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Abstract

The linear analysis by the six-moment method proposed by

Shirazian for calculating the heat flux in a steep temperature

gradient plasma is extended to the second order. The heat flux

is expressed in terms of a ratio (inverse of Knudsen number) L/X

, L and X are the scale length of the temperature gradient and

the mean free path. In the collisional and small temperature

gradient limit, the second order heat flux is

q=0.1416[l-(9/52)(1-R£)][2/(3-Rt)][2/(l+Rt)]
5/qL,(Shirazian's

first order result is 0.1416 [2/(3-Rt)][2/(l+Rt)]
5/2qL), where qL

is the exact result derived by Landshoff for the Lorentzian

plasma and Rt=Tc/Th, where Th and Tc are the temperatures of hot

and cold walls. The discrepancy between q and q comes from the

lack of number of moments and the assumed form of the electron

velocity distribution function. A new trial distribution

function including eight moments is proposed which may be more

appropriate for the Lorentzian plasma. A criterion for the

choice of good trial function is proposed and tested.
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§1. Introduction

In laser produced plasmas, steep temperature gradient exists

of which scale length L is of the same order to the mean free

path A. Usual heat flux derived in the limit L/x + °° His not

valid. For arbitrary values of L/x, many attempts have been made

for calculating heat flux. They can be grouped into two. There

are two ways of attacking the problem. One is the microscopic

method in which a deviation of the electron velocity

distribution function from the equilibrium one is derived .

Because of the large temperature gradient, velocity distribution

function can become negative. This is the difficulty of the

microscopic method.

3 4)

The other one is tho noment method ' . This has no such

problem, but it can have a lack of information in some case,

because it describes plasma by a finite number of moments.

Shirazian and Steinhauer considered the plasma which exists

between hot and cold heat baths separated by the distance L.

(Fig.l) They employed the velocity distribution function

, vz>0,

(1)

The six unknowns (six moments) ni ,n2,T1,T2,a
+,a~ and one more

unknown E, the electric field, can be determined by solving
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moment equations derived from the Boltzmann equation.

Linearizing the moment equations with respect to small deviation

from the hot elementsr Shirazian et al. obtained the heat flux q

(Ref-2 p.848). We will extend Shirazian and Steinhauer's linear

treatment to the second order in the next section. Further we

will develop a linear treatment by using eight-moment method and

will discuss on the choice of the trial function.

§2. The Second Order Treatment

ed n =nThe six moments are assumed n =n d*11^ + n
1 2 ^ ' n2 =nh

21 + n 2 2 ) , V V I + T ^ + T ^ ) , V ^ 2 1 2 2 ^ 4

a =a^+a2, 1» |ri11 | >> |ri12 | e t c . The normalization constants n

and Th are the number density and the temperature of the hot heat

bath (F ig . l ) . The moment equation derived from the Boltzmann

equation i s given by

= C [ Q ( v ) ] , ( 2 )

where Q(v) is an arbitrary function of velocity v and the moment

M[Q(v)]=/dvQ(w)f(v) and C[Q(v)] is the collision integral.

Substituting (1) into (2) and choosing Q(w) =l,vz,v
2,vz v

2 ,v2. ,v3z,

we can obtain six moment equations. We solved these moment

equations to the second order and obtained the second order

correction q2 to the heat flux
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[KLsinhx + (R sinhx + K3coshx + K4)L/ X

{(Rsinhx - coshx)/(Pcoshx - Qsinhx)}{K5sinhx

K6coshx + (K7sinhx + K8coshx)L/A + Kg}]q1/2 , (3)

where P,Q,R are the numerical constants and 1^,1^,...,Kg are

functions of x=(5ir/2)1C( 9/32) (L/x ) . (See APPENDIX A) The first

and the second order heat fluxes [q]1=q1, and [q]2=q1+q2 are

plotted in Fig.2. Landshoff's value1' qL=(128/9) (2/mir)
1/2ne (T

5*2/1^

)(1-Rt)( X/L), which is exact in the limit L/ X •* <•> and l^-Tc->-0 is

given as a reference. In this limit,

jj. =0.1416 [2/(3-Rt)][2/(l+Rt)]
5/2

(4)
5/2[q]2=0.1416[l-(9/52) (1-R

2)] [2/(3-Rt)] [2/(l+Rt)]
5/2 qL ,

where Rt=Tc/Th. Our result valid to the second order does not

approach to qL. This may be due to the assumed electron velocity

distribution function (1) including only six moments.

i3. Eight-Moment Method

By Landshoff1}, an exact velocity distribution for the
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Lorentzian plasma in the collisional limit is given by

f=fMtl+vzh),

v 3f eE 1 dT /5 mv2

c I T T dz V2 2T

where c is a quantity related to the collision frequency. Then

the following velocity distribution function must be more

appropriate than (1).

£ ){ b+ + a + (5/2 - m v 2 / ^ ) } ] , vz>0,

(6)

£ ){ b" + a"(5/2 - mv2/2T2)}], vz<0.

The factor v 3 comes from the collision time T which is

proportional to v3 in Lorentzian plasma as seen in (5). We can

have eight moment equations by taking Q(v)= 1, vz ,v
2
 rv zv

2 ,vz ,v| ,vz

,v*. Normalizing and linearizing eight moments n12(
z)t\,

alz) and b (z), we can develop the linear theory to obtain the

heat flux q

q C5coshX + CgSinhX

(7)

q {Cx + C2(L/A )}coshX + {C3 + C4(L/x )}sinhX

where C1,C2f...fC6 are numerical constants (See APPENDIX B ) ,
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X=(9/4)(10/1059)1 \h/\ ) and the free streaming heat flux
1/2 3/2 3/2

q=(2/irm) (n,T, -n T ) . In Fig.3, q/q^ is plotted as a function
I n h c c f

of the collisionality parameter L/x . In the collisional limit,

(7) reduces to q=0.0184[2/(3-R )][2/(l+R ) f%r . Contrary to our
t t L

expectation the trial function (6), which has the exact

dependence on velocity in the linear collision regime, does not

give Landshoff's value q in the collisional limit. Shirazian et

al. used the trial function (1) which does not have the exact

velocity dependence in the collisional limit, but obtained much

closer value (which is given by [q], in (4)) to q . Then the

exact velocity dependence of the trial function in the linear

theory does not always give the exact collisional limit within

the framework of the nonlinear theory. In the linear theory,

|vzh|<<l is assumed and this term is neglected in the left hand

side of the Boltzmann equation. This corresponds to approximate

(d/dz)[|dvQ(v)fM(l+vzh)] by (d/dz)[/dvQ(v)fM]. But in the

nonlinear formulation, we do not neglect vz h term. Then if we

choose the trial function f=fM(l+vzh) such that | JdvQ[v) fMvzh|

has a value as small as possible, we will obtain closer value to

qT in the collisional limit. In fact the function (6) has

greater contribution to |jdvQ(v)fM
v
zh| than (1). To illustrate

the above statement, we employ a simple function

(vz/vT )a
+ ] , vz>0,

(8)

V
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This gives smaller integral |Jdv Q(v)fwv2h than (6). The six-

moment formulation based on (8) gives the heat flux

q=0.049[2/(3-Rt)] [2/(l+Rt)]
5/2qL in the collisional limit, which is

larger than the one obtained by using (6).

§4. Conclusions

1. Shirazian and Steinhauer's first order treatment of the

nonlinear heat flux based on the six-moment method is extended to

the second order. The expression of the second order correction

to the first order heat flux is given by (3). In Fig.2,

normalized heat flux is given versus h/ \ . The second order heat

flux is smaller than the first order one. Especially in the

collisional limit, i.e., L/ \ -*• °° , the heat flux is smaller than

the exact value qL. This is thought to be originated from the

choice of the poor trial function (1) with the six moments.

2. Eight-moiKent trial function (6) which has the exact

dependence on velocity in the collisional limit is used and the

expression (7) of the nonlinear heat flux is derived and drawn in

Pig.3 . This time, we have smaller heat flux than the one

derivad by the poor six moments trial function (1), though we

employed "exact" trial function with eight moments given by (6).

In order to obtain macroscopic quantities such as the heat flux

which is the averaged quantity over the velocity, the "exact"

velocity dependence of the trial function is not always

considered to be important.
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3. A criterion for choosing the trial function which will give

better value of the heat flux in the collisional limit is

proposed and tested. When the trial function is written as f=fM

(l+vzh(v))r V and vz being normalized velocity and its z

componentr the criterion is expressed by | jdwfMQ(v)vzh(v)| « |fdwfM

Q(v)|. As an illustration, a simple trial function (8) which

gives actually smaller integral than (6) is shown to give a

better heat flux of which collisional limit is 2.7 times as large

as the one derived from the trial function (6) . Since h(vv)

includes moments, the above integral depends on the moments. In

the comparison made above between two cases based on (6) and (8),

we assumed implicitly that the moments in both cases have same

order of magnitude.

4. Though we have a guide for the choice of the trial function,

we still do not get to the best trial function at present.
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Appendix A Expressions of KlfK2,...,K9

Kx= 2[{4PQA+6Q/rr)qC4 + (112PQ/15iT - 15Q/A -

K2= (9/8)/5V2 q c 4 , K3=2(27/16-78/25ir)C1C4,

K4= (27/50ir)C 3C 4 - { 6 / 2 5 T T ) C3C5 , K5 = 2QC1C4, K6= - 2 P q C4
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K?= -(9/8)y5V2 PCXC4 , K8= (9/8)

K9= (P/2)C3(C4 + 2C 5),

C±= P(l-Rt)/2Df C3= (Pcoshx - Qsinhx)(1-

C4= Rt-1, C5= P(l-Rt){(Q^T)sinhx - (l/2)coshx

D = P(1+(39/25TI) (L/^))coshx - (PR +(39Q/25TT ) (L/ \)) sinhx,

P = 8/5/?, Q = 72/5 , R = (416/75IT - 3)/2/5TT ,

R = T /T,
t e n

Appendix B Values of C l f C 2 , . . . , C 6

C1= 384W+3V-2YV, Z^= (92-64Y)U, C3=16PW-3RV-2SV,

C4= -(92R+64S)l' r C5= 2(2Y+l ) /5 , Cg= 2(2S-R) /5 ,

P = (9 /4) /1059/10+1365/ l0 /1059,

R = (1632/35)/10/1059 , S = (752 /35) / l0 /1059

U = 9/320, V = 4 / 5 , W = 1/80, Y = 1 9 / 2 .
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Figure Captions

Fig.l Situation considered

Fig.2 First and second order heat fluxes derived by Shirazian et

al.'s six-moment theory. Landshoff's value q L is given

which is exact in the linear collisional limit. Heat flux

q is normarized by the free streaming value q f.

Fig.3 Heat flux q derived by the eight-moment theory.
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