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\ least squares method is proposed to fit the geometrical parameters of a
set of curved tracks assumed to originate in a common vertex : the parameters
mieasured mdependently for cach track are first extrapolated with their weight
hatry e @ point close to the expected vertex position 5 then a local parabolic
paraimetrization of the trajectories is used in a fast fitting procedure, where alt
parameters {vertex coordinates and track parameters) are moditied at cach
steration ¢ the global amount of computation is roughly proportional to the
aumber ot tracks. Morcover this formalism is well suited to add @ track to an

ewistimg vertes, or to remove a track from it.

Urn propose une méthode par moindres carrés pour ajuster les parametres
woeatnetriques d'un ensciible de traces courbées supposées provenir d'un vertex
Cemsinan 1 les parametres miesurés indépendamment pour chaque  trace sont
Faboerd extrapolés cvee leur matrice de poids jusqu'a un point proche du vertex
LevtoLoensuite une pru.édurv rapide d'ajusternent, avec unc paramcirisation
parabolique des trajectoires, riodifie tous les parametres (position du vertex et
paramuctres des traces) a chaque itération 3 le volume global de calcul est a peu
pres proportronnel au nombre total de traces. De plus ce formalisme permet

arsement d'ajouter ou de retrancher une trace a un vertex existant.
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L. Introduction :

Vertex fitiing procedures are used to obtain a precise detetin.alivi ..
the momenta of charged particles {or neutral ones decaying in charged mode).
and possibly a discrimination between different possible topologies. They are
applicd to a set of tracks previously individually fitted ; the information on each
track is summarized by geometrical parameters (5 for 3 D tracks curved in a

magnetic field) and their weight matrix.

The simplest approach is to search for the vertex as the point closest to
all trajectories, according to their weights, and then to determine the direction
cosines of each particle at the peint on its trajectory closest to that vertex. Te
improve the accuracy on the track pararmeters (espec:ally the curvature), cach
trajectory can be fitted again, including the vertex as an additional point 3
however this is not quite optimal, because the vertex thus defined depends
partly on the points measured on this track, so it is correlated to them : the
correlation is negligible if the weight of this track is small w.r.t. the total

weight of all tracks involved.

In sect. 2 we propose @ method te pertorm an optimal fit of globally all
pararieters : vertex coordinates and 3-momenta of all particle. Rather than a
constrained [it (difficult to implement) we consider a parametric tit, where the
trajectories are determined by 3 genera! parameters (vertex coordinates) and 3
particular parameters for each track ‘e.g : two direction cosines and the
curvature, or the components of the mornentum). This "hierarchical” paranictri-
vation (ci. ref. 1)} allows a fast resoluticn of the linear system to be solved at
cach iteration, using operations on (3x3) matrices ; the number of clementary

operations is merely proportional to the number oi tracks.



Morcover we show in sect. 3 that this algarithm is well suited to the
addition of a track to a vertex already fitted with other tracks, or to the
subtraction ol a track from a vertex : such an operation is simplified by linear

approximation of the variables as functions of the parameters.
2. Glabal [itting algorithm :
2.1. Formalism :

Let us consider a vertex with n tracks (n > 2). The track i was initially
described by 5 parameters 9¢ Gy Jegand their weight matrix Wl. The Q,“' are
now variables depending on the parameters X, ¥, Z (coord. of the vertex) and

PearPiz, Prs (deiining the track i at the vertex) :
®
qi"' = F& (X; Y, Zl Pcg s ?‘.7 p] F"Z )
b want to fing V- (X, Y, 2) and the Py which minimize the X’;
XI: Z JZA (Wl. )3& [?s‘a' - FJ (V) P&)] [ w) P.)J
<& N : —_
Aqey A qen
or. with matrix notations :
&
X1: é A‘ﬂ,: W Aq;
<
fv do this, we linearize F around starting values of the parameters :
FAAV+EV P+ SPe ) = F (V,p- ) -D. SV - E. 5p, |
The equations for ihw minunum are then
t t \
(Z 05w, D)8V & (B weE)Sp = Z VW Aq (U
’ . <
¢ 3 ¢ € . 2.2
and. for each ¢ : (f__: W, D;) v ‘f-(E; W"ﬁ“)5?" :? E. W, A?; ( )

where . OV=(8X,8Y,87)  ang p. = (Jpq) OpPia s JP.'? )
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are the variations of the parameters {unknowns to be calculated).

. D. is the matrix of derivatives of g;w.r.t. V

. _ dF
(D&>a'ﬁ = —3_\—/:_ (V,P{)
. Ei is the matrix of derivatives of § w.r.t. Py
2 Fy \
N = Voo
(Edje = S5 (Vo)

So we ohtain 3 cquations involving all parameters :

A SV + = By dp = T (2.1

¢ t
with A ZD W Do ang - D we B

B
and 3 equations invalving X, Y, Z and Pf"R-ljp;i for each of the n values of i :
: 5
Bi &V 4 C: op: = U (2.29

Ly. (2.2") gives 5?‘. as a function of &V: ¢
Sy, = C? (U,: - B; SV) (2.3)

witii these expressions, (2.)') becomes :
— t — -
(A-Z B;C;'B;) SV = T-Z2 & ¢, (2.5)

Thus in a system of 3 equations giving 5x LY, 8Z, nence SP‘ ihrough (2.3).

Some extra algebra provides the covariance matrix of the paramezers :

cov {V, V) - (A—? B.'C;‘B‘,t)'l
cov (V,R) = - cov (V.V). B: €[

- =1
cor (o) - iy €7 - U BE cov(V,V) B (Y

All parameters are now correlated.



2.2. Parametrization :

We need onfy a local parametrization of the trajectories from the vertex
to the point where the quantitics q.* are defined (generally the first point
micasured on the track). If the distance is too long, we can in a first step
extrapolate the 4, to a point close to the expected vertex, and propagate M
into -b*w B \\'herc-"a s the derivative matrix of the injtiaf Cflv w.r.t. the
extrapolated ones. [xact and approximate expressions of @ arc given n app.l
tor some simple cases. This propagation can also account for multiple scattering

between the vertex and the track detector.

Around the vertex we can use, either a helix parmetrization, or, simpler a
second order expansion of the trajectory. As an example, if the Q‘ are the
position (y and /) the direction (slopes u; = J-and v —%5’5) and the curvature at
a given value of x, we choose as parameters Prk the slopes U;:;%',VF‘%
ai the vertex (X, YV, Z), and the curvature {which is independent of the point

chosen).

The trajectory is defined locally by :

Y Y4+ U (x-X)+ :;_—"(m—)()z
3= Z + V(' ('7(-’0 + % (x—x)z
U, = Uy + ot (x-X)
ez Vo B (x-X)

o= g J1+u‘.‘+\/;‘ [ves, +usve B‘a"(”u‘l) 83]
RBe = & JarUTevT [Cu; B,‘+(4+\/f)ga— U Ve 83]

where



Ez, B.a) BZ are the local magnetic field components, and 9‘. 15 the signed ratio
ol eclectric charge to momentum.

Hence the dervatives (with Ax=x-X ) :

¥} o] X Y, Z U: Ve g
Ui f-Ui-dhAe] 1 | O [Ax 2R AT | Bete Axr | Ay Aw™
W vy z S z
3 _V;-r;:ﬂz [34 1 2 " Bacr Ax . 28 Ax B¢, Bz
30, = v, 2 g, =z
U, — [2] o 4+££.A~n- a;'ﬁ'.Ax oL Ax
U, M. g
vy -fo |o | o 28 . A 4 +28: 4 | Bi. oax
. 2U; ELR b
8¢ o o | o =] o 1
—
ymateex D¢ matrin E¢

For short distances many terms containing Az or Ax*can be neglected. When the
distances are also negligible w.r.t. the radius of curvature, 1\( and E; have very

stnple expressions :

~Us 4 o Cax] o o
~V; 0 A o [ax] o]

D: = ¢ o D0 E: =1 4 o [difpax]
-R: fa) o) o 4 [F"l‘?le]
o) o o/ o

(o] 14 /

Ferms into brackets can be omitted when the ratios (error or position)/{error or
St and {error or slope)/{error or curvature) are large w.r.t. the range of the
parametrization. 1f the extrapolation length beiween the first measurea pomit
and the vertex is not too large these ratios are of the order of the measured

ength, so in most cases the above condition is fulfilled.



3. Updating the vertex : addition and subtraction of tracks :

3.1. Lincar approximation formalism :

The lincar approximation of the variables as functions of the parameters :

F(\J+A’V, pt~+5?:) = F(V, p) + DBy dV+ E: SFC

1~ applicable provided that the parameters do not vary largely when adding or

subtracting a single track.

Let us suppose that we want to add a (n+1)-th track to a vertex already
constructed with n tracks. We take as starting values : V and p; .1 twn

prestously fitted, and p 50 as ic have small differences Aq'ni between the
i

n+ 1

viaiues deduced from Vo and Pn,1 through (2.1), and the measurcd ones (e.g.
-

¢hoesing the neasured curvatures, and the direction at the vertex so that the

direction at the first measured peint coincideg with the measured one).
Within the lincar approximation, the contribution of the first n tracks to
the le. a quadratic function of 8¥and ap,
n
2 tot E_t R
Yoo + 2 (DL 4 Sl ES Wi (DY + B Sp)
t=1

e contribution of the (n «+ |)-th track is :
t
(AQ-\H + Dhﬂ JV + E\‘\41 51}""‘) Wnﬂ (‘A‘fnn-fbnﬂ 5V+ E"”JP" H)

\Minunizing the global gives :

art e "t x
(2-:: DowiD:) sV +§1 (VW) Sp =D W, My (a1

= for i:1 Yo m (f: W Dc)é\/«e—(EfW.'E;\ B = O (32)
' (E:ﬂ W.z\ﬂ .D,H,1\ 5\11' (E:—f'\ Wnn En t1 ) 5?’\71 = (3.3}

t
Ev\v1 w“,,‘ Aq:u-1



With the notations used in (2.1') and (2.2"), plus :

A =D w. D

22X} na LT (]

[
Tv\n = Dnm Wosa A“n+1

we obtan :

J (A+F\,\H) SV+Z_— R: 3pr = Tapr (111
tor {24 bem RY SV + C; dpr = O (.21
BE{'\ JV + c"4’1 5?"*1 = L) 0.3

Lgs £3.2'Y and (3.3 give IYF‘ (i 1 ton- 1)as functions of & V¢

5?( - - (‘_.1 RE JV (¢=1t w) (3.

SPP\+1 = V\+1 (U - :f" A‘V)

(3.

whenee, with (3.1 ¢
. vt _ l._
(A+ An “Z— g.'c-"g.‘)gv:-rn 1_8 CM—1 ner (3.6)
41 (=1

Tus systens ol 3 equations gives BY- (SX‘.-STIXZ), and then SP., through (3.4} and
(3.9,

A- B0 RS
=1

compute the right-nand side and an additional term to the tett-hund side.

was already calculated in the n-track Hite one has 1o
Ve
C‘. B.‘ are already known, so that the amount of calculation needed 1y thes
tormmalicm is much smaller than a new [it with n + | tracks {evon ol himted to
only one iteration).



The same algorithmi can be applied to remove a track from a vertex, giving a

negatne weight -Wy to this track.

3.2. Niscussion :

Fhe main point to discuss is the validity of the linear approxirnation,
which allows to consider the derivatives matrices Di and [3.1 as constant in the
range of variation of the parameters. In principle this range should not exceed
largely the uncertainties on the track measurements : for usual detectors this
corresponds to negligible variations of [)i and L. if a track added 1c a vertex
modifies strongly its parameters, it is likely not issued from this vertex. If that
15 the case when removing a track, this track should have been rejected from

this vertex belore the fit by preliminary cuts.
Eqgs (3.1 and (3.2) give a quick precedurce for updating of the global
and also the contribution of each rtrack 1o its variation, whence a probability

criterion to accept a new track, or, if needed, to reject an old track. in order to

tind a better topological assignment.

4. Conclusion :
The vertex hitting procedure proposed in this paper has many advantages :

It uses in an optimal way the informfation provided by the

indinadual fiv of the tracks.

. It relies on few elementary operations on (3x3) and (3x5) matrices

1 %0 it can be coded with high efficiency.



. In many cases, the calculations are speeded up by reasonabie
approvimations on slightly eurved tracks. The modular structure of the algorsthn:

atlows 10 applv ditterent treatments to tracks i the same vertex.

. In the hinear approximation, additien or subtraction of tracks are

tast operotions compared to the whele fit. They could be used

vorstniet g verten trach by track, and to examine quickly different posshin

topologics.,

as ools e
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- Appeadix

weight matrix propagation

F
Woeowant o calealate the matrix aa of derivatives of S guanbites q*
setieng e track at a o given paint 7 for example the first measured pointl,

Wt ) quantite ; at a point V coxtrapolated near to the vertex. Asn

wocnoose for qa‘ fy oz dalolﬂ s\ dx/oliat {ixed x and ¢ simned

reito of charge to momentuin.

Refore amy calculation let us remark that, contrary to the accuracy
needed for trajectory extrupolation, we can accept an approximation of ;/) for
weight propagaetion. So we suppose hercalier the magnetic field to be unitorn:
and the energy loss 10 be negligible 10 the range of propagation, in order to use

« helin parametrization,

I most cases. the extrapelation Jength (projected onto a plane perpen-
dicular to the Tield) is small w.r.t. the radius of the helix, so that the retation

angle drom Vote Fois small. and we can use the same second order parametr-

Setanas in 2.2, and an approximation r!f@at first order 11 this angle. [0 oS

. L
dubcovinaiion we shrain, with A= = x - =V

/4 o Ax o o
/o A (o) Ax o
- N=lo o 1 o =Za=x
- o o o 4 Saax
\ Vo o o o )

(eapressions of & and (, were given in 2.2.).



It the rotauon angle 1s not negligible, we need an exact helix paramelr)

caton. et s exadnane fiest the case where the magnetic field s alang x-axes &

v! v v

v v v —
wegehne for comenmicnoe Vo 7, e o Loooat hixed xoso that

Joome e, 4

Iootiosd Van d Y 4/R gB, (R is sagned) and v the saine wae
e F’ t

2 - qs ot tived v ooy the slope of the track wer it a plune perpendioular
“oothe nggnetn telds and & as the dngle werto v o axis noprajection snto this

Deanch,

x.
The propapaton along the hehix from ot s expressed by

CF: L\l

i tF, tv . .

Ave oFfmu¥s ot (2x")

L A L S
&

A—s = ’)ZsF‘ -s" = C/«.v>-=("~—':.4\u(F
<

fran tiese expresswons we deguee the matrix of dernvatives Ny,

avfast 4" [ 3 | & £ e
F
1‘: 1 0 -A-S Ax f.\na(r EAx cna _A.&
[ F & F 4
i £ Ax fro -
3 (<] 1 A.A Ax Hnd " 1
oF ] [»] 4 ¢ Ax tAx
e o © S 1 o
el o o o o) 1
- Hence the mateix

Ppper ey Py
o \atrix i . I i
where hF/F' ) th(\-;‘md!nx o\f/ derivatives of @ w.r.t. @ and h\,.!,\
vt derivatines of ¢ werit. g

the matriy

1 o o = o 14 o o o

‘ ©o 1 o e @ / o A 1) o
DF , =10 o ~tind cod o D o o _grd’ o’
Iv s o0 tem«’ wnd” o vl £ e 5
> o ° ° ‘1/8‘ ‘ o © end” pina

\c ] 0 9

m()(:op

x

—— i



When the magnenie field is along an axis perpendwutar 1o v-axis {tor
i 0

exampic atong s-axis) we defie q at point vV oand ¢ at port I'yoas v 2y
Y} v 4

——r= .t —=— at fived x. and ¢ B=4 ( t has the same signification

Zree VAra® $ 3" R #

s oaboves and s s the sine of the angle of w.rit. x-axis i projection). The

Arapagation alonp the bebx gises pow

f-CF-_ c\/
I )
F v f v —_ e T
S_S = C(X—X ) 2. Fyt
Wy = R (o o cm ot¥) = Ja)- [1- &)
- [

R v
are sin S

il

%F_ _sv _

Rt (Cav) = g (az\-:m'y‘ sF

whoence the matrix of derivatives hr,,/v,. :

u/osl 43 <Y t” eV
y | 0 A(EMA o A{LCoSLu()+ Asx {-:.‘ «F
3Tl ol jeald) & | -EAL_Ae
< o 1 o Ax
e o o A4 &)
Fl o ' o o 0 1

-
iAlcesd)  tos e — cos < , and so on)

anc Dy Py Dyogy

4 @] o o =) ‘\
= o - o o o
with Dl"l"' .
~ 3} ol ;;‘1—; (@] o
) o £ Stn oF 1

\ ol F Com ot ¥
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1 1o} o =} i)
) o A o o ©
D\ iy 2,V
/ ‘ 0 D Colod o o
0 O -téndead wne! O
. \ o © o o] g

W come now to the most general case @ the magnetic field v no more
dalony a soordingte avis. We can overcome this difficulty with a rotation of the
. s . Vr Fr rf e r s
frame ot both IFoand V. defining q (or q Yoas v. zou é_‘i- Y
" An”
ol toved v the rotated Irame, and ¢ -

I the nield is ajong x-axis (resp. z-axis), we can write. with the same

netatzons as above
~
s L A
oL DF/l'r l)h'/l'r‘ l)Fr'/\’r' I‘Vr‘/Vr ! Vr/v

rosn. of!
trespeofl Dy Dy Doy e Dyggye Dygpy )

. . I Fr
We have only to evaluate DF/Fr' matrix of derivatives of q  w.r.t. q

and D\,r/\,. It e crrors on the position are negligible w.r.t. the radwms of
0

curvature, we can consider the trajectory as a straight line in the range
corresponding to its possible tuctuations around F or V 5 so we calculate only

the dernatives of vo 7o 00 v at fixed x werdte yo 7, u o v oat fixed a.and vice

VOt
The local equations of the trajectory are :
Yoot wo
? 33T VT
= The rotated frame is defined by a matrix R (lfI Rt)
K !xr R, R Ryl [ x R, Rea Ry, EY
!"ér =Ry R Ryl Y] & g =| R o Ry | 147
\\’z;; Ry, Ry Kse 3 3 Rz Rpy Ry 3"

5

Al
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We want to deseribe the trajectary by equations in this trame :

v v v
.,é = kéo + U
%r: %: + U'r’alr
Tosing the orthogenality @b Rowe find that these eguations are equivalent
to the st ones wlon @ .
I' LA'— = S [(Rn“"(eh) o t (u R34 ‘Q?’-) 3"‘}
§ 3): = S [(UR21-RZ3> % T (Ry—u Ree) %°J
w = S (E“"'U\ Ro + U'reu)
v 2 8 (R v Ryt o Ry)
v S 1/ (R ruR, 4 R

fera e the derngtaes {taken at v, 2, 0)

2y /2= Y 2 w ! o |
y” SRR SGER,) 2 ! o [[
TSR Ry Sikouk) © | e |
o o o SR, %) | ik, -@,) .
o * o o [SlRR)i SRR




—_ o, =3

Introducing, the umt vectors p,)RL)RJ ol the rotated framc. and the unit
- . . .

vector Eoalong the trajectory, we obtain a geometrical interpretation of these

dernatives s

Nfal % LB YA . o
prraman Z R
1 ‘ Kﬁ} X\_J)_é g:—_%x—_l:l} w’ | the same matrix divided by '?.C\ Al
Z-U R,V 'Xbemg the angle of F) W.rt. X-axis
N i
%v’ (ﬁ?xa (1—'\?)“))3 [Cas
RO g.0
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