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ABSTRACT

R natural candidate model for 1 gawge theory for

the Pefacars growp is discussed. 1t satisfies the wswal

tric-magaetic symmetry of gauvge models and is 2 contraction
2 gauge model for the De Sitter group. Its field equetions
Just the Vang-Nills equations for the Polmcearz Sroup. it

shewn that these equations de not follow frem 3 Lagrangess.
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1. SNIROBUCTION

It is & general Delief that gravitation, more
than other interactions, is closely related to the detajled tex
ture of the space-time manifold. Efastein went 3o far as to ag
sert that, were the gravitational field eliminated, there would
resain “sbsolutely nothing, not even 2 topological space®). HRis
eva theory seldon goes to such detailed fine-grained aspects 2,
but the successes of General Relativity are surely at the origis
of that general opinfon. Another vwidespresd surmise, a such
more receat eme, is that interactions in general are madiated by
|au,ofiqlds.o conviction supported by the achievements of the
electroveak gawge theory and by the successes of Quantum Chromo-
dynasiics.

Gauge wodels for gravitation endeavor te accomme
date these two idess, which poiat natorslly to the investigation
of these features of space-time presenting gauge-like character
fstics. Gereral Relativity describes the gravitationsl field
sssentially as the curvature of a Levi-Civita connexfomn,wvhich is
metric-preserving asnd tarsionless, giving consequently s preest
sent vrole to the metric structure. 1Is alternative theories of
the gawge type 3, the central) part is played by the connexion
ftself, metric or not. This is, of course, am imposition of
the gqavge formalisa, in which the basic field is the geuge poten
tial A, s pulled-back connexion on s principsl bundle with the
gauge group as structural group and space-time as base manifold.
This patentia) i3 3 Lie slgebre valved 1- form: taking {Z,) s
the set of grovp gemerators, with [Ia, 2p) ==t £Sab 1c, it s
written, in @ coordinate dasis (dx"),

A = i‘ A“'b A;P "“)



Fields delong to gener:! representations of the grouvp, cad s
tvery representation is essociated.a certain fiter bundle. A
connsnion defines cavariant derivatives on each one of these bur
dies. A very specisl cese is the adjoiat representation, whose
carrier space is the vector space of the Lie algedra and te
which A ftself beleags. The fleld strangth F 1{s the curva

ture of A, 1. e, 1ts own covariant derivative:
F:PA - dA - L AAA 0.2)

or, in components,

[
Fg.%. t F pv Az" A ax’ (1.3)

where

a -«
F P = )’-A‘v" lA‘r - ’ e A”r A.v o (v 2°)
The 8ianchi fdentity
aF - i[A,F) =0 .9

is » direct conssquence of (1.2). In words, it says that the
covertiant derivative of F {s zero. We can say that gauge
field theories have two distinct facets. One is a geometrical
svbstratus, introducing all the possible connexions on the bun
dle obtained with the chosen gauge group and summarfized in (1.2)
and (1.4). Mnother is the dynmamical aspect, allowing to yix,
smongst all these connexions, the one reslly 3t work im 2 given
physical sitvation *. Intreducing the dual of F,

\ e :

#F < L F° ., dxPa do (1.5)

whers

ol 8

F """‘jfﬁ FOI7 €pn (1.58)



the dymamical prescription is given by the Yang-Hills equation ,
daF _i[A eF] =0 (1.6)

i» the sourceless case. This is the Euler-tagrange equationm od

tained from the action integral

s(A]g.'E. i‘nSFArF (n.n

Source fields belonging to representations fn the sssociated bdun
dles, contribute with their currents to the right-hand side of
(1.6), and obey the additional dynamical equations obtatned from
their free equations via the minimal coupling prescription.
6oing back to the idea of gravitation as
8 spacetine - rooted effect, we should hope to find structures
in the geometry of spacetime 2nalogous to those sketched above,
at Teast the purely geometrical facet . In fact, on any differ
entiable manifold (which we shall) here consider four- dimension
3)) there is always a bundle naturally defined, the bdundle of
sffine frames 5. Its structural group is the affine Vinear
group AL (4,R) = GL (4,R )@ T,, the semidirect product of the
Vinear group and the translation group in 4 dimensions. In the,
case of spacetime, the restriction to Lorentz frames reduces ft
to the Poincare group, P = L @ 73',. This always-present
structure provides the wost general gauge-like features one cam
find which gre intimately related to spacetime, and Juciifies
the interest in Poincard gavge theories. Of course, in order to
sccommpgdate the representations to which the known elementary
particles belong, the Loreniz growp £ 1s to be viewed os the
covering group of 50(3.|>). st(2,c¢c).
A connexfon I on the bundle of affine fremes(an
’sffine connexton”) will, just like any connexion on any other

bundle, satisfy (1.4)  There 45, however, something special fn
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this case. Llet us write Z,’ o Rith o, B 21234, Tar tng
generators of the lorentz group, 2nd 1* for thos: af the tra=s
lation group. The Lie algebra s, 3s 8 vector space, 2 =trect

sum and ﬁ decomposes itself into two parts:

r = Fr+S {1,9)
where
S T S S (1.9)
and
S = I, 9% 4" | {1.10;

The same happens to the affine curvature,

E c dlF_aPaF . F,7T (111
with
FedP o ilArl (1.12)
and
Tz dS~ilaS i SAP . (.13)
The Bianchi fdentity
AF i [P,F) =0 (1.14)
decomposes in this case into two,
dF - (P, Fl =0 (1.15)
and
aT -+ (r, 1) -3 [(s,F)l =0 , (1183

the first with components in the Lorentz sactor, the second along
the {1‘) 0f course, this discussion has been rather suc-



cint, but it iy & synopsis of the main fundamental properties
cancerning connexions on spacetime proper. The fors{"given by
(1.9) is really a good connexion in the Lorentz sector, which
foras an independent sub-structure: 1§t is a connexfon on the
sub-dbundle of Lorentz frames and F its curvature. HNow, on the
bundle of frames c¢f any differentiable manifold there exists &
canonicalvl—forn. independent of any connexion, the solder form.
It 1s 3 special characteristic of this bundle and is precisely
the form S of (1.10). Unlike n , It is not a connexion and
as & consequence the translation sector does not fors an  inde
pendent substructure of the affine structure. In reslity, an
sffine connexion like F can be defined in s huge numder of
different ways, with S in (1.8) being "horizontal forms® ¢ of
3 more genersl type (leading to “genecralized affine conmnexions®);
the particular choice of the solder form 1s convenient because
of its simple geometrical properties. Ne shall use S for the
time being, and reltex this choise later on. A specific proper
ty of § 45 that its components S, are, when S {s written
on the base manifold with s chosen frame characterized by the
four-legs {8l) . dust the elements {A¥~] of the  corre
sponding dus! basis of )-forss. The connexfion I" defines, s
vsual, a covariant derivative; 1ts curvature F 3 its own
covartant derivative. The quantity T given by (1.13) is the
covariant derivative of § (remember tﬁat the detailed expres
sios of the covariant derivative depends on both the degree
and the algebraic content of the form), that is, the torsion of
n . HNotice that torston s always present {n the bundle
of frames-there s not such » question as introducing 4t or not.
It may be vanishing (as in General Relativity), dut it has con
sequences anyhow. For this reason, equatfons (1.15) and (1.16)
sre found fn differentis! geometry textbooks under the names
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of “first*and “second" Efanchf identities. fven I1f we stortcd
with the homogeneous lurentz oroup, the sresence of the solder
form would force the presence of tcrsion. Furthermore, . the
introduction of spinors on a manifold practically enforczs (er
reveals 18) the presence of torsion. In any case, the affire
formalism takes all that automatically into sccount. These nat
vral praoperties of space-time arc 235 near as we can wish to
those purely gebneirical features of gauge theories ircorce-
rated in equations (1. 1-4}.

How, what about dynamfcs? One rain trouble fin
building up a pauge theory for the Poincard crous rests on its
nonsemisimple character 7. Known gauge models have serisirple
groups, whose well-defined Cartan-Killing metric can e used to
write'an invariant Lagrzngean density. This s not the case
here and to chtain the dynamica) fzcel one has to resort to
other arguments. One couvld even suspect that a theory for the
Poincer@ group which is really a gauge theory would have no
well-defined Lagrangean [such 2 suspicion comes out after a few
tentatives to build it up) and that the dynamics is te be de
sciribed by field equations determined in some cther way, Tre
requirement we shall be using to get the equations is ocne of
simple coherence with the above ideas of gravitation as 2 gsuje
Interaction relctad tn the differenticble structure of space -
time. V¥e have already shown its purely geormeirical aspect; to
get its dynemical counterpa;t. wa simply require that the field
equations be of ths Yang-M§1ls form. This means that we force
ourselves to retain one of the most 1nterestfng'characteristics
which general gauge theories have fnherited from electrodyren-
fes: the delicate balance between the "electric” and "magnetic®
components of the fields, which 5 ultimately reflected in the
striking similarity of the geometrical ecuztien (1.4) and tre
dynamical equation (1.6) 1In effect, the latter s just the
foermer written for the dual of F. This §s, of ccurse,.the well



-8.

known discrete duality syrustry of scurceless gauge fields,whose
extension to the case of non-vanishing sources has been exten
stvely examined in the study of wonapoles but whose import

for the scurceless case (where it is undoubtediy present) has
only begun to be clarified with the lattice approsch 9.  Roughly
speaking, (1.6) says that, in the sbsence of sources, also the
‘covarfant coderivative of F vanishes. Fisld derfvatives and
coderivatives have, fn the lattice formalism, gecmetrical coun-
terparts as boundaries and coboundaries in the lattice, and much
of the highly symmwetric properties to which the approach owes
its power is a consequence of the duality symmetry, It is high
1y desirable to presarve this electric-magnetic symmetry of
classfcal gauge ficlds for yet another reason: it fixes complete
ly the field equations in the Yang-Kills form. V¥Ne shall later
on give some more arguments supporting the resulting equations.
1f these are simply the Bianchi identities written for the dual
field strengths, then (1.14 - 16) tell us that they are

defF -s(P,eFl =0 . (A7

or
deF -x[l,2F) =0 (1.18)

and
anT —i[r, ﬁT]-L[S,lF];o . (1.19)

These egquations have been first proposed by Popov and Daikhin 9,
who got at them by simply esking what the Yenp-%iis equations

would be for the Poincerd group. They 2)so pofnted out thet, ff
we suppose (which wewld be rather in contradiction with the
sbova phitosophy) I to be metric preserving snd terstonless, the
squetions reduce to those of Yang's modal for gravitation in

empty space. More precisely, enly the last term 1n ().19) sor-



vives, giving Einstcin’'s equation Krv::O « and {(1.17) ‘tergres
vedundant. In this sense, (1.318 -.19) generalize Einednix’e ng
ory in empty space. The conditizng imposad on I , now=ver,hzve
bad consequences: Yang's equatfors are known te hiva 3 1-he-
haved soiutions in the presence of scurces, and, of course, all
we.have safd adbout the symmatry would be lost. The main rassr
to look for gauge theories for grzvitatfon is not & purzly aes-
thetic or phylosophical one. It comes frcm the spparent gllergy
of Einstein’s theery to remormzlizaticn and to the gauge  theo-
ries penchant for it. 1t is not clear jJust where this .affin{ty
comes from %, but it §s a general .feeling that conformel invari
shce is somehow $nvolved in good short-distance behaviour i3
Gauge models for the conformal group have been proposed 12 in
this Yine eof thought. The Yang-Mills equatioﬁ; are conformglly
invariant and 50 are squaticns {1.18 - 19). The reason is sim-
ple: the only dependence on the space-time metric 2ppears in the
operation of takiny the dual of F and T , both of which are 2
forms. In » 4-gimensional space, as can be s5een by direct in-
spection, the dual of & 2-form does not really dopend on the
metric but only on its conformal class, In the case of @ ?2are-
torsion metric preserving connexion, 2 new depandince on the ret
ric appezrs inside F (which becomes the Riemann tensor), the
argument above holds no more and the resulting Efnstein equations
sre not conformally invariant.

There is esrother, indevendent argurent favoring
the equations above. Tha Poincard group P acts on the tangeat
space ot each point of space-time 2nd the union cf these spaces
constitutes the sssoctfated tznoent bundle. Each fiber, or each
tangent space, s 4tself a Minkowski space. fHow, it 4s & wel?
known fact that P is & Inorf-Wigner contraction of the e
Sitter (0S) group. Wulike P , DS is senisimple and it Isnct very
difficult to bulld a gauge thoory for ft. In the assaciated
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bundle, to replace P by 05 corresponds to replace each tangent
Minkowsk{ space by an osculating De Sitter space 3. A De
Sitter space is characterized by a parameter L , a length relat-
ed to its {constant)curvature 1%, The contraction process
corresponds to making L go to infinity, In the limit, DS be-
comes (“contracts to") P  and the De Sitter space becomes .a
Hinkowski space. The Lorent2 group, a common subgroup of D3 and

P , remains unscathed in the process, but the four remaining
dimensionless parameters of DS get multiplied by L to become the
translation paramaters of P 15, Mhat happens to gauge poten-
tials and fields undar contraction has been analysed some time
‘ago 15, A first remarkable fact fs that the Bianchi identitfes
for thg'bs theory become, after contraction, just the geometri-
cal fdentities (1.15 - &) fixing the space-time purely geometri
cs? features. This result suggests that, jJust as 1t gives the
geometrica) setting fixed 8 priori, a DS contracted theory would
pive the whole space-time-rooted theory we are looking for. A
second remarkable fact is that the contraction pracess preserves
the duslity symmetry: the Yang-Mills equations for the De Sitter
theory becowe, after contrsction, just the equations (1.18 - 19)
sbove. Maybe this argument s not quite definitive (1t cam be
argued that contraction is not a8 very healthy process from the
mathematical point of view) but 1t would be difficult to accept
as the Poincar® gauge theory one which is not the contraction
timit of a De Sitter gauge theory,

The DS - contraction procedure will be of great
use in the following, as » guide through the intricacies of the
Poincars theory. It is very important to keep in mind that the
results for the P theory are obtained only under the proviso that
a1} celculations be done first in the DS theory, the contrac
tion limit being taken only as the last step.

In Ref. 6, the behaviour of fields in the
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Joint representation has been examined in some cdetafl end the

field equations sbave were obtained under the assumption thae
the translational gauges potentials are to be identified with the
tetrad fields Xfr . There are many difficulties in this inttf-
pretation. First, the solder form being a canonical attribute
of all frzme bundles, their components ﬁf} are in 3 sense given

a prior?’

and do not particivate in the descripticon of any specif
fc field. This is }etatad to tha fact that, in reality, the tor
ston T is an attridute of [ and not of S . A second diffi-
culty ts of a more prosaic nature: the absence of 2 gauge inter-
action {¢ characterized by the vanishing (up to a gauge transfor
mation) of the potential fieldﬂ The tetrad fields cennot vanish
or, in other words, the absence of translational ~gravitation
vouid'give place to some "field of singularities®. A third prod
lem appears in the presence of source fields: the L;.will alweys
touple to the kinetic energy term, 1f they are the fundamental
fields, the source fields will have no pure kinetic energy and ,
50, 10 propagator. In section II, we shall see¢ how these probd-
lems can be avoided. The soclution §s an old one !? (the gauge
potential is the non-trivial part of the X:; ), but in a differ
ent context and appears as 3 consequence of the DS- contraction
procedura. In analysing this questicn, & trait peculiar te
theories involving space-time ftself, the presence of a * kire -
matic representation® of the Lie algebra to which all fields be
Yong, will apnear as being of fundemental importance. We shall
briefly analyse the contraction procedure #n this representation,
$0 avoiding a repetition of what was done tn Ref. 16. In section
I1], we prove 8 rather discouraging result: by vusing Vvainberj's
theorem 29,21 of functional calculus, which gives necessary and
sufficient conditions for an equation to be derivadble from an
sction principle, we show that there is realdy no Lagrangean fro~

which {1.18 - 19) follovw as the Euler-lagrange equations. Ways
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to circunvent the diffic:ties coming from this fact are briefly

discussed in the final section.

I1. GENERAL DZSCRIPTION OF THE MODEL

A specia) characteristic of gawge models ({nvol-
ving spacetime symmetries is the presence of a “kinematic repre
sentation®, whose genarators are tangent fields. At each point
of spacetime, one can choose coordinates {x*} for the tangunt
space 22 and realize the P Lie algebra by the well known gen

erators

Loy = =i (- x5 ,) (2.1
Bic-i %% . (2.2)

The important point is that, as these operators act on source
fields thr§ugh thefr arguments, all fields will respond to
their action. Spinor and vector fields will belong also to
other representations and their total response to Lorentz trang
formations will be governed by

z" e Ld}o S.g’ . (2.3)
Scalar fields, however, will be singlets in any other represen-
tatfon, and thetr “"kinematical” response is the only possible
explanation for the universality of gravitation in » gauge pic
ture. The presence of this representation is, consequently, a
fundamenta) difference between the present case and that of
other groups.

The transformations generated by (2.1,2) wil}

change points in the fiber (i.e. in the tancent space). For an
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J“‘- }e

i< . .‘}i. <P L.‘p x 4 i a2 2"

tnfinitesime7 change vith parameters ( Jw*}

= - JW“ :t.‘ + J&' . (2.8)

At a3 fixed point 22, we shall write the corresponding change of

a scalar source field as

§ ¢=) :(_:‘: Jwt L" + i J i‘d} Bex) . (2.5)

For the DS Lie algzbra, the "kinematic"generstors
Lap (with a,b=4,...,5) are 13;

e -5 (=242

< y
L.‘5=—i~ L(1+ -5%)).‘-}?: L-e; , (2.6)

where L 15 the DS length parameter and x":-. x, =™ . The 10
$ 7

growp parameters can be grouped as {w* =-w .} . They are,

of course, dimensionless. The contraction 1s obtained by redefin

ing

Jﬂ-“ = L Jw‘s (2.7)

snd procesding to the linmit Lo . The infinitesina!? change

under a DS transformation,

§, ) "';" Juwt Loy $ex) (2.8)

becomes Just (2.5). In this process, generstors and perameters
change their dimensionalities. The gauge potentials "‘%L for
the DS field will, under contraction, behave in a wsy snalogous

to the group parameters '%: defining

rf = AT (2.9)
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and

plsr - L-‘ Bl(’.

the A and B will, after the limit is taken, ap-
r r

) (2.10)

pear as the P gauge potentials. The covariant derivative for
the DS case is

S 2 (2.11)
Dr = )r -)—%— p » I;.:i’
For a scalar field,
: . n<S

br"‘(’r"";"‘"r L-tp*‘ Mrls)®

turns inte
< <
D,.’:[),.—(A,’. 1’— Br))‘] ¢ . {2.12)

Notice that we have been using {x*] (with the first greek let-
ters) as coordinates in tangent space, and {x"} (with the
sacond half of the greek alphabet) as coordinitos on spacetime.
They con be made to coincide but it is more convenient to keep

thes apart by now. The covariant derivative (2.12) can be writ
ten as

D= A% 24, (2.13)

where

o < < 4’
- - x (2.18)
*r-)ri *sr Ar ’
can be regarded as s fourleg fiesld. This expression comes out
naturally froe (2.71) under contraction, using (2.10). In Ref.
, <
16, P‘;. had been related to the A,  which is  far less
natural. Now, 1:; is the trivia) tetrsd when the gaune ~nten-

tisls vantsh,
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For fields belonging also to some octher regresen-
tation, !Q' instead of Lup has to be uvsed. Let us examire
the case of spinor fields. The DS Lie algebra has a tLeautifel

representation in terms of the Y matricss: the generators are

Gslr g—-;;-[x“) Yb} ) (2.15)

we ses that Y, acquires the same status of the other s .The
complete generators are now
S

2y =Ll 5 - (2.18)

The covariant derivative (2.11) gats extra terms; the part in
I""’r f:i'. ~ l:‘ 5‘,- -%L vanishes on contraction and the

resulting Poincare covartant dertvative is

o i '(}
D,.‘f',(,l\r o+ & AT, W“P) v (2.17)

Notice that, while the factors L and U'in (2.6) and (2.10) coy
pensate each other, allowing the effect of the translational sec
tor to remain in the kinematical representation, no such effect
survives contraction in the spinor representation. A current
related to U, g would possibly lead to anomalies in the quantus

case.

The behavior of the gauge potentials under trang
formations is obtained from that in the 0S theory. There,

\ \ -4 . -t
N AR U /W -+ V3V {2.18)
with
Y. J 3
V- '“P[T“' -#] ' (2.19)
Of course, the DS group being non-compact, this will not be

unitery for the finite representations we are using,
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The double index rotation 21lows the use of 5x% matrices in the
2djoint representation and leads to a direct contact with the
vsual notation (as in (2.39) below). Usineg

(?'olr)cd 4 = & {“.r' cd “f

for the matrix elements, @ straightforward calculation shows

that {(2.18) can be written as

|c& " 4 -a\& ad
L Lo I .’\,_ - (XY %A (2.20)

d d ¢« &
where Ab Y (pbpw),r = Jb *ul" +g§w"w‘ ¥.. s the
indices being raised or lowered by the DS metric. In the same

line, the field strenght covariance

' -4
Fr.v = Y F,,VU

can be put in the form

ol d
.= ) A}, . (2.21)
The field strengths are, in detail,
cd d cd ¢ ed ed
f r\v:)rp‘y')v“ -Pe r‘ V*P P p-(2.22)
The contraction is done by identifying pes = P“r I B;,

o«

o 45
P’,‘-.-A’rj L ’C »v : after the Iimit

s taken, it remains for the Lorentz sector
o « ¥ -
F",w ‘)l" A"v’)" A ’)' - A,’. A ’v" A w A"’,. (2.23)

-2
(3 term L U“r"v" B". B’r) disappesrs) and, for the

transliation sector,

’C"r. = B“,.),B"r - A‘fr 1 A"v 3;, (2.20)
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' <
This is jast the covartant derivative of B, , as defined
by the connexion A. Tha same praocedure, applied te (2.22} ané

{2.21), leads to the gauge tranformatfons for the P theory:

A “',. = (A"‘)‘, A",. A J’ - (), % A*P (2.25)
« oy e X
B“r ) LA ‘r o *(A..): B'r (K, Qe (2.26)
o\ ¥
F,"rv = (A ‘) Y F rY AJ' {2.27)

d o X RN
'C.' | ol (A ) ¥ F ’rv .“’ + (A )' zvr'. . (2.28)

Here a note aof caution: one might wonder about the imversion of
o4

the roles of matrices A and A .  The reason for it is that

we have been considering affine frame transformations in the tan

gent spaces, given by

$
ee=p A -, (2.29)

with the matrices scting on the right. This convention, bor-
rowed from the mathematical literatureS, corresponds to the :o-

ordinate transformations

x'Y . (A")"} (x’u\') , (2.30)

of which (2.4) 4s the small~-parameter version. The abdove rules
for B"‘r and ’;.‘rv come from (2.20 - 21) by using
x5
Q-‘ - L A ’
of which (2.7) 1s the infinftesimal case. The above convention
of taking the produci of Lorentz transformations and translations

tnstead of the exponential (2.19) makes nro difference for tre
sbove rules but should be taken into account when cone
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sidering the change of a source field as, for example, the fi
nite version of (2.5).

The torsion T".uill be the covariant deriva-
tive of the tetrad field (the same as (2.24) with L‘, instead
of B", ). Using (2.14) and collecting the terms conveniently,
we find that

< < «
T pv = 'C r - F 'r,, 1’ . (2.31)
The sourceless field equations for theD S case
are
pre o pt WY gt e p¥s
DA U AN SN R
l‘d FS’r" o« pv Ep
+ I, s PP (2.32)
and
S pv « (T od < pv 4TS
3’.F’-P,,.Fr*F, P =zo0 . (2.33)
Redefining the fields prior to contraction, we see that the

-2
Tast two terms inm (2.32) acquire factors L * and vanish in the

Hait. The resulting equation is

)r F.c"w- Ac('r F"’N-} F-l'rvAY’r 0. (2.34)

The disappearance bf these terms will be resﬁo_l!
sidle for the non-Lagrangean character of the P fievd equa -
tions, as will be seen in the next section. From (2,33), we

get

- . 2.35
3,.3 "'-A‘.,,,'G”"+ F‘,”B’;.zo ( '

A direct computation shows that this set of equations §s covarjant

uysder the transformations (2 7% - 7R)
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Equation (2.34) is just {1.18} in components .

As to (2.35), it has the same form as [1.13) when written in
components, the difference being of course that B is not the
torsion, but simply the covariant derivative of the field B .
s 4 g )

Had we identified P N el J\r. » Just (1.19) would have vre-
sulted. Now comes a surprising result: if we take (2.31) into

(2.35), we find that

v < v < pv B
),,T""" - A?FT" *FP Ap.=90. (2.36)

This is just (1.19) in components and shows that the geometry-
dynamics symmetry used as a guiding principle in the previous
section is preserved in this foraulation.

The behavior of the tetrad (2.14) wunder P

transformations is obtained by using (2.25, 26 and 30). One
finds that
" o< L 2K ALY .

an interesting result: the tetrad field ignores translations
behaving (3s 1t should) as 3 Lorentz vector fleld. If we wse
811 the above transformation properties im the relation(2.21) we

find slso that, under a P transformation,

14 a5 )
T r‘:(ﬁ ) f T Py ‘232)

Looking at the equations and transformation
properties for the components in the Lorentz sector, we see that
it constitutes a subtheory: 211 the expressions are those we
would find in a gauge theory for the torentz group. This is not
the case for the transltastion sector, which clearly is not ]
subtheory and exhibits rather awkward transformation properties.

However, if we look more closely into (2.26 and 28),; we find tha:,
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for pure Lorentz transforiztions (a‘=0), both qu and 'G"rvb_e_
have as vectors in the algebra indfces. The awkwardness comes
from the coupling between translations and Lorentz transforma
tions and s just what is necessary to endow those quantities
possessing clear geometrical meanings, such as J:;.and 1bev ’
with ¢ simple behaviour. The set ( F‘,pv- 151;1 ) can be takem
as the field strength despite the strange behaviour of '5',»' .
in particular, it allows 2 good, invariant characterization of
the vacuum of the model as F",.v.-.O, '5‘,“' =0 ,corresponding

to gauge transformations of zero potentials in (2.25 - 26).

Usual gauge potentials have the dimension of
mass and field strengths of (mass) 2 (in wnits XK. c=1). The
tetrad fields are dimensionless and,because of the redefinition
of fields, B, and T have dimenstons zero and ome. If we
want to get back the normal dimensions, we wust add » lengih
factor 4 to each 5‘,. (equivalent to a redefinition I“‘;.IC'B},
instead of that previousiy adopted). Such a problem was to be
expected dbecause translations, unlike other transformations,
bave dimensional parameters. R11 current densities have dimen-
sion 3, except the Noether current associated to translations :
the energy-momentum density has dimension 4 and any theory us-
ing itas asource current will have to cope with this fact. Ve
shall here prefer to keep ij dimensionless and adopt the(equiy
slent) rule of adjusting the sosrce terms with L factors vhén-
tver mecessary.

Taking the covariant derivative (2.17)into the
vsual free Lagrangean for the spinor field (by the ninimel
coupling prescription), it is easy to check that the varfations
with respect to B'p and A"r leed to the energy-momentum ten-
sor density ©“Yand the total angular momentum density N he
form of (2.14) is enough to ensure the ususl retationship be-

tween the energy-momentum and the orbital angular momentus
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both currents representing the responses of scurce ficlds o
transformations in the kinematic representation. The equations
(2.34 - 35 and 36) have as scurces, respectively, Pi"vlgijﬁ"
md(f@“-nq'xﬁ).

The equatiors remain covariant under (2.25 -
28), but the couplirg between translations and angular momentus
impos2s on 9‘” 3 peculiar transformation lew: for 2 tranfer

mation corresponding to (2.30),

E PRV Y Y 2 o
9 (A ; [Mr oy + A 9”] . (2.39)
By taking derivatives of the field equations

and combining convenizcntly the terns, we arrive at the invari

ant copservation laws

),.n""‘"_ A‘Yr M"’l“.’ M‘," A"r =0 ; (2.40)
3,-(110"")-A"F,. (reM), 377 ¥, 20 (2.41)

The angular momentun ﬂ"vz I‘fv-r 5"" contains the orbital
part £F¥ , unich is finconventient for a field theory.  The
coordinate :1 appears explicitly in both the field equatfons
and the Lagrangean (notice that the source Lagrangeans are
always well defined and there is no problem to obtain the cur -
rencs, even after contraction)., We can follgw here the vsual
procedure 1?2 to get around this problem: it §s enough to vse,
as the point-dependent Poincar? parameters, the set Jw"’ and
dx*® given by (2.4), fnstead of the ten original parameters
Juw~} and da’ . Tnis stratagem is used without much ado
by most asuthors but it has some contequéences deserving discus-
sion even at the price of repeating some apparently triviasl

things.
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0f course, the new parameters are to be considered as function-

ally independent s0 that now

hY &Y
=t Jat

from (2.4). As

J ) -»J ~2 & le ) Y ’

the covarlant derivati

“ LY . . Y
Dr‘rz)r‘l'-t %"'r‘;;t""’ s ‘jt.'i‘

becones

I;Jf e (??;£‘+ Bj{)]L‘r + “%T‘Ar’r"‘;f‘ Y ’

(2.42)

with 3 adw tetrad field

I‘r = p 2y 85 (2.43)
For 3 scalar field, of course, the last term in (2.42)is absent.
Hith the transformations described in terms of the nev param-
eters, the fields B will exhidit o dehavior different  from
that given by (2.26). The siaplest way to find the mew rule is
te netice that,if (2.42) Is to be covariant, IV sust behave novw
tn the same way the expression U) -a? F %p behaved in  terms
01 the ¢)d parameters. For the infinitesime) case,

0 . ." - dw v"" - ix* . (2.¢4)

In this parametrization,a pure translation (Jw",.o)
changes "} in & stmpler way:

' 8% - ¥ Ixt, (2.45)

whose finite version is

'.-tr c B-(r _ r(x.d- :.‘) ) (2.46)
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A direct caltculation shows that j‘i’ keeps its bekaviour [2.27)

and that (2.38) stil) holds for T"‘,_., . Wowever, with ([2.43) tne
relation between the torsion and the field strength & becores

~ o o <
T rv = t >~V * z mv (2.47)

where

t‘rv - A‘Pv )i-nx’ - A‘}r )V x’ (2_‘8)

is & contribution to torsion coming from the Lorentz sector. 154
now we fdentify the coordinate systems, so that 3,'1‘-: .J‘r . we
see that i‘}ﬁv measures the asymmetry of the connexion A or,in
other words, its non-inertial character. trormally, *dl“" is the
covariant derivative of tha trivial frame }P.zf in the csn
nexion A. One would expect a non-inertia! effect in the pres-
ence ;f sn angular momentum field density, but the gauge non -
1inearity may create it even fn the absence of sources inm eq .
(2.38). Another effect of the reparametrization is to hide tre
dvality symmetry for the torsion:eq. (2.36) is no more valid when

T A+ T . Kotice, however, that the reparametrization .
which #s essentia) for a future quantization, keeps Bp as the
fundamente) field with the same relation to 1;1rv snd furthercore
preserves the duyslity symmetry for the dynamical equations. A1)
explicit depandence on the coordinates disappears. The sources
in (2.34 - 35) become, respectively, S*PY and A gV ywhere

0%Y s the new energy-momentum obtained when the new covari-
snt derivatives are used in the source Lagrangeans.

The reparametrization brings forth s problem in
the charscterization of the vacuum. Before the cﬁange of poran-
aters, the vaccum is given by a gauge transformation of vanishiag
fields, h‘r" (A")", ),. a¥ or, for infinitesiwal transfor-
mations, 5",. x - ),. Jo . This should not change by
3 reparsmetrization, but (2.44) wich tel) vs that the gauge
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transformation of B‘,a.-; 2 is now .B;.=-[Jw“,?r$1¥>ré-‘-‘}
which gives '&‘r_,. + O . Inreality, let us recall that,%o
obtain (2.48), we used the fact that B should have, in terms
of the new parameters, the same transformation properties of
(8 -A’ :’) tn teras of the old. This is not to S$ay
tlut B,. has been changed to sbsorb the term A’ Xy .98
is sfmply a way to fix its transformation properties. 1f we
want to recover the vacuum via the transformation rules, we
Nave to 3dd to it the piece we had extracted, ,R"r x,s-(?er"'):-,.
Once this {s done, we obtain the same vacuum 2s before{although
written in terms of the new parameters). An !nterestllig conse~
quence of the change of parameters is that the tetrad of the
vacuum fields becomes integrable: the absence of gravitational
field {s signalled by its holonomy.

As & final remark, it is fmportant to notice
that eq. (2.35) comes from (2.33) because, 1n the field redefi-
mitions prior to contraction, every term gains a common fnctorl:'
In fact, »s ‘;_ff_ =L j:"

88 sand P currents. Ihc same factor sppears in those

s there {s alnys.a factor between

conjugate momanta which are well-defined,

Ry R
w 5:;‘;“,' (4 = 1,4,3), (2.49)

L ]
$0 that the momenta conjnoatc to 8" , are 1|' ,..s—.-;‘-- L ‘W",
This means that, even if the Lagrangean {s not defined ‘M same

Poisson brackets valid for the DS model hold for the Poincars
case, s

{v%, %) = {74, rP} (2,50,

In this sense, the road remains open to canonical gusntiration.
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IR, KRoR LACKANGEAN CHAXACTER

In the previcus scctions we have secu how to put
together two well accepted preconceptions: that gravitation ste~s
from spacetime itself, being closely related to the Poincarg
group; and that interactions in general are mediated by gauge
fields., The approach given above seems to be, of all the possi-
bities allowed by the different degrees of proximity to one or
another, the closest possible realization of both. We shall now
see that the resulting model is in contradiction with  another
well accepted idea. OQespite the fact thet scme fmportant equa-
tions do not come from & Lagrangean (Navier-Stokes 2€,  Burger ,
Korteweg - de Yries 2!), there is a widespread belief that the
fundamental equations oF Physics should be related to an extrem;al
principle 23, As a consequence of Feynman's picture of Quintum
Bechanics, 1t has even become a matter cf common 2cceptance that
the Action is, in some sense, more "fundamental” than the egud-
tions of motion, not the least because §t takes into account the
global characteristic: of the system. There are difficulties in
this poiat of view 2%, but we shall not discuss this subject. Tre
node! above is the (contraction) limit of & nice Lagrangean D¢
theory. MHe shall show that, once the limit fs taken, it is e
more & Ligrangean theory. More precisely, it will be sh/'n that
ne action function exists from which the Yang-Miils equatfons (2.
34 - 38) can be derived as the Euler-Lagrange equations. &5 we
have saen that (2.34) are the Yang-#ills equations for a (Lagran-
gean) Lorentz subtheory, tha trouble will really come from /2.3%)
In the snalyst jargon, the operastor acting on the fields By 13
not & potential operator. NWithout any pretense to real mathemati
cal rigor, we shall simply state the fundamental Yafnberg's theorems
involved 20, syitably adapted to the language of field theory
and show how it vor's for gauge theorfes. Ia particu]ar. it will

become evident that a De Sitter model does satisfy the require
wents for a Lagrangean theory.These requirements, however,fafl ‘o
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be ohserved by (2.34 - 35). To find that 3 field equation com-
plies to the Lagrangean conditions is in general an easy task.Yo
be sure that it does not is often very difficult. In our <case,
we shall be able, first, to suspect that the conditions are vio-
laied and then, to show indeed that they are ruined by the con-
traction process. ]
Suppose that we have an equation

DY) =0, (3.1)
where O is a differential operator and W{%) , field belonging
to some functiona) space. The Frechet derivative of O along some
field M(x) at the point (%) of the functional space can be
celculated by

n o Lo LO(44en)- 90)] = (400 z-r)] (3.2)

L S tzo
snd is itself g Vinear coerator acting on ¢») ., Given this

-~

operator ‘D" , fts adjoint fs the operator \9' such that
y w2 {dl o .5"'[(5)
Sd’ M) S = j =N e (3.3)
for any two fields Mx), (<)

Yainberg's theorem says that?! the necessary
and sufficient condition for (3.1) to come by variation from
some action functional is that '

~)
O = O (3.4)
in 2 5311 around ¢ . Such a selfadjointness, taken in (3.3),
corresponds to » symmetry of the Fréchet derivative along any
two directions A(3) and ‘Vttl) around W(x) ,

Sﬂx Mx) \9; N2 = Id‘x e \D.; Ax) (3.5)

and s reminiscent of the integrability condition of calculusi$,
Once this symmetry condition fs fulfilled, the
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action functional can be cbtained as

‘ .
S(4) = fd's ¥ fdx O (xve0). (1.6)

It is an easy exercice to check the staterents
above for the simplest cases in field theory: for linear equa-
tions, they are rather trivial. For 2 sourceless gauge ftield,

the Yang-Mills equations state the vanishing of

O, (523 445 ANV AT YAT 4 [ 4 AT A) o

The Frichet derivative of & is

(&r)™: [aic‘ O (A € r")]

tzo

av ) 3 v
={DDP] + r,,‘ M. Fer ) (3.8}

where D 1is the covarfant derivative fitted to each case:

(DP).I"’= Dr P"'_ Y . ‘}c-”‘(AL’. Pw- Alrv l""') (3.9)

(O 2 (4% %+ 1% A )y (3.10)

v
tor » 1101d ¥/ (=~ ¥¥) in the adjoint re-

presentation. Kow, for any such ¥ and any Y., ,

S&‘; Y., [D‘I‘]“:-Jz. P"x yery []W] (2.01)

ﬂry
This cen be found by using (3.10), performing an fntegration
by parts and antisymmetrizing to obtain the covarfant derivative
D\ , which has the form (3.9). It follows that

Jd‘z 'f“[l)(bf‘)]“: - % Sd‘x Cxag @ THN o (3.12)
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This would be enough to shew the symmetry of the first term
fn (3.8) but we can go 2 step further. We reverse the roles by

putting ‘Lr, < [D’f}“ v and using again (3.11),
arriving at r

Sa‘: Y&v[D(DP)]“v" ja‘x P&v [D(D‘f)]"”. (3.13)

The condition for the existence of a Lagrangean
v
for the equation DA =0 s

Sd'x ?sv{[DDF]M'-} {n.b‘ PL-P Ftl“v}:

:jﬂl‘x r. {(DM]W-& {“;,, ‘?ﬁ. Fcrv} - (3.14)

That the first terms on each side are equal {s guaranteed by
{(3.13). For the remaining terms, it is snough to exchange the
indices and use the cyclic property of the structure constants
to show that

j"a Yov § e P‘; F e [d Moy £ g A APRERD

S0, the requirements are more than satisfied,
8s the symmetry condftfons (3.13) and (3.15) hold separately.
Notice that, in gauge theories, ft is the summation on the
components that makes the symmetrization possidble. The Yang -
Wills Lagrangean {s obtained from (3.6) in the form

- L cpv
d. %.Aw (53§ AL)FT (3.16)

Let us now consider the Yang-M{11s equations
for the P group, (2.34 - 35 ). Applied to (2.34) alone, the
sbove treastment would lead to thes existence of a good Lagrangean
1ike (3.16) , stfll » manifeastation of the fact that the Lorent:
sector constitutes & gauge theory by itse)f. The prodblem con-

cerns the whole set of equations. Consider the Frachet dertvs-
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tive cf the differential) oparater in (2.33) along r. \l’ S,
) « .

1\1,= L P,y) at the point (A Ff" va) in the Junction

al space:
O (r) = - P TFs (0 - A (o)

“(P‘xr XA Ptvv B*”)]"’ [(Dp)-f:rv_ (P‘,P Av“:r

o v oYX » ¢ « Y £
PrAc)]Br*Fi Ty - (3.17)
.3 X4
For (2.54), 9, ’ €M) 45 of the form (3.8), the  cnly
differences coning fron our use of double indices for the Lie
algebrs components. We take then another dirsction fn the func

tional .space, say ﬁf:(\f oW v) and check to see whether

or not

S“"L ‘(“P" 0“"’['\!1” + qu: Wys 0'7\’['1,,L] =

sd‘! p“’v 0 ‘p[‘f,w] "’P" 1, \9'"{‘7: w] .

(3

As expected, the Lorentz sector alone satisfies the symmetry
condition., Nefther M nor W really sppear in the first teres
in each side in (3.18). These terms exactly cancel each other,
snd we have to verify 1f the second terms, which come from the
translational sector, coincide or not. VWe find that (1) scme
pieces do allow for symmetrizatfon, such as the last ters in
{3.17), which contributes with

.( »v {(3.19)
wy F ~l r

to the left-hand side; (11) some other pleces are not symmet-
rizable. 1t is a2lwzys very difficult to be sure that 2 certain

term is not comehow cancelled or symmetrized by some other. The
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[ £ R
first term in (3.17) is a good suspect: w,, I ¢ T is not

sycmetrical by itself. The best way to see that it is not sym-
aetrized by any other is to go back to the DS theory and trace
what happens during the contraction process. Let us write (3.

15) for the DS case: the left-hand side will be

< ¥ gty ¥ E5pV
({30 $ hgee P F e 0 £ P FOR

+3 % ‘r:l,u P':. F‘;rv--}‘fm{“u,u F“r"‘“,. :
{3.20)
The f's are the structure constants for the DS group, written
in & hopefully clear antisymmetric-double-index notation and the
numerical factors account for double counting. The first terms
above is obviocusly Y e~  symmetrical; it is a contribution
related only to the Lorentz sector. Also the last term f§s sym-
setrical: by contraction, with L¥, = N“,LP‘;,, 11‘, it gives
(3.19), related to the last term in (3.17). Now, the second
and the third terms are not, each one, symmetrical: they are
syametrizing compenions®, they sywmetrize each other when we
substitute € for I and vice-versa. The third one is precise
1y that -giving py contraction our suspect first term in (3.17),
once multiplied by W, . So, the suspect term would be sym-
metrized by the term coming from the second term in (3.20).That
is where the asymmetry comes from: there s no such a term. 'If
ve examine the equations in detail we see that the symmetrizing
second term in (3.20) comes from the Freéchet derivative of the
Tast two terms in (2.32). We had called atention to the fact
that, in the contraction process leading to (2.32),these terms
venish. Summing up: the term, present in the 0S theory, which
symmetrizes the first term in (3.17), dissppears during the con

traction process. In this way we can pinpoint how contraction
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spoils the symmetry racessary for tha thacry to be Lazrangean:
some terms in the field equations disappear and terms like the
first one in (3.17) find no mare & “symmetrizing companion® inm
the contracted theory 27. We could still think that some air
acle might occur: we have been analysing terms of (3.17) which
correspond to (3.15); there are other non-derivative terms,cor
responding to (3.13), which could eventually symmetrize or
compensate just the above "ofending® terms. That this {is not
the case may be verified by a direct term by tera compariseon .
Consequently, there fs no Lagrangean leading
to the dynamical equations (2.34 - 35). The argument azbove can
be line-Hy-line adapted to equations (1.18-19),with the same

result 28,

IV. FINAL COMMERTS

A Poincaré@ gauge theory will dbe slvays kept
spart from the usual gauge models by two peculiarities:the ncn
semisimple character of the group and the presence of the kine
matic representation. Concerning the first of these features ,
there are two main consequences: the potentials related to the
abelian sector have unusual transformation properties and there
fs no bi-invariant metric on the group. A metric which is only
right-invariant may suffice to build up a Lagrangean but the re
sult is anyhow an atypical gauge Lagrangean leading to  field
equations which are not of the Yang-Mills form 23, As to the
second paculiarity, 211 loca) transformations in that represen
totfon may ultimately be seen as translations and the troudle
{s that there fs no such a thing as "gauging” transltations in

the ususl way: pp{a” 3]0 = [(x48) becomes false as  soon

s GP

becomes pofnt dependent. The simple ides of “gauging”
by imposing o Juiai symmetry does not apply, Some of the fdess

currently sssociated to the expression”gauge theory”™ will have



10.

M.

12.

15.

P. Becher and H.Joos, 2.Phys. C15 343 (1%82).

D.A. Popov and L.1. Daikhin, Soviet Phisics Doklady 20,
818 (1976).

The role of discret duality in the short-distance belaviowr
of gauge fields i3 not clear. The continwous duality
sysmetry has been wsed (S.Deser et al, Phys. Lett 588, 35§
{1975)) to improve renormslizability in the Einstein-Nax-
well theory, but it does not exist at a fuandamental level
ia the mon-adelian case (S.Deser and C.JTeitelboim, Phys.
Rev. D13, 1592 (1976)).

G.1tzykson and J.3.2sber. “Quantum Fizld Theory®, Rc Graw-
Nill, New York, 1980.

C.Fronsdal, Phys. Rev. D30, 2081 (1984).

Minkowski space s a2 homogemeous space wadar the action of
P the guetient 3pace P/S0(3.1). There are two 05 grewps,
$0(2,2) and $S0{4,)) under the action of which DS spaces,
their quotients by the Lorentz group, are homogenmeous.

Istefition cam get seme help from the analogy with the
*completely euclideanized” case, in which the DS growmp
becomes $0(5), £ becomas S0(4¢) and the homogesecus DS space
1s $0(5)/50(4)~3$%. 1n this case,.L would be the radius of
the 4-sphere, which approaches the euclidean 4-space when
L-oco . Ue are using “contractien® in a broad sesse,
comprising both Inend-Wigner and Saletan contractioas in
the sense of ref. 0.

F.G8rsey in "Group Theoretical Comncepts and Nethods i»
Elementary Particle Physlcs'. Gordon and Breach, New York,
1964, 9.365.



16.

17.

18.

19.

21.

23.

24,

ri g

R.Aldrovandi and E.Stedile, Intern. J.Theor. Phys. 23,
301 (1984).

B.lvanenko and G.Sardanashvily, Phys. Reports C94,1 (1953).

F.N.Ne)l, "On the Xinematics of the Torsion of Spacetimes®,

to appear ia the B-rgmaen issue of Foundations of Physics.
T.M.B.Kibble, J-Rath. Phys. 2, 212 {1961).

R.M._Vafaderg, "Yariational Methods for the Study of Non-Linear
Operators®, Heoldea-Day, San Framcisce, Calif. 1964.

R.¥.Atherton and G.R.Hoasy, Studies in Applied Mathematics
54, 31 (1975).

Ne prefer, for the time being, to keep separate coordimates
[’} on esch tangeat space, beimg uaderstood that they are
functions of the corresponding point of spacetime. Im this
way the analogy with the fiders im gauge theories is wore
evident . The coordinates will be waiffied when convenieat.
One cowld, altermstively, work directly with a lecal represes
tatifon of the Lie algebra in terms of the tangent fields,

as ts done ia Ref. 12 for the coaforms! case.

Ve are here coasideriag a direct relation, as that found
wsually ia field theory. B8y coaventfently tramsforming the
fields and thelr derivatives, 1t is slways possidle to find

some variational principle.

See, for instance, S.0kubo, Phys. Rev. D22, 979 (1980), and

raferences therein.

The theorem is valid in terms of the far more gemeral Cateaw
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to be forsaken. HWhat is i:= essential characteristic defining
& gqauge model worth this name? We have here retainad the Yung-
Nills field equations and tried to build a model as close as
possible to the general scheme of gauge theorfes. From this
point of view, the mudel adove is the most matural candidate for
2 Poincar® gavge theory for gravitation. Its field equations,
beside being the aalve Vang-Nills equations for the group, cam
be obtained by contraction from 2 gauge model for the De Sitter
group, or from the isposition of the discrete duality symmetry.
The Tast two points are related but only because contraction
happens to preserve that sysmetry. 1t could ba otherwise, as
contraction does not preserve all the good properties of the
original model: we have seen how it bDreaks that swubtle symmetry
necessary for ths thaory to be Lagrangean.

Poincaré =models have beam extensively comsid-
ered, but slmest alvays with a2 Lagrangsan theory ia aind. It s
Just natural that the one presented here has beem missed. A
non-Lagrangean theory is aot, for sure, ¢ very sympathetic kiand
of theory. From the privileged poiat of view of the Yang-Nills
equations, hovever, this is precisely the case for the Poincare
group. .

The problem of quaatization cam be faced in
two ways: the canonica) aspprcach, whose possibility has b»een
stressed at the end of section I1; or the path-integrel procuv-
dure, with the De Sitter model as an intermedfate step. The
second approsch has been pursued by the authors and will bde re
ported elsavhere. It leads to consisteat results at the tree
tevel [such as Newton’'s law in tha static non-relativistic liefit)
but the question of renormalfzabilifity fs sti1] unsettled.
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