristic defining

a gaoçe aodel worth thi j name? lie have here retained the ting-

Mills f ie ld eqeations and tried to build a wide I as close as

possible to the general $cheat of gauge theories. Fro» tkis

point of view, the model above is the most .natural candidate for

a Poincari gavge theory fe?r gravitation. Its f ield equations,

beside beins tbe naive fang-Hills equations for the group, C M

be obtained by contraction fro» a gauge nodeI for the Oe Sitter

group, or from the imposition of the discrete duality symmetry.

The last two points are related hot only because contraction

happens to preserve that symmetry. I t could fee otherwise, as

contraction does not «reserve a l l the flood properties of the

original model: we have seen flow i t breaks that smbtie symmetry

necessary for the theory to be lagrangean.

PoincarS sodefs hove beea extensively consid-

ered, but almost always with a Lagrangean theory in mind. I t Is

Just natural that the one presented here has beea Hissed. A

non-Lagrangean theory is not» for sore, a very sympathetic kind

of theory. From the privileged point of view of the Yang-NilIs

equations, however, this is precisely the case for the Poincari

group.

The problem of quantization can be faced in

two ways: the canonical approach, whose possibility has boon

stressed at the end of section I I ; or the path-Integral prece -

dura, with the Oe Sitter model as an intermediate step. The

second approach has been pursued by the authors and wi l l be re

ported elsewhere. I t leads to consistent results at the tree

level |such as iewton's law in the static oon-relativistic l imit )

but the question of renormatliability is s t i l l «mettled.
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