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Abstract 

This review scrutinises the present status of proton decay in grand 
unified theories. Baryon and lepton number violation in conventional as 
well as supersymmetric CUT* is discussed with special emphasis being laid 
on selection rules and model-independent predictions. The theoretical 
predictions for nucleon lifetimes and branching ratios, vh<-n confronted 
with experiment, inevitably lead to the conclusion that all great desert 
GUT*, like the minimal SU(S) model, are definitely ruled our. by the 
experimental non-confirmation of proton decay at the expected rate. 

I. 
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I. Introduction 

The most fascinating aspect of grand unification is the fact that it 
provides a natural framework for baryon and lepton number non-conservation 
[ 1.1-1.5]. Grand unified theories (CUTs) predict in general the existence 
of phenomena like neutrino oscillations, neutron oscillations, and - most 
spectacular - nucleon instability. In particular, baryon number is no 
more an absolutely conserved quantity. Its conservation is violated either 
explicitly by gauge interactions and Yukawa couplings or non-perturbatively 
by magnetic monopoles. Consequently, the experimental observation of proton 
decay would be a clear indication for grand unification. Moreover, proton 
decay might well prove to be the only experimental meansto test the con­
cept of grand unified theories. 

On the other hand, there is no particular reason why baryon number 
should be conserved. If baryon number were «.he .onserved charge of an 
unbroken gauge symmetry there should be a corresponding massless gauge 
boson. The Eötvös-Dicke experiment, however, finds no evidence for a 
long-range fofce coupling to baryon number. 

The intention of the present work is to illustrate the basic con­
cepts of grand unified theories and to examine critically their consequences 
for proton decay in view of the results of the on-going nucleon decay 
experiments. Accordingly, I will stress those ideas and aspects which will 
survive anyway, like selection rules for baryon number violation arising 
already from low-energy gauge invariance and (eventually) supersymmetry. 
In contrast to that, I ignore poorly justified assumptions, predictions 
valid only for a certain narrow range of parameters, and things like that. 

This review is organized as follows: Section II introduces the most 
important features of grand unified theories and presents the B violating 
sector of conventional ClTTs as veil as its immediate implications. Section 
III recalls the primary reasons for believing in supersymmetry and gives 
the outlines of supersymmetric baryon number violation. Section IV re* 
presents a survey of the theoretical expectations for proton (and bound 
neutron) lifetime, favoured decay modes, and branching ratios, including 
an account of the attempts to br*ng theory and experiment into accordance. 
Section V is a compilation of the upper bounds on the partial decay widths 
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reported by the currently operational nucleon decay experiments. Finally, 
Section VI contains a brief consent on nonopole catalyzed proton decay 
as well as some concluding remarks. 

II. Baryon Number Violation in Conventional CUT» 

Nowadays, it is a common belief that the strong and electroweak 
interactions are described by the standard model, a gauge theory based 
on the gauge group Sl'(3)_ * SU(2) * U(l V . However, although the Glashov-
Salanr-Weinberg model SU(2), »U(l) v correlates the weak and electromagnetic 
interactions it does not represent a unification of these interactions 
at all. Its gauge group is a direct product of two factors, consequently 
there are still two distinct gauge coupling constants having nothing to 
do with each other. Nevertheless, the Glashow-Salam-Weinberg model is 
sometimes misleadingly called a unified theory of weak and electromagnetic 
interactions - a circumstance which forced us to entitle the true unified 
theories as "grand unified theories". 

Grand unified theories attempt a unification of the non-gravitational 
interactions by embedding St'(3)_ • SU(2), *U(l) y into a simple gauge group 
[2.1]. Another, by far less elegant possibility would be the embedding 
into a direct product of isomorphic simple factors ielated by a discrete 
symmetry in an irreducible manner [2.2]. In either case one ends up with 
a more fundamental theory with only a single gauge coupling constant. To 
order to reproduce the known interactions, the GUT gauge symmetry is 
assumed to break spontaneously down to the standard model at a GUT mass 
scale tiL. far above the electroweak mass scale «L., 

CUT • SU(3) c«SU(2) L*U(l) y 

"* (2.1) 
— SU(3) C«U(I) Q . 

Of course, the CUT symmetry breakdown might also take place in several 
steps, i.e. at several mass scales. In this spirit the very different 
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looking standard-model interactions are only the loir-energy manifestation 
of the basic grand unified theory. Charge quantization already follows 
from 

Tr [QI - 0 , (2.2) 

sirce now the electric charge operator Q has to be a generator of the 
(seai~) simple CUT gauge group. 

Any G'JT gauge group coning into question has to fulfil two require­
ments: 

(1) It has to contain the gauge group of the standard model, 

SU(3) xSU<2) »U(l) C CUT . (2.3) 

This entails that it has to be of at least rank A and, in particular, 
has to contain an SU(3) subgroup. 

(2) It must allow for the correct reproduction of the particle 
content of the observed femion spectrum. This implies that 

(i) it must possess complex representations; 
(ii) the representation taken into consideration for the known 

fermions oust decompose under SU(3) C solely into singlets, triplets, 
and anti-triplets - and nothing else; and finally 

(iii) this representation must not be plagued by Adler-Bardeen-Bell-
Jackiw anomalies. 

The need of a complex fermion representation arises from two diffe­
rent sources: 

(i) The (observed) weak interactions violate parity. In other words, 
the known fermions of one generation form a complex representation of 
SU(3) c*SU(2) L»U(l) r 

f
L " ( 3 ' 2 » i ) * ('«''-|> * <3J.j) • <1.2,-j) • (1,1,1) . 

(2.4) 

(ii) The experimentally known fermions must not be trapped by th« 
so-called survival hypothesis : In the course of the spontaneous symmetry 

•) For a more detailed discussion see e.g. Kef. (1.2). 
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breakdown of a group C to a subgroup H at a aas* teal« au. 

G • H , (2.S) 
»C 

al l fermions transforming according to a self-conjugate representation 
of G will acquire, in general, a mass m_ of the order of magnitude 

•p - OCBg) . (2.6) 

Hence, in a grand unified theory all femions transforming according to 
a real representation of the CUT gauge group will become superheavy. 
Thus, in order to "survive" the first stage of the spontaneous symmetry 
breakdown (2.1), 

GUT —•• SU(3) C*SU(2) L«U(I) Y , (2.7) 

as massless particles all light fermions f, have to belong to a complex 
representation of the GUT gauge group. 

Requirements (I) and (2) restrict possible candidates for CUTs to 
the gauge groups Sl'(n), n ̂  5, SO(4n*2), n ̂  2, and E,. Mostly the gauge 
groups SI'(5), SO(JO), and E, have been used in the construction of viablt 
grand unified models [t.l). Note, that it might well happen that the 
chain 

SU(5) C SO(IO) C E f t (2.8) 

is more than just a group-theoretical relation, in that it might prove 
also to indicate the symmetry breaking pattern of the grand unified 
theory realized in nature. 

The grand unification mass scale DL. can be calculated by inspecting 
the dependence of the standard model coupling constants i.(Q 2), 

, a e m «*> o (Q2) . _±ii f ( 2 > 9 ) 

•in 20 (Q 2) 



s 

3 cos^CQ 2) 

on the aoaentua transfer Q 2 (Fig. i.a). At au they converge to the single 
GIT gauge coupling constant a [2.31: 

* 3(«J) - a2(mj) - «,(•£) - a . (2.11) 

However, the aass scale m» ard the coupling constant a can be determined 
unambiguously only in so-called great desert CITs. Great desert CUTs are 
characterized by the assumption that no new particle thresholds will 
appear between the electroweak mass scale nt, and the unification mass 
scale n^. This implies that the symmetry breaking (2.7) of the GUT gauge 
group down to the standard model has to proceed in one single step, which 
excludes e.g. all left-H?\t symmetric models SU(2) » Si:(2) * U(l) for 
the electroweak interactions. Hence this kind of GUTs is of particularly 
simple structure, showing an Sl'(3) * SU(2). * l'(1 ) y invariant great desert 
between i, and m„. A representative value for the GUT gauge coupling con­
stant is 

a - 0.0244 = rr • (2.12) 
41 

The CUT mass scale m. turns out to be very accurately proportional to the 
QCD scale parameter A. Starting with the renormalization group extra­
polation aC 

o2(«2) - 0.0372 » ^ (2.13) 

and 

OjOnJ) - 0.0164 * Jj- , (2.14) 

and taking into account threshold effects and two-loop contributions, 
one obtains for thr-e light fermion generations and one light Higgs 
doublet 

•JJ • I.5'I015 Ajg . (2.15) 



Thus the nowadays commonly accepted value of the QCD scale parameter (1.6) 

. ... « O J O , . A— «0.16 Ä M Ge? MS - 0.06 (2.16) 

corresponds to a value of the GUT mass of 

2.4» 1 0 u GeV . (2.17) 

The constant of proportionality in Eq. (2.15) is increased by a factor of 
about 1.2 for each additional fermion generation while it is reduced by 
a factor of (1.5) for a second light Higgs doublet [1.3]. The major un­
certainty in OL., however, is introduced by the error in A—, i.e. by our 
poor knowledge of the strong coupling strength. 

Great desert CLTs, and only they, allow for a prediction of the 
Weinberg angle 0.., 

\ m (Q 2) a,(Q2) 
sin20 (Q2) • — — » 

*2(QZ) a,( Q )*T V Q } > 2)4 (2.18) 

Above OL. the value of sin29 is completely fixed by group theory» in 
particular by isospin I. and electric charge Q of the involved femions: 

sin^rn 2) -
Trll*] 
Tr[Q2J 

3 I * (2.19) 

Renormalization effects reduce this value at the electroweak mass scale 
to [1.3-1.51 

sin^e 2) • ° - 2 " 8 : S:™,• (2.20) 

again for the QCD parameter given in Eq. (2.16). This prediction has to 
be compared with the experimental determination (after including radiative 
corrections) (1.4) 

sin V«5> 2» • 0.219 t 0.006 . 
•xp 

•2.21) 
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In view of the fact that, a priori, the theoretical value of sin 20„ could 
have emerged anywhere inbetween zero and one, it is hard to believe that 
this remarkable agreement of theory and experiment is purely accidental. 
Rather this amazing agreement seems to strongly support the great desert 
hypothesis, i.e. the non-existence of intermediate mass scales between 
•W'nd V 

As long as there is no hint from experiment how the CUT chosen by 
nature looks like, the analysis of baryon nuaber violation should be per­
formed in a way which is entirely independent of any specific grand 
unified model. This model-independent analysis consists of four main 
steps: 

(i) identification of the possible intermediate bosons, 
(ii) enumeration of the tesulting four-fermion operators, 

(iii) formulation of the effective Lagrangian built up by these 
operators the coefficients of which are determined by the specific grand 
unified model, 

(iv) renormalization of this Lagrangian from the GUT mass seal« 
down to the relevant hadrunic mass scale. 

In grand unified theories proton decay is induced by bosons which 
are allowed by their SU(3)_*SU(2). *U(l)„ quantum numbers to couple 
simultaneously to two quarks 

2 qq , B ' I • L • 0 , 

and to a quark and a lepton 

tq , B " I ' t - I , 

or to a quark and an anti-lepton, 

tcq . B - \ , L - -i . 

Hence no definite baryon and lepton numbers can be attributed to the** 
bosons. Their interactions respect the SU(3). * Sl'(2), * U(l)„ gauge in-
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variance but violate the conservation of baryon and lepton nuaber. 
sidering only couplings to the known light fermions 

u 
lL" 

there arc just five types of bosons of this sort [2.5,2.7,2.9,2.121: 

Typ« Notation SU(3) C SU(2) L T 

vector boson X 

V 

5 
6 

6 

4 1 
3* I 
2 I 
3* "3 

scalar boson I 
I 

"J 4 
I 

«a 
1 L *. 

The experimentally observed longevity of the proton, 

Pt**P 
K 10" yr , (2.22) 

requires 

s^ I 0 ( I 0 U ) CeV (2.23) 

for the vector boson masses, which i s consistent wich che estimate (2.17), 
and - even for extremely small Yukawa coupling constants of the order 
0(IO"4) -

SL. I 0(10") Cef 
^X 

(2.24) 
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for the Higgs boson nasses, i.e. all of these bosons have to be superheavy. 
By exchange of one of the superheavy bosons listed above a tree-level 

interaction between three quarks and one lepton is generated. Integrating 
out the superheavy degrees of freedoa this interaction reduces to an 
Sl'(3)_ * SU(2)-*U(1)_ invariant, B and L violating dimension-six operator 
of the for« 

0 * (4 • 4 £) . (2.25) 

The coefficients G accompanying these four-fermion interactions in the 
resulting Lagrangian, however, provide a suppression by two powers of the 
superheavy mass, 

C - 0(—) or C - 0(-J-) . (2.*6) 

From the known light fermions five Lorentz invariant effective operators 
of this kind can be formed* (2.7,2.8,2.10,2.11): 

0 i - c t \ \ H u \ V ( 2 2 7 ) 

° 2 - ( « \ . V < 1 C R A > ( 2 2 8 ) 

o 3 - d c

R V ^ ' R V ( 2 * 2 9 ) 

• ) The operator 

p i , ( ; tV" c iV 
contained in the original classifications [2.7,2.6] can be expressed 
in terns of 0. with the help of the algebraic identity [2.11] 

K L *2R><*C3L *«•> • <*?L ' 3 R ) ( ' a *2*> * (*1L W ( * 2 L • » > ' ° ' 
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0 4 - <l c
t T q L) (q c

R T q\) (2.30) 

0 5 - (e* L »-»(u C
L d t ) . (2.31) 

In this list T are the three Pauli matrices while q, denotes the trans­
posed SU(2), quark doublet 

q L :- i T 2q L - (_J) • (2.32) 
mm 

In order to guarantee SU(3)_ invariance these operators have to be anti-
syonetrized with respect to the colour indices of the quark fields. The 
generation indices carried by all fermions also have been dropped. Fermi 
statistics requires mote than one generation for the non-vanishing of 
the operator 0,. 

At this point an important observation can be made [2.7,2.8]: 
Although the effective operators 0. (i • I,2,...,5) have only been sub­
jected to the requirement of Sl'(3)_ * SU(2), * U(1 ) v invaiiance all of the» 
show a global symmetry (maybe of local origin) represented by the generator 
(B-L) . These operators violate B and L separately but conserve the 
quantum number (B-L). Consequently, the nucleon decay controlled by Chess 
operators respects the selection rule 

AB • OL . (2.33) 

Thus, nucleon decays into anti-leptons are allowed, 

M * l C • M , AB • AL • -I , (2.34) 

but nucleon decays into leptons are forbidden, 

W / t • M , AB • - AL • -I . (2.35) 

») Leaving aside negligible instanton effects, SUO)-» SU(2), * U(l)_ 
gauge invariance also entaili baryon number conservation by Che 
standard-model interactions. 
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Here M representa any aesonic final state, t • «,v»v ,v ,v . 
Furthermore, for the operators involving a strange quark the addi­

tional selection rule [2.6] 

f | <0 (2.36) 

i s valid. This restriction allows the decays 

I -• tC * M(S - *l) , AS - - AB - I , (2.37) 

but forbids the decays 

I -• t c • M(S - -I ) , AS - A« - -1 . (2.38) 

All of the effective operators 0 through 0, can be obtained by 
scalar boson exchange. On the other hand, only the operators 0 and 0-
have the correct chirality structure to be generated by vector boson 
exchange since - by application of the Fierz transformation 

<•* \ <TL)(S% ^ W ' - 2 ( S l *4I>(*£ *2L> ( 2 ' 3 9 > 

- only they can be c*st into a current-current for«: 

°» - 1 I ( e ' r \ dR ) ( u CL ^ V " (vCR \ V ( t t C L T" V 1 • ( 2 ' 4 0 ) 

°2 " <*\ \ \H»\ y M U L ) ' ( 2 ' 4 1 ) 

However, the Yukawa couplings of colour triplet Higgs bosons to pairs of 
light femions are extremely weak. Thus the contributions of Higgs boson 
exchange to nucleon decay can be estimated to be suppressed compared to 
the contributions of gauge boson exchange already in amplitude by a 
factor [2.4] 

0(-L ill) < ,o~* (2.42) 

•K* 
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Cor the natural aass relation 

v«- (2.43) 

u being the typical hadronic aass scale where the B violating processes 
take place. 

V - 0(1 CeV) (2.44) 

Consequently, i t is usually assuaed that the role of Higgs bosons ia 
proton decay can be ignored and that cne's attention can be restricted 
to B and L violating gauge interactions. 

Introducing for the aonent a conceivable but heavy right-handed 
neutrino v , the most general couplings of the gauge boson SU(2), doublets 

V 
X = (2.45) 

and 
r.t 

y, (2.46) 

to feraionic gauge eigenttates read [2.4,2.6] 

• <"<*% \ diR> " < « \ \ UiL> * E i j k ( V \ \ \ } V l i ' 

- u»\ \ •«> • <A \ •it> * c i jk<v \ V L > ^ V • 

• l - C \ r u u ) - ( v C

L yv d . L ) • c . j k ( u ^ yM ifjM?} • 

• b.c. (2.47) 
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The fermion fields have to be understood ** generation space vectors» g 

denotes the CUT gauge coupling constant. 

Fro» these renonsalizable interactions a B and L violating, SU(3)C* 

* SU(2), »U(l)y invariant four-fermion interaction valid at low energies 

can be derived in second order of perturbation expansion (Fig. 2) . Ob­

viously, there saist exist a formulation of this effective theory entirely 

in terms of the operators 0. and 0, . This can be verified by making ex­

tensive use of the Fierz transformation 

(^T \ *2L ) (*i *W '4L> " <^l \ *4L ) (<£ S *2L> ( 2 ' 4 8 ) 

as well as of the operator identity 

<^i \ *2K> m-Ü7l\ *lV • < 2 4 9 ) 

However, without detailed knowledge of the underlying grand unified model 

the rotation of the fermionic gauge eigenstates into the corresponding 

mass eigenstates cannot be performed. Hence, one has to rely on the 

assumption that all mixing angles arising in the course of diagonalization 

of the fernionic mass matrices can be neglected. Under this assumption 

the most general effective Lagrangian responsible for proton decay is 

given by 

1 ' 4 ji cijk ICI-H-V,, <iR><\\ i* V • 

• « • * L \ d i L > < - . e i y v -

• (,^<v« * % v ^ V v * 
( u \ \ •i*>(\\*u uil>* 

i»\\ »iL,(ukciy v 

<2.50) 
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^Vp^^L^V1*^ 
Unfortunately, even in CUTs some historical ballast is dragged along when 
defining the four-feraion interaction strength C by analogy to the Feral 
coupling constant C_: 

C a 2 

— : « * • - . (2.51) 
n *| 

The parameter x denotes the squared ratio of the aassea of the gauge 
bosons X and X', 

«J x :• — . (2.52) 
•x« 

characterizing by that way the underlying grand unified model. A priori* 
x can take any positive value, 

0 < » < » . (2.53) 

According to the relative magnitude of th«» gauge boson masses OL. and •_, 
there are, however, some special cases which deserve particular interest: 

Mass relation x 

•x" V 
•x" V 
»x'V 

The case «_ « m_, is realized in SL'(5) since SU(5) contains only Ch« 
superheavy gauge bosons X but not X', which is equivalent to a», • •». 
SO(IO) contains among its superheavy particle content both types of • 
•nd L violating gauge bosons. Besides the spontaneous breakdown of $0(10) 
via SU(5) there are, however, symmetry breaking scenarios which either 
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leave X* lighter than X (ideally m_ -» • ) , or which maintain the left-
right symmetry inherent in SO(IO) down to low energies, entailing thereby 

•x ' V* 
Gauge boson exchange in second order of perturbation theory intro­

duces a factor <*/«£ in the nucleon decay matrix element. Hence, oa 
dimensional grounds the theoretically expected proton lifetime hat to 
read 

a* 
T - — — C . (2.54) 

P « 2 M * P 
where C is a diaensionless constant summarizing the whole hadronic aspect 
of proton decay, of approximate order of magnitude 

C I 0(1) . (2.55) 

Assuming C - I one obtains from Eqs. (2.12) and (2.17) a naive estimate 
of the proton lifetime: 

T * I.6-I029 yr . (2.56) 
9 

Basically, this simple consideration has stimulated all of the current 
searches for proton decay and determined the design of these experiment*. 

H I . Baryon Number Violation in Supersymmetric CUTs 

Essentially the only convincing reason for dealing with supersymmetry 
(SUSY) is a purely theoretical one, namely the so-called Haag-topuszanski-
Sohnius theorem [3.6]: The most general algebra of generators - which arc 
assumed to act additively on initial nulei-particle states and to connect 
only single-particle states of the same mass-of symmetry transformation« of 
a non-trivial S-matrix ina relativistic quantum field theory describing solely 
massive particles isa graded Lie algebra (known as "supersymmetry algebra" (3.<]) 
spanned by the energy-momentum operator P , the generator of the homogeneous 
Lorentz transformation« M , a finite number of hermitean scalar charge« 
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generating a compact Lie group, as well as a set of II • 1 , 2 , . . . fermiooic 
charges Q (L • 1 , 2 , . . . , S ; 3 - 1.2) and their hermitean conjugates Q. " 

L * a * • (Q ) , transforming l ike spinors of rank I under the homogeneous Lorants a 
group and forming an N-dimmsional representation of the internal symmetry 
group. This graded Lie algebra of "N-extetaled supersynrnetry" i s the only 
possible non-trivial unification of internal symmetries and the geometrical 
space-time symmetries of the Poincare algebra within a r e l a t i v i s t i c quantum 
f i e ld theory. Thus i t describes the maximal invariance structure of tha 
S-matrix. 

In the case that there i s only one fermionic generator Q present in 
the theory, i . e . N • 1, the SUSY algebra takes a particular simple form 

{ W • Kl \ • 

«VV - {Q;-Q8} • ° • 
IQ ,P ] - 1<K* 1 - 0 , 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Here 0 are the generalized Pauli matrices 

°ll " <''0"> • 1,2,3 , (3.5) 

in terms of which the generators of the homogeneous Lorentz group in the 
spinor representation are given by 

.uv 

•wv 

1 . w —i v - u . •j (c 5 - a 0 ) 

j (a ? - 0 0 ) . 
(3.*) 

A» can be seen from Eq. (3.4), the fermionic generators Q and Q» 
change the spin of a given state by half a unit. Hence they turn bosom» 
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into feraions and vice versa, 

QjB> - /2E|F> 
(3.7) 

Q |F> - /2E|i> , 

without having any effect on the internal quantum numbers of these states. 
As a consequence of this, supersymmetric theories show a perfect Bose-
Fanai invariance: The numbers of bosonic and fermionic degrees of freedom 
are always identical. All particles appear in pairs of superpartn»r« carry­
ing the same internal quantum numbers but belonging to different statistics. 
Moreover, as long as supersymmetry is left unbroken, these superpartners 
have to be degenerate in mass, i.e. 

• £ - • £ • (3.8) 

Leaving aside gravity and bearing in mind the troubles of theories which 
contain spin-3/2 fields but no spin-2 field, one can imagine just two 
possibilities for pairing particles which differ in spin by half a unit, 
constituting in this way a so-called supermultiplet [3.3,3.5,3.3,3.9]: 
The "chiral supermultiplet" contains a two-component Weyl spinor if» (e.g. a 
left- or right-handed quark or lepton) and a complex scalar field A 
Csquark", "slepton"). The "vector supermultiplet" contains a vector 
field VV (e.g. a gluon, W, Z, or photon) and a two-component Weyl spinor 
> ("gluino'V'vino", "zino", "photino"). Re-stated more technically, these 
two supermultiplets form the nassless irreducible representations of 
lowest spin for (S • I) supersymmetry. 

However, one a little bit unpleasant feature of super symmetric theories 
has to be mentioned, that is the doubling of the number of particles in 
the theory. In a renormalizable theory all vector bosons have to be gaugt 
bosons. Consequently, all vector supermultiplets oust transform according 
to the adjoint representation of the gauge group. On the other hand, the 
known feraions constitute a fully complex representation of SU(3)_ *SU(2),» 
* U(l) y. They thus can only be described by chiral supermultiplets. Thence, 
no pair of known particles can be regarded as related by supersymmetry. 
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In addition to the Haag-Kopuszahski-Sohnius theorem there it a 
second somewhat technical but nevertheless grave motivation for super-
symmetry, which runs under the heading "(gauge) hierarchy problem" . 
Vhat is meant by the term "hierarchy problem" is the instability of light 
scalar masses against radiative corrections in the presence of a heavy 
mass scale. In quantum field theory the mass of an elementary scaler 
boson receives in higher orders of perturbation theory quadratically 
divergent radiative corrections. (In contrast to that, fermion masses 
are protected by chiral symmetries.) These radiative corrections tend to 
renormalize the scalar mass towards the natural mass scale of the theory. 
Hence, disregarding dubious fine tuning order by order in perturbatio« 
expansion, it appears, in general, impossible to maintain two (or more) 
vastly different mass scales in the theory. The desired hierarchy for the 
gauge symmetry breakdown (2.1) in grand unified theories, 

-Ü = |o"13 « 1 , (3.9) 

could not be realized. The problem is even more serious in the standard 
model. Here the mass of the Glashow-Salam-Weinberg Higgs boson would be 
increased by the quadratic mass renormalization to the order of magnitude 
of the Planck mass. In either case, the spontaneous breakdown of SU(2). » 
' U(l) would already take place at ultrahigh energies. 

The solution to this problem is provided by supersymmetry. Due to 
the high degree of symmetry implied by the Bose-Fermi invariance, super* 
symmetric quantum field theories show a by far less divergent high-energy 
behaviour, which manifests itself by a drastically reduced number of 
possible counterterms in the theory. This observation is expressed «ore 
precisely by the non-renormalization theorem [3.1,3.2,3.4,3.7,3.10,3.18]. 
In supersymmetric theories all mass terms, Yukawa couplings, and scalar 
self-interactions are described by the so-called superpotential. Nov, the 
non-renormalization theorem states that the superpotential is not re-
normalized at all. Consequently, the parameters of the superpnf»ntial 
fmasses, Yukawa coupling constants) are not subject to any renormalizatfoa 

•) For a more complete discussion of the hierarchy problem set Ret. (1.2], 

i 
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independent of Che wave-function renormalization. In fact, they only are 
multiplicatively renormalized by appropriate powers of the wave-function 
renormalization constanCs. The wave-function renoraalization being at most 
logarithmically divergent %t any rate, there is no room for quadratic 
divergences. Supersynmetric theories are completely free of quadratic 
divergences . The reason behind is a mutual cancellation of the contribu­
tions of boson and feraion loops to the quadratically divergent parts of 
all radiative corrections order by order in the loop expansion. Thus, 
supersymmetry offers a solution to the technical aspect of the hierarchy 
problem. It does not explain the origin of the tiny mass ratio (3.9). It 
stabilizes, however, this ratio against radiative corrections. 

Supersymaetric theories are post easily formulated in terms of super-
fields. Superfields 13.3,3.5,3.8,J.9] summarize a finite number of boson 
and fermion fields in one tingle object transforming linearly but, in 
general, reducibly under SUSY transformations. By imposing certain con­
straints, they can be restricted to irreducible SUSY representations, 
describing then, for instance, the chiral or the vector supermultiplet. 
The use of superfields considerably simplifies the construction of super-
symmetric models as well as the discussion of their internal symmetries. 
A remarkable feature of superfields is the behaviour of their highest-
dimensional component field under SL'SY transformations. The highest com­
ponent, e.g. the "F component" of a chiral superfield or the "D component" 
of a vector superfield, is always transformed into a total space-time 
derivative, the space-time integral of which is usually assumed to vanish. 
Thus the space-time integral of the highest component is invariant under 
SUSY transformations. 

In a realistic SU(3) C «SU(2) L «U(l) v * SUSY invariant theory the 
•iniaal set of chiral superfieldsis [3.13-3.15,3.17] 

•) The only exception is the one-loop contribution to the "D tern" of a 
U(l) gauge factor, which is proportional to Tr[Q] and thus, according 
to the spirit of grand unification, vanishes in CUT*. 
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Superfield S0 (3 ) c Sü(2 ) L T B L 

% 3 2 1 
6 

1 
I 

0 

Ü E 3 1 2 
3 

1 
3 0 

D E 3 1 1 
" 3 

1 
3 0 

S. 1 2 1 
"I 0 1 

h 1 1 - 1 0 1 

\ 1 2 1 
2* 0 0 

K 1 2 1 
~ 2 0 0 

The two left-handed Higgs superfields of opposite hypercharge are required 
for generating mass terns for both Q » 2/3 and Q • - 1/3 quarks via super* 
symmetric Yukawa couplings. In contrast to the standard model, super-
syiBKtry forbids the use of one Higgs and its charge conjugate for this 
purpose because charge conjugation flips the chirality of a superf*eld. 

As has been done in the previous section for conventional GLTs, one 
can now classify che possible Sl'(3) » SU(2) « t'(1 > Y invariant supersyamm-
trie effective operators which violate baryon number. Due to the existence 
of squarks and sleptons, i.e. scalar particles carrying non-vanithing 
baryon or lepton number, B violating operators of dimension less than 
six can be formed. Sl'(3). gauge invariance requires these operators to 
be a product of at least three quark superfields. The supersymnetrie 
component of a product of three chiral superfields has at least dimension 
four. Consequently, the lowest possible dimension for these operators is 
four [3.13]. As far as proton decay is concerned, it is sufficient to 
consider only the baryon number violating operators of dimension four snd 
five. The supersvametric operators of that kind composed by superfields 
from the minimal set given above are [3.13-3.15,3.171 
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Dimension Operator AI AL 

<U t D R D R ) r - 1 

« L \ DR>D -» ° 

<UR h DR E«>F '» "» 

( \ \ % K>r -" ° 

Again the generation structure has not been exhibited and the obvious 
contraction of SU(3)C and SU(2), indices in order to form gauge singlets 
is implicitly understood. 

In a low-energy Lagrangian an effective operator of dimension d wil l 
appear multiplied by a coefficient G of the order of magnitude 

G • 0(m£-*) . (3.10) 

Hence, the B violating operator of dimension four is not suppressed at 
all by inverse powers of the superheavy mass scale BL.. Proton decay in­
duced by this operator would proceed with a disastrously short lifetime 
of the order of seconds. It is, however, a simple task to get rid of this 
dangerous operator. All one has to do is to impose the fermion reflection 
symmetry [3.14,3.15,3.17] 

r * - t , P - Q L, U R, D R, L L, E R . (3.11) 

This requirement eliminates the operators (IL D_ D . )_ v (Q, Q, DR) , and 
(Q, QL Q, H£) from the theory . One is lef t with the dimension-five 
operators 
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and 

These operators respect the selection nil« 

AB • AL , (3.14) 

as has been the case for the B and L violating four-fermion operators of 
conventional CUTs. Consequently, irrespective of whether or not the grand 
unified moCel is supersymmetric, if nucleon decay is controlled by 
effective operators of lowest acceptable dissension, the nucleons arc ex­
pected to decay into anti-leptons, i.e. according to Eq. (2.34). Dimensioa-
six operators are suppressed by an additional power of the superheavy 
mass scale when compared to dioension-five operators. Thus, the dimension-
five operators 0 , 5 > and 0' s > are supposed to give the dominant contribu­
tion to supersynmetric proton decay. Note the chirality structure of 
these operators, 

0«» % <L L L L) , (3.15) 

0«> a (R I 1 R) , (3.16) 

reflecting, of course, nothing else but their SU(2), content. 
The origin of the dimension-five operators 0. ( 9 ) and 0' 5 ) might be 

found in Higgs exchange. In a supersynnetric theory the super-Yukawa 
#• coupling 

•) The B violating dimension-four operator poses a more serious problea 
in superstring theories. Th"«e the discrete symmetry needed to exorcize 
this operator cannot simply be postulated but has to arise in the course 
of compactification from ten to four dimensions. Until now, no example 
of a Calabi-Yau manifold possessing an adequate syonetry hat been 
found 13.19). 

••) The imposed fermion reflection symmetry guarantees that Higgs super* 
fields couple only to pairs of matter superfields (3.12). 

t 
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(F F B ) p 

of a Higgs superfield H to two matter superfields F describes not only 
the ordinary Yukawa coupling 

7f B 
of a Higgs boson H = A- to two feraions f = •, (Fig. 3.a) but also th« 
coupling 

f C &(sf) 

of the Higgs feraion H I •„ to « fermion f and a sferaion sf = A_ (Fig. 
3.b) as well as the scalar coupling 

(sf)(sf)H 

of the Higgs boson H to two sfennions sf (Fig. 3.c). Hence, in second 
order of perturbation expansion, the super-Yukawa couplings generate an 
interaction between two fermions and two sfennions, either by exchange 
of one of the colour triplet Higgs bosons JL. enumerated in Section II 
(Fig. A.a) or by exchange of its supersyoroetric counterpart H_ (Fig. 4.b). 
At low energies an effective theory may be derived by integrating out all 
superheavy degrees of freedom. The two-fermion-two-sfermion interaction 
then reduces to the dimension-five operator 

0«»» -v (sf)(sf)(f)(f) (3.17) 

sketched in Fig. 5. In either case the resulting effective coupling con­
stant G- which multiplies 0 < 9 > proves to be of order 

C. - 0(-i-) . (3.18) 
S \ 

(Recall that th* coupling constant of the scalar interaction (sf)(sf)H_ 
i s of th* order of magnitude of the superheavy Higgs ruse *u •) 
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Of course, in order to be relevant for proton decay, 0 ( s > must in­
volve the appropriate particle combination, in particular contain juat 
one leptonic field. Furthermore, the two sfermions have to be converted 
into fermions. The exchange of a standard-model gauge fermion, i.e. • 
gluino g = X , vino W E X , or a bino B -- X , between the two sfermions g » B 
does this job (Fig. 6). A Major ana mass term takes care of the necessary 
chirality flip of the gauge fermions. In this way the required four* 
fermion interaction 

Q 

L^^ (f)(f)(f)(f) . X - W, », g , (3.1» 

is generated via the one-loop diagram in Fig. 6. 
According to the above- sketched mechanism, only 0' s > can play • rdlt 

in supersymmetric proton decay [3.16). Due to colour anti-symnetrizatiom 
the two superfields I' in 0•", Eq. (3.13), have to belong to different 
generations since otherwise 0'*' vanishes identically. However, all right-
handed fields being SU(2), singlets, only B and g can be exchanged between 
them. Thus, at the gauge vertices the flavour ot the sfermions is trau 
fered to the external fermions. Consequently, the four-fermion interaction 
resulting from 0' 5' unavoidably involves a neavy Q » 2/3 quark. Hence, on 
kinematical grounds 0' s > is of no interest for proton decay. 

In supergravity theories, however, this statement is no longer tree. 
There the supergravity breaking at the Planck scale by the hidden sector 
of the model induces soft supersymmetry breaking terms proportional to 
the gravitino mass m... in the effective low-energy theory. These soft 
breaking terms give rise to off-diagonal entries of the form Am. .«•. in 
the sfermion mass matrix, where A denotes the Polonyi constant and n. is 
the mass of the corresponding fermion. The off-diagonal matrix element* 
lead to a mass mixing of the sfermions sf_ and sf R related to the left-
and right-handed fermion components, resp. This left-right mixing 
transform the SU(2), singlets sf- contained in 0's> into the SU(2), 
doublets sf, which then can interact via wino exchange in a flavour 
diagonal way (Fig. 7). Thus the resulting four-fermion interaction cf 
nixed chirality structure. 
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might well give an energetically allowed contribution to proton decay 
I*.*]. 

In conventional CUTs the proton lifetime scales with the fourth 
power of the COT mass, 

Wonv * °H? * ( 3 2 , ) 

In contrast to that, supersymmetric proton decay - Mediated by B violating 
dinension-five operators - proceeds with a lifetine proportional only to 
the square of the superheavy mass scale, 

TP.SUSY " 0 < - # ' < 3'"> 

One sight fear that this lifetine will be by far too short, making thus 
any aodel which incorporates B violating dinension-five operators pheno-
aenologically unacceptable. However, in supersymmetric CUTs the contribu­
tions of the superpartners of the known light particles to the renormali-
zation group equations for the standard-model gauge coupling constants 
tend to increase the grand unification mass scale as well as th . GUT 
gauge coupling constant (Fig. I.b) [3.11]. Including two-loop effects 
one finds in the minimal supersymroecric SU(5) model [3.16] 

* 6.I0 1 6 A ^ , (3.23) 

i.e. an enlargement of the value obtained in conventional GUTs by nearly 
two orders of aagnitude, 

(SUSY) 

-TCÜTT * 4 0 ' (3'24) 

"x 
In addition, ia case the baryon number violation originates in super-
Yukava couplings, there is a lot of mixing angles and small mass ratios 
•«/a., providing further suppression of the proton decay rata. The 
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combined effects say be sufficient to prevent any conflict with experi­
ment. 

IV. Theoretical Predictions 

As has been discussed in some detail in Sections II and III, in 
way or other conventional as well as supersymmetric GUTs predict the 
existence of B and L violating effective four-fermion interactions 

I -k C(q q q I) (4.1) 

between three quarks and one lepton (Fig. 8). The coupling strength C is 
fixed in terns of the superheavy mass scale IL. by the type of grand uni­
fied model, 

. n • 2 in conventional CUTs, 
G - 0(-i) , (4.2) 

m_ n • I in supersymmetric CUTs. 

In order to disintegrate a proton or bound neutron, the four-femion 
interaction (4.1) may act upon the quarks inside this nucleon, in prin­
ciple, in three different ways (Fig. 9): 

(i) Two-quark annihilation (Fig. 9.a): 

q • q + q C • t C . (4.3) 

The anti-quark produced in this process recombines with the remaining 
spectator quark to a mesonic final state. 

(ii) Three-quark fusion (Fig. 9.b): 

q • q • q • t C . (4.4) 

Energy-momentum balance is restored by the emission of a meson or photon 
before or after this process takes place. 
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(iii) Quark decay (Fig. 9.C)J 

c c c q * q • q • » (4.5) 

Quark decay leads Co a final state which contains aC lease two 
mesons. Consequently it is suppressed by che available phase space. On 
Che other hand, Che two-quark and three-quark mechanisms appear Co be 
roughly, i.e. within a factor 3 or so in amplitude, comparable (see Ref. 
14.3] and references therein). 

The problem which introduces the largest source of uncertainties in 
the calculations of nucleon decay widths is the evaluation of hadronic 
matrix elements of interactions formulated in terms of quark field 
operators. In order to bring this translation from quark level to the 
hadronic level about, a great variety of hadronic models, like nonrela-
tivistic SU(6), the MIT bag, Bethe-Salpeter amplitudes, or chiral 
Lagrangians, have been employed [1.2]. 

The bulk of the theoretical investigations of proton decay concen­
trated on the minimal SL'(5) model. (This model is minimal in the sense 
that it requires the smallest conceivable Higgs sector.) ror conventional 
CUT» the following picture emerged [1.2]: Splitting off the dependence 
on iv, the proton lifetime T is usually parametrized according to 

a_( 
p \0lk CeV 

i» 
) . (4.6) 

The predictions for the parameter a cover almost two orders of magnitude, 
P 

0.2 < 
I 0 2 8 yr 

< 14 . (4.7) 

Thus the value (2.17) for the CUT mass, a_ • 2.4-I01" CeV, correspond» to 
the range 

0.5 < 
I0 2' yr 

< 46 (4.S) 

for the proton lifetime, in accordance with the rough estimate (2.56). 
The ratio of bound neutron versus proton lifetime appears to be rather 
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close to unity, 

0.8 < -S < I.I . (4.9) 
— t — 

P 
Most calculations obtain a slightly larger lifetiae for the proton than 
for the bound neutron [1.2]. The branching ratios 

„, , c ^i\ r(p * t C • M) _, „ _# -c • c • c 
B(p * I *M) - r J ^ 2 . b o d y ) . M - w.n.p.-.K.K . 1 - e ,v e ,|i .v^ 

(«.10) 

found for two-body proton decay within Sl'(5) are listed in Table 1. The 
corresponding decay races for bound neutrons are not independent but 
related to the ones for proton decay by strong isospin. One observes a 
still remarkably large spread for the decay modes p * e n , e p . v p , 
and u K°. The decay channels 

• o p + e • t 

p * e* • » (4.11) 

and 
• 

n •*• e • w 

n + v e
C • f° (4.12) 

n •*• v * w 

prove to be dominant all over the whole spectrua of CUTi (see e.g. Ref. 
(4.1]). Considering the electromagnetic nucleon decay 

M * t C • Y , (4.13) 

the ratio of the photonic to the pionic decay width, 

•0" J , (4.U) US-* 'c * T> , ,0-J 

and 

f(M • l C • f°) 
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turns out to be independent of the grand unified aodel [4.1]. 
In supersymmetric CUTs it is more difficult to arrive at fir« con­

clusions. The proton lifetime is determined by some unknown parameters, 
mainly by the masses of so far unobserved superpartners. If the dimension-
five operators discussed in Section III arise from Higgs exchange and if 
the exchanged colour-triplet Higgs fields belong to the same supermulti-
plets which give masses to the known tensions, so that the B violating 
super-Yukawa couplings have to be proportional to the corresponding 
fermion masses, one expects proton decay to favour decay channels in­
volving heavy fermions. Accordingly, supersymmetric proton decay should 
manifest itself by a distinct dominance of strange decay modes, 

M -• v f° • K , I " T,M,« , (4.15) 

and 

N + I* • K , I • w,« • (4.16) 

Neglecting contributions suppressed by small mixing angles or by the 
mass ratio m /m - 0.003, one obt u c * 
supersymmetric SU(5) model [4.2] 
mass ratio m /m - 0.003, one obtains, for instance, in the minimal 

r(p - v CK*) : T(p -• v % * ) : T(p - v ^ V ) -

- 1 :0(tg 29 r) : 0 ( — c t g 2 0 r ) * I : 0.11 : 0.048 , 

where G„ denotes the Cabibbo angle. 
The recent activities in the field of proton decay can be divided 

into two main streams: supersymnetric proton decay and attempts to re­
concile the theoretical predictions for the proton lifetime with the 
experimental findies (2.22). Chadha, Daniel, and varying collaborators 
have been undefatigably at work in investigating supersymmetric CUT« 
with the help of chiral Lagrangians (4.4]. The question concerning the 
amount of the contribution of gluino dressing of dimension-five operator* 
has been settled (4.5). 
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By now, the experimental lower l i a i t for the proton l i f e t ime has 
been pushed more than two orders of magnitude above the central value 

T * 4 . 9 « 1 0 2 9 t l yr (4 .18) 
P 

of the theoretical predictions (4.8) for great desert CLTs (see next 
s ec t ion ) . In view of t h i s , great e f forts have been undertaken in order 
to embed th is experimental result in the theoretical framework [ 1 . 3 - 1 . 5 ) . 
These attempts f a l l into two categories , according to the mas* scale 
where they try , v i z . the grand unif icat ion mass scale m. [ 4 . 7 , 4 . 8 ) or 
the hadronic mass scale u • 0(1 CeV) [ 4 . 9 , 4 . 1 0 ) . On the one hand, i t i s 
always possible to increase the GUT mass au by an appropriate enlargement 
of the grand unified model, that i s by introducing new part i c l e thresholds 
(gauge bosons, fermions, Higgs scalars) in the grea r desert between m, 
and m... These new part ic les w i l l then serve to slow down the rate of 
approach of the standard-model gauge coupling constants, delaying thereby 
cheir grand unif icat ion. Any modification of th is kind is only constrained 
by the requirement not to destroy the successful prediction of the 
Weinberg angle in great desert GUTs. A severe drawback of non-minimal 
GUIs, however, is their dras t ica l ly reduced predictive power. - On the 
other hand, one can try to find the required suppression mechanism for 
proton decay within the hadronic model one adopts. The most in teres t ing 
suggestion argues in favour of a Gamov-like barrier penetration factor 
which might diminish the nucleon decay rate by approximately one order 
of magnitude [ 4 . ( 0 ) . However, none of the proposed suppression mechanisms 
can account for the entire above-mentioned discrepancy. Consequently, 
leaving aside the poss ib i l i ty of a mysterious conspiracy of a l l conceiv­
able e f f e c t s (which, of course, include the uncertainty in the deter­
mination (2.16) of An?), non-supersymmetric minimal SU(5) as wel l as a l l 
other conventional great desert CUTs are def in i te ly ruled out by experi ­
ment. 
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V. Experimental Situation 

All of the experiments dedicated to the investigation of nucleon 
instability are designed according to two main technologies differing 
in their source of decaying nucleons, viz. iron or water: fine grain 
tracking calorimeters and imaging water Cerenkov detectors. The currently 
active experiments are briefly characterized in Table 2. In addition, 
the Soudan 2 experiment of the Argonne-Minnesota-Oxford- Rut her ford-Tuft« 
collaboration, using a tracking calorimeter located at the Soudan iron 
mine (Minnesota) at a depth of 2000 u.w.e., is about to start taking 
data. Most of the experiments in operation have observed a number of 
nucleon decay candidates (Table 3). Most important, all of the reported 
candidates allow for a AB • iL interpretation . However, only improved 
statistics supplemented by refined background estimates will decide 
whether these candidates are true nucleon decays or mere neutrino-induced 
background. All one can say at the moment is that nucleon decay occurring 
at a rate of about 5Z of the contained events - the overwhelming majority 
of theo being, in any case, due to interactions of atmospheric neutrinos 
- cannot be excluded. 

The lower bounds on the partial nucleon lifetimes 
*) The existence of unambiguously identified candidates for decay modes 

with charge conjugated final states, 

n -• I* •» M," , M » *,p , (AB • AL) 

as well as 

n + l" • H* , M • w,p , (AB - - AI) , 

i.e. the existence of AB • - AL nucleon decays for which no AB • AL 
interpretation can be found, would indicate that there is something 
wrong 'ith these candidate events. Whatever the source of AB « - AL 
nucleon decays (e.g. dimension-seven operators in conventional CUTs 
(2.10] or dimension-six operators in supersymvetric CITs (3.17]) might 
be, it is highly unlikely that AB • AL and AB • - IL nucleon decay 
•odes are induced at a comparable rate. 



32 

T ( N * l C * H ) - ~ 5- (5.1) 
T(N • t *M) B(N > t *H) 

for AB - AL two-body decay nodes, as reported by NUSEX, 1MB. and KAMIOKAHDE, 
are compiled in Table 4. The HPV collaboration has focused on nucleon 
decay nodes involving two or «ore nuons. Their results are 

x(p • 2u • X) ^ 5 * I 0 3 1 yr (90X c.t.) (5.2) 

and 

x(p - 3u • X) >_ 2.7«I0 3 1 yr (90X c.t.) . (5.3) 

The Frejus experiment quotes a lower linit of 

T(N * r • X) > 4»10 3 1 yr , t - e.u , (90Z c.l.) (5.4) 

for nucleon decay into charged leptons. 
The comparison of theory and experiment depends, of course, on the 

grand unified model on which the theoretical discussion is based. For a 
given grand unified model, according to 

T(N * l c • M) B(» • t C • M) . 
22 - T(N * t C • M) Ä (5.5) 

T(N - l c • M l . e* p TM,th 
tn 

the most stringent statement can be made for that decay mode for which 
the experimental partial lifetime and the theoretical branching ratio 
are largest. Both requirements are fulfilled for the decay channel 

p •*• e* • w° , (5.6) 

which belongs to the most favoured decay modes in all conventional GUTs, 
with a representative value for its branching ratio of roughly 1/3 (set 
e.g. Ref. U.I]). At present, the best number for the partial lifetime, 
hence the actual lower bound, is provided by the Kamioka group [5.I2J, 

t(p • e* • ir°) > 3.3» 1 0 " yr (90X c.t.) . (5.7) 
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Consequently, adopting the central value (4.18) for the theoretical protoa 
lifetime and a branching ratio of 

B(p + e* • w°) * 40X (5.8) 

taken f roa Table 1, one ends up with a discrepancy of nore than two orders 
of Magnitude, 

t ( p •*• e • * ) 

ilp * e • if ) h 

S2E» 3-102 , (5.9) 

for conventional minimal SU(5). This discrepancy between theory and ex­
periment is bound to get increased in all other great desert GUTs where 
additional i violating gauge bosons contribute to the nucleon decay rate. 

The results obtained by 1MB and KAMIOKANDE clearly point out that 
further progress demands nucleon decay detectors of a fiducial mass 
minimum of about 1000 tons. In view of this, a further operation of NUSEX 
and the Frejus experiment has to be challenged very seriously. On the 
other hand, most premising in this respect is the proposal for a Cerenkov 
detector of 32 kilotons total mass (22 kilotons fiducial mass) to be 
installed in the Karaioka mine. This detector should be able to continue 
the search for proton decay up to the ultimate upper lifetime limit of 

T M 10 3 3 yr (5.10) 

where any nucleon decay signal gets drowned in the background of neutrino 
interactions. 

VI. Sui 

In this report the theoretical picture of proton decay, as it emerges 
as a consequence of grand unification, has been drawn and subjected to th« 
sentence of experiment. 

The discussion of baryon number violation has been performed in an 
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absolutely taodel-independent manner. Unfortunately, the existence of 
nucleon decay has not yet been established by experiment but all experi­
mental findings are still consistent with a proton lifetime somewhere 
around I0 3 2 years. Nevertheless, proton decay has not been found at the 
level predicted by the class of those grand unified theories which con­
tain only two mass scales. Consequently, all conventional great desert 
CUTs (minimal Sl'(5) and the like) are inevitably disproved by the experi­
ments carrying out the search for nucleon decay. This fact might be 
regarded as a hint that a crucial aspect of grand unified theories ia 
not yet understood, that an important point or ingredient is still missing 

An (as I hope, convincing) reasoning in favour of supersymmetry has 
been given despite of the total lack of experimental evidence for it. 
Supersymmetric CUTs favour the nucleon decay modes into neutrinos, 

• * v C • M , t • T,y,e , (6.1) 

and, to a less amount, into strange mesons, 

II • I • K , t • u,e . (6.2) 

The experimental bounds for these decay modes are by far less restrictive 
than for the decay channels favoured by conventional CUTs, leaving the 
minimal supersymmetric CUTs alive. The experimental observation of the 
dominance of the decay modes (6.1) or (6.2) would not merely confirm 
baryon number violation but, simultaneously, point at supersymmetry and, 
eventually, even indicate an elementary Higgs boson [1.2]. 

The exchange of B violating gauge or Higgs bosons and their fermionic 
superpartners is not the only mechanism which can induce proton decay. 
There is a further source of nucleoa instability in grand unified theoriet 
which should be mentioned: magnetic nonopoles. Magnetic monopoles arise 
whenever a semi-simple CUT gauge group is spontaneously broken down Co 
a subgroup containing an explicit L'(l) factor (6.1), 

CUT -—-•• H*C(I) . (6.3) 

i 
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Their aass WL. is predicted to be superheavy. 

w^ - 0(—) I JO 1 6 Ce¥ . (6.4) 

These aonopoles M aay catalyze B violating processes like [6.3] 

p * M + e * * M * Be sons . (6.5) 

The corresponding cross sections are comparable to those for strong 
interactions [6.4,6.7]. In particular, they are not suppressed by the 
exponential factors exp(- 2w/a) characteristic of non-perturbative effects 
or oy powers of the superheavy mass scale BL. [6.2,6.3,6.5]. Consequently, 
magnetic oonopoles would reveal themselves by a chain of successive 
nucleon decays crossing the detector volume [6.6]. A search for monopole 
catalyzed nucleon decay has been performed by NL'SEX, 1MB, and KAMIOKANDC. 
However, until now there is no evidence of magnetic monopoles [5.6,5.11, 
6.8). 

Far beyond doubt, superstrings represent the most promising develop* 
ment taking place at present. Many of the ideas developed, investigated 
and pursued within the last decade or so - like grand unification, super-
symmetry, supergravity and its hidden sector, extra space-time dimensions 
and their compactification (i.e. generalized Kaluza-Klein theories), and, 
last but not least, the concept of fundamental objects of finite extension 
(strings) - now seem to converge and fuse to a single theoretical concept, 
viz. superstring theories. (This observation adds another case for super-
strings to the already well-known ones.) As time goes by, the superstring 
theory - completely determined only by the requirement to formulate « 
consistent quantum theory - might prove to have to say the final word on 
proton decay. 
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Table I 

Approximate ranges of the branching ratio* 

•(• •» ft • n> r ( } J ^ 2-body) 

for the two-body proton decay p •»• I • M in the ainiaal conventional 
SU(5) aodel. 

Decay aode Branching ratio [Z] 

p * «* »° 3 1 - 4 6 "] 
i 

p • « n 0 - 8 

p • «* p° 2 - 1 8 

p + m* m 15-29 

p -• v C w* 11-17 

P * v^ p 1 - 7 

p -• u* f9 » - 20 

p * v C K* 0 - 1 



Table 2 
Currently operational nucleon decay experiaents 

Detector 
typ« Experiment Collaboration Location Depth Total Fiducial 

[ni.w.e.] mass mats 
[t] [t] 

Comment• Ref. 

KCF Tata-
Osaka-
Tokyo 

Kolar 
Cold 
Held« 
(India) 

7600 140 60 
proportional [5.1] 
counter« 15.2] 

Fine grain 
Cracking 
calorimeter 

Nl'SF.X 
(Nucleon 
Stability 
Experiment) 

Frasrati-
Mi 1.1no-
Tor ino-
CERN 

Mont 
Blanc 
tunnel 

5000 150 100 
•treamer 
tube« 

15.3] 
[5.6] 

Frijua 

1MB 

Aac hen-Oraay-
Palaiseau-
Saclay-
Wuppertal 

Frejus 
tunnel 

^rvine-
Michigan-
Brookhaven NL 

Morton-
Thiokol 
salt mine 
(Ohio) 

4400 912 600 

1570 8000 

Clash chamber«, 
Geiger tube« 

photomultiplier [5.5] 
3300 tube« [5.7] 

(5.0) 

Imaging 
water 
C*er«nkov 

KAMIOKANDE KEK-
(Kamioka Tokyo-
Nucleon Decay Niigata­
mper iaent) Tsukuba 

Kamioka 
mine 
(Japan) 

2700 3000 880 photomultiplier 
tubes 

MTU 
Harvard-
Purdue-
Wi«con«in 

Silver King photomultiplier 
mine 1500 780 560 tube«, 
(Utah) proportional 

wir« chamber« 

o-



41 

Table 3 

Number of fully contained nucleon decay candidate events observed 
by the currently operative nucleon decay experiments. 

Experiaent Muaber of candidates 

KCT 

MUSEX 

Prejus 

5 

3 

0 

1MB 

KAMIOKANDE 

HP« 

21 

4 

3 
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Table 4 

Experimental lower bounds on the partial nucleon lifetiaet 

T(N + l c • M) = 

r(M -• t C • M) B(N • t C • M) 

in units of I0 3 1 yr (90t ct., no background subtraction). 

(a) Proton decay: 
Experiment 

Decay node 
MUSEX IS.9] 1MB 15.10) KAMIOKANDE 15.11] 

• « • . ° 1.3 25 5.1 
• 

•» « n - 20 5.1 

* . * K ° - 7.7 3.0 

*«%° - 1.7 1.0 
• 

• • m - 3.7 2.0 
• _«o •»« 1 w - O.B 

• 0 1.0 7.6 3.8 
• • |i n - 4.6 2.1 

- M*IC° 0.8 4.0 I . I 
• 0 

• u p - 1.6 0.6 
• 

•* v m - 2.3 -

• v c * * 0.3 - 0.4 

• v e C * 0.6 1.0 I.S 
c • 

• V 0 - O.t 0.9 

* v K • 1.0 1.7 



(b) Bound neutron decay: 
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Decay 

NUSEX [5.91 

Experiaeot 

1MB [5.101 KAMIOKANDE [5.11] 

n * • t 
• -n • « p 
• -n -» p v 
• -n * P P 

n - v c t° 

n * v c n 

v CI° 
c o 

n * v p 
n • v c m 

n > v c K -

2.1 

0.6 

1.3 

1.2 

3.1 

1.4 

2.3 

0.7 

0.4 

2.5 

1.S 

0.2 

1.2 

0.5 

2.6 

0.6 

2.0 

0.3 

2.1 

3.4 

1.6 

0.4 

2.1 

0.4 

n 



u 
Figure Caption» 

Fig. I {*) The Q:-behaviour of the standard-model gauge coupling constants 
B;(Q2)i i • '.-.3, in great desert CUTs. 

(b) The modification of this behaviour in supersymmetric CUTs. 
Fig. 2 The interaction between three quarks and a lepton, generated by 

exchange of a generic superheavy, B and L violating gauge boson X. 
Fig. 3 The components of the Yukawa coupling of a Higgs superfield to 

two matter superfields: 
(a) ordinary Yukawa coupling f°f H, 
(b) Higgsino-feraion-sfermion coupling 
(O two-sfermion-Higgs coupling (sf)(sf)B. 

Fig. A The two-fermion-two-sfermion interaction, generated by exchange of 
(a) a superheavy, B and L violating Higgs boson H_, or 
(b_) its fermionic superpartner H_. 

Fig. 5 The effective dimension-five operator G_(sf)(sf)(f)(f), obtained 
from the Higgs exchange diagraas of Fig. 4 in the limit •_ •» •• 

Fig. 6 The effective four-femion interaction G_(f)(f)(f)(f), obtained 
from the dimension-five operator in Fig. 5 by gaugino dressing. 
The cross represents a Majorana mass of the gauge feroions. 

Fig. 7 Contribution of <>•*» to proton decay. The stars represent off» 
diagonal elements of the sfermion mass matrices, which mix left 
and right scalar fermions. 

Fig. 8 The four-fermion operator C(q q q t) responsible for proton decay. 
Fig,. 9 The three quark-level mechanisms by which the effective four-

fermion interaction in Fig. 8 can induce proton decay: 
(a) Two-quark annihilation: q + q * q + 1 » 
(b) Three-quark fusion: q + q + q » t , 
(c_) Quark decay: q * q c • q c • t c. 
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