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I. INTRODUCTION

Long bsfore gauge theories became toe focus ot research for many ot us. Profes-
sor E. S. Fradkin recognized their importance and took the first steps in unravelling
their intricacies. These days he is blazing new trails in supersymmetric thickets, but
I thought be might like to know where his old subject stands today. In this essay,
dedicated to Fradkin for his sixtieth birthday, I reviev contemporary topologt-
cat research in Yang-Mills theory, emphasizing the 0!<r -o Simons terms and their
relatives, which currently are widely studied.

Topological analysis of cltnictl gauge •hem^s began when A. Belavin,
A. Polyakov, A. Schwartz and Y. TViyptm pointed out that the four-dimensional
Chern-Pontryagiu density P = - T £ » I > V " ' F | U , = - J £ T Ir €<"""'F(il,Fo/,, already
familiar to physicists - but not under that name - as the anomalous divergence of the
axial vector current, has a well-known and important place in mathematics. Specif-
ically, its four-dimensional integral is a topological invariant, whose non-vanishing
value b a signal for topologically non-trivial properties of the gauge fields. The study
of insiantons, the U(l) problem and the vacuitm angle put physicists in touch with
mathematicians, who had come to similar investigations from their own subject.
The particular poiut of contact is the Atiyah-Sisger index theorem, which is now
recognized in its local form as the axial anomaly equation. Physicists benefitted
from the interaction with mathematicians by learning and using their topological
methods, which greatly aided is establishing non-perturbative results about the
1*i*tiici gauge theory. It t u n s oat that the Chera-Simons structure [secondary
characteristic class] - a relative of the Chen-Pontryagio quantity - is the more
useful, and will concern us here.

Thus far there are three roles (or the Chen-Simons term in physical theory:
(1) it helps understanding gauge theories ia even dimensional space-time; (2) it can
contribute to gauge leld dynamics ia odd dimeisional space-time; (3) it is used
ia ft mathematically coherent description of [evea-dimensionalj gauge theories with
chiiil fermions that are apparently iicoasisteat, owing to cbiral anomalies. These
three applications are described ia three Sectioas which follow Sections II and III,
where mathematical preliminaries are explained aad exemplified in simple quantum
mechanical settings.

D. MATHEMATICS

A. Chen - Pontryagin and the DimeasionU Ladder to its Relatives

Siace the integral of P is a topologieal iavariaat, one expectes that f can be
written at a total divergence, to that / < f * P c u be cast onto an integral over the
surface at infinity and determined by the kwg-raage properties of the gauge Beldt.
Tab is indeed so, and the following formala is easily verified.1

^ = aX (2.i)

(]J? is called the Ckern-Simoiu density.
Let us observe (he following properties of the Chen-Simons density:

(2.1)

1. The Chero-Simons density naturally lives in one dimension lower than the
Chera-Pontryagin, in the following sense. Owing to the < symbol, picking
one component ot 0", say p = /io, forces the remaining components of the
derivatives and gauge potentials occurring ia (2.2) to be other t h u jio - i.t.,
they belong to the three-dimensional subspace of the four-dimensional space
that is complementary to /J 0 . As a consequence, we suppress o ie dimeuioa
and write the Chero-Simons density as a S-dimeuioa&l object.

" *" \A0A+

2. The passage from P to Oo is ambiguous. More specifically, flu it faege depen-
dent, while P is gauge invariant. When Jd**P a noa-tero, (1« will pottest
gauge dependent singularities and/or slow long-raage fall-off.

3. The gauge variation of fio it given by

^ Ir «•

fl. S Oof ff"1

~

(2.4)()
Moreover, the integral otilt, uo(A) s / d * j f j o , ckaaif^t by the wiadiag lumber
of the gauge traasformatioD. |This it related to point 3, above.]

For well-behaved gauge transformations, n it an Uteger caartcleriiUg the ao>
motopy c lau to which g belongs, and is non-trivial whea 11* of the aoa-AUtliaa
fange group = Z, the group of istegeri oader addition.

The descent from tour dimensions to three dimensions, i . c . from the Cfcera-
Pontryagia density to the Chen-Simons density, may be continued l i ice Aflo
is again a total divergence, A(l0 = aofi7(/;ff) , where f)f [A\g) again may b«
tingubu and/or possess slow falkiff at infinity. It Is maaifestly tree that the
next-to-last term in (3.4) Is a total divergence. The tact that the tut term may
also be so written u not self-evident, but it is true. For example, ia u SU{l)
model, one flads



witb "' s -2lr(lng)5 . Similar formulas bold for oihet groupa.' Evidently, flf
lives in one dimension lower than O0, I.e., in two, and ajain tbe index a may
be suppressed. We shall write

Ui{A\g) = g^j «"' dagg-lA, + ^ tr tal>1aaa^ {2.1)

were the lsst term is a symbolic reprcscntatiou of tbe [complicated) last term
is (2.6) or analogous expressions for groups other than SU(Z).

6. The descent may be continued further.1 We de9ne the A operation on Oi by

„,) (2.8)

and verify thai AOi Li again a totti divergence of an object wbich lives in one
dimension: Afl | = daft | (A;0| ,0f) . With the index a suppressed, we have

(2.9)

6. When an arbitrary inBnitesima! variation is made on the vector potential
A,, -* A» + HA^, the Chitra-Simons density varies as

= ~ Ir «• (2.10)

•othat

When the variation is a gauge transformation, i
off equation (2.4) with ao = d^.0 +...

BOo(A)\,A,=D.t^~lria>

, 6(la may be R M I

(2.12o)

or eqivalently from (2.7)

n,(ii,/ + «)...) = g L e ^ M / i + . . . (2.126)

niag the two-dimeniional integral of fli by ut[A;g) s / J1z(il(A;g), we

It will be important tor the subsequent to note that the variation (2.11) of kio\A)
'a gauge covariant. Furthermore, if the right band side in (2.11) is written as
a two-dimensional object;, i.e., if it is considered in the plane orthogonal to
the direction of variation - J ^ T i"eF%» ' " " n •' and the twoKlimensional
quantity in (2.18) j j i IT 0to>doAf - have a place in two dimensions!
physics: they are various forms of tbe axial vector anomaly in two-dimet;;icB«l
gauge theories. This will be further explained in Section VI.

Tbe series of formula* (2.1) - (2.13) may be compactly presented witb tbe
help of differential forms. In our notation, we depart from tbe conventional use of
tbe wedge product; rather, the forms di" are taken as anti-commuting variables
d*"d*" = -d^dx*.* Thus, we have

F s gf (2.14)

The ladder of descent, beginning witb the four-dimer.sional Chern-PoDtryajin term,
is

Ira*

- jg j? <rflngi dlag, -

(2.15)

All, sdai[A\oi,gt)

Here a ~ dgg~l and the A operation is defined s i in (2.4) and (2.S). The infinites-
imal variation reads

Sao{A) = - 4 i Ir FSA + — dlr[AtA)

while for infinitesimal gauge transformation] we have

)

(2.10a)

One may consider similar chains of descent beginning in any even dimension.

0



Thus, starting in two, w« obtain

o - f r f a 411,(4)

(2.17)

OM;g) = f

The six-dimensional dimensional ladder, which will play an importapt role in
Section VI, reads

-<T' (d lng,(d Ing, d lag, + | d Ing, d log, + d Ing, d Ing,) d Ing, j ]

(2.18)
Again, the infinitesimal quantities aeed be recorded, as they will be needed later.

6tlo[A) = J ^ J (r F*6A - -~dlr(FA + AF- \A')6A (2.10O)

* « U 4 J . i n . i S \ IA i / A gf\JL\

B. Cochains, Coeydes and the Cobonadary Operation

Next, we take note ol a series of mathematicil concepts which derive from
representation theory (or transformation groups.'-' Let us consider a trabsformatkm
group with elements g and composition law gtgt = glt acting on quantities q:
9—J-*Q'• Next, consider (unctions • (» ) deloed on fl, and represent the group
action on these (unctions by an operator U(g). In the simplest case, we have

Uio)*(g) = *(,')

7

(2.20)

and the composition law for the operator follows that of tht group.

V(0is) (2.21)

However, various generalizations are possible. The first generalization consists of
allowing a phase in (2.20).

U(g)1l(i) = e'13"1'*1*'*^) (2-32)

Imposing (2.21) shows that ut most satisfy

(S.2J)

which may also be written as (compare (2.8)] Awi = 0. A quantity depending o»
one group element and satisfying (2.23) is called a 1-axgcU. It may be that « i caa
be witten as

wi(«i0) = «o(flf)-«o(«) (2.24)

or [compare (2.4)] ui(f,g) = Aao(t), for some quantity of o0- IB that caie, the
1-cocycle is called tririti, rnd may be removed by rewrituig (2.22) as

(2.25)

(2.28(1)

i c , by defining new functions

«.«•«.(!>•(,) s #'(,)

and new, conjugated operator!

The primed quantities satisfy the simple rules (2.20) aad (2.21).
Another generaliutoo occurs when the action of V oa t reqiires • fariker

operator.

[For example, 4 may possess components and A\ mixes them.] tf (2.21) it tetitled,
then At must satisfy the composition iaw

which can be called the ojKKlor 1-cocyele condition. However, it caa happen that
a phase occurs in (2.28):

*)se<"»><*'"'»>4,(gi9u) (2.29)

which means that we are dealing with a projective Mpresentatiofi, it., (2.2S) is
modified to

8



Asoritihrity of the triple product imposts the condition

«^(t'1;ihito)-uj(«;0jj.<h)+"a(«;0i.lhs)-wa(«;»i,lh) = 0 ( m o d integer) (2,31)

which by definition we write as Au 3 = 0, and ut[q\gi,gi) is called a t-coeyele.
Oaee again, if uij can be written as A of some quantity of o i .

) = Adj (2.32)

(2.33)

them (2.20) may be presented as

and the modiSed operators

„-»•<»•(«»*,(,;,,) = 4 (,;„ (2.34)

aatkfy the naive compositioii Uw (2.28); the 2-cocyde may be removed. It is clear
that if the quantities A\ are numbers, rather than operators, the 2-cocycle is always
trivial.

The next generalization, involving 3-cocycles arises when the representation
behave* truly anomalously in that the operators implementing the transformation
do aot associate. This means that they cannot be linear operators on a vector or
Hilbert space, because such operators associate, by definition.

We suppose that the group action involves the operator / i as in (2.27), but
that the composition Uw for A, a not associative: different ways of associating a
tripk product differ by a phase.

(2.35)

Firthtimore, four-fold products are taken to satisfy

(2.36a)

(2.3Gb)

One may derive (2.36) from (2.34) if one generalizes (2.29) so

and correspondingly (2.30) to

(2.37)

. (2.38)

It is assumed that Ai, an operator 2-cocycle, commutes and associates with all
the other operators. By substituting (2.37) into (2.30), usiog (2.35) to change tiie
association in the resulting triple product, and finally eliminating Aj with the help
of (2.37) again, establises (2.36) as consequence of (2.35) and (2.37).

In order that (2.35) be consistent with non-vanising uit that pb&se must satisfy
a condition, which is found, by multiplying (2.35) on the right by Ai{qt'";gt), and
repeatedly using (2.35) and (2.3G) to bring the association of the four factors in both
elements of the equality into t ie same form. We then Snd that Uj must satisfy the
3-cccyclc condition.

(3.39)
- "s(9;Ui.fla,0m) +ui («;0 i ,0a , f t ) = 0 (mod integer)

A 3-cocyde is trivial it if can be written as

,0a,0i) = 4; 0n. , 0 ] 3 ) 3 ( < i ; 01,0)) i
(2.40)

where a? is an arbitrary quantity. When (2.40) holds, u3 may be removed by
redoDuiuc Aj. It is clear that if At is a number rather than u operator, uj is
trivial.

Finally, we see that the non-associativity may also be described by

We shall call the above a non-ainocUtitc refrcicntilion of the group.
Nex., we examine the implication of all this for the infinitesimal, algebraic

relations when the transformation group is a continuous Lie group, attd the finite
transformation may be expressed iu terms of infinitesimal generators. The group
element is represented by g = if'T't where 9 s is the infinitesimal parameter. The
occurrence of a 2-cocycle, as in (2.30) or (2.37), manifests itsel! in the infinitesimal
formulet ou by the fact that the Lie algebra of tie generators docs not fallow the

10



Lie algebra of the group; rather, there is an extension. Moreover, with a 3-cocyde,
the Jacobi identity fails.9

Let me now set down some mathematical terminology. Quantities that de-
pend on n group elements are called it-cocktint. The A operation, which ha- been
presented tor n = 0,1,2,3 is called the coboundary operation and can be given a
general definition.

Aw. = ur»(«";oj,...,ff«+i) - ("„
(-l)muH(q;o, fam+i,.,»+) ( ) » ( « » i ,B»)

(2.42)
Evidently, operating on an n-eochain, A creates u n f 1-coehain, and one sees
that A* = 0. An n-cochain which can be written as A of an n - 1 rochain is
an n - caboundary, while a cocbain wa satisfying Aua = 0 (mod integer) is an
n — eoef/de, which is trivial if it is a coboundary, i.e., if u . = i u , . , .

III. COCYCLES IN QUANTUM MECHANICS

While the structures introduced above have a general mathematical set-
ting, they possess particular significance in quantum mechanics which natu-
rally concerns itself with unitary operators U[g) that implement transforma-
tions g of dynamical variables q on wave functions #(?). Our principal in-
terest here is quantum gauge field theory, where q corresponds to the spatial
components of the vector potential A - the dynamical variable in a canoni-
cal/H»miltonian description - while the states are [in the Schrodinger repre-
sentation] wave functional* of A, • (A) , and tbe group elements g are local
gauge functions depending on x. Indeed, we tee that the previously defined
n»(A;ui qn) n = 0,1,2 are examples of cochains and that their integrals,
"» = / 0 « , are cocycles since they satisfy A u . = / A f t . = / d f l , + 1 = 0
(mod integer). However, before delving into tbe quantum field theoretic application
of these ideas, it is >>e(ul to exemplify tbrm in the much simpler context of quantum
mechanics of point particles. Indeed, quantum gauge field theory behaves exactly
in the same way, except that one is dealing with gauge transformations, whose ef-
fect ultimately must be UDobservable, while in the quantum mechanical examples
discussed below the transformations describe actual changes in the physical system.

A 1-cocycle occurs in quantum mechanics whenever one is dealing with a trans-
formation which is a symmetry operation of the action, but not of the Lagrangian.
Specifically, if we consider a transformation specified by

or in infinitesimal form

- F{q)

« = /(«)

11

(3.1a)

(3.16)

which does not leave the Lagrangian invariant, but changes it by a total derivative,

L-1-—U (3.2o)

6l = -~X (3.26)

then Noether's theorem fives tbe infinitesimal generator u

and the unitary operator effecting tbe finite transformation

(3.3)

(3.4)

acts on wave functions with a 1-cocycle, which m j u t the qaaatlty that appean in
the finite transformation of the Lagrangian.

V9(q) = ̂ *(F(,)) . (8.5)

Moreover, if the cocyde is trivial, u = Aa, thes it can be removed by adjusting
the phase of the wave function, as in (2.26). A phase change in a wave function
corresponds to a canonical transformation, which in general changes the Lagrangiaa
by a total time-derivative. In the present case, the aew Lajrangian will read

i (3.e)

and it will have the property that it is invariant under the traaiformatioi. [In this
Section cocycles are defined without the 2r factor.]

These remarks are well-illustrated in the example of a Galilean transformation,
q -> q - vt, in a tree theory governed by the Lagnngian L = J(j'. We have
L -» I - jj[qv - Ju'l) and Bq — -vt, 61 = -ftqv. The constant of motion
C = -qvt + qv gives rise to the unitary operator U[v) = e i C = e-"''1"'1 whose
effect on wave functions (M?) cats be easily evaluated with the Bakcr-Hausdorlf
lemma, C(v)V>(g) = e'"'(«i'V(j - vt). One recognizes the 1-cocycle u,(«; u) =
qv - J-v't, which is also seen in the Suite change of L. The l-«ocycle condition,
Awi = ui|(fl- t^ljirj) -ut{q;vi + vj) + u,[q; Vi) = 0, b easily verified. Moreover,
the 1-corycie is trivial since it can be written as u,[q;v) - ao[q - vt) - o0(«) =
Ao 0 , a0 = -fl*/2(. To remove the 1-cocycle, we redefine the wave functions as in
(2.26a), e" i | > / aV(») = *'(?). To see bow the LagTanfian changes, we first compote
the Hamiltonian relevant to «/>' from the Schrodinger eqnation for f.

= 2 v
13



Hence, the new Hamiltonian B' = J (p+ f) - « T leads to the net/ Lagrangian
l> = J j 1 - *» + £s = Jj 1 - ji Jj- = £ + ^ a 0 . and one verifies that V is indeed
invariant against Galilean transformation*.

B. 2 - Cocycle

A quantum mechanical 2-cocycle arises in the representation of translations
on phase space [coordinates and momenta). The translation generators are r
and p, whose Lie algebra is non-commutative, possessing a central extension -
the Heisenberg commutator >|p',f'| = 6''. The finite translations are imple-
mented by {/(«, b) = e'(«»+M> which composes as W(«,, b,)tf(»,, b,) =
eU*t »»-••»•)( / ( . , + a j i bi + b,) . These operators also serve as coherent state
creation operators.*

Quantum mechanics makes use of a 3-cocycle as well, which thus far as not been
seen in quantum fleld theory. When translations are represented on configuration
space (q). Conventionally, the finite translation operator is taken to be (/(a) =
e"r, and no cocycles occur in this rentsentation. However, in the presence of a
mangetic field B, p is not gauge invariant, but the velocity operator v = p — eA
is, where B = v x A_ Since v satisfies the same commutation relation with r as p.
we may use

U[m) = «*••• (3.7)

as the translation operator. However, it does not represent the Abelian translation
group trivially, since the components of v do not commute.

|v', IT*) = ie i*'*Bk ('•")

Moreover, I lie triple commutator

[ I f 1 f 1

|» l ,«rl,n' + |i>*V|,i>' + lu'.u'l.u' = - e y - B (3.9)
a non-vanishing in the presence of a magnetic point monopole of atreogtb g, located
at ro, for which the divergence is non-vanishing.

eV-B = i*geS{r-ro) (3.10)

When the Jacobi identities fails, we anticipate the occurrence of a 3-cocycle, and
it remains to understand why the finite quantities (3.7) do not associate in the
presence of a magnetic monopole.*

Before proceeding, let me discuss the numerical coefficient in (3. JO). According
to Dine, a consistent quantum dynamics for the monopole requires that eg be

13

quantized in half integer units. Hence, the coefficient in (3.10) is in fact 2xn. For
the moment, let us ignore this, and remain with arbitrary value for eg.

To recognize the non-associativity, we write [compare (2.27)]

where

«*•"«-'•* = exp-ie/ *<frA(i
Jw

(3.11)

(3.12)

with the line integral running alopj the straight line joining r and r + ». Further-
more, from |compare (2.37))

(3.13)

we see that

where • is the outward [direction »i x a3] flux through the triangle with vertices
( )

Consider now three translations in non-coplanar directions a , ,* , ,* , ; see Fig-
ure 1. Forming the triple products as in (2.35), we Bad for the left-hand side

(r + a,

(3.15a)

= exp -ie (*(ABC) + *[ACD)\ A,[r\

while the right-hand side becomes

«"""••"••"••'X,(r,«,) exp ie*(flt7D)il,(r+ « , ;« , +

\ At(r,«,

(S.15*)

Each flux is pointing outwards and passes through the triangle specified by the
three letters; see Figure 1. Comparison of the two equations (3.15) shows that thr
3-cocycle is ~e times the total flux emerging from the tetrahedron formed fiom the
three vectors a,, with one vertex at r. Hence, it is -iwtg when the monopole b
enclosed and lero otherwise. Shrinking the three vectors to produce the infinitesimal
cocycle leads to the violation of the Jacobi identify (3.9) and gives rise to the delta
function in (3.10).

The 3-cocycle is trivial in that it equals, as in (2.40), to a sum of terms, each
of which is the flux through the appropriate trUngle. Neverthclew, if we wish to

14



represent translations by gauge invariant operators, we must remain with the trivial
3-cocyc!e. Cf course, removing it returns the representation to a trivial one in terms
of p.

Figure I: Tetrahedron at poiat r defied by tkree translations 4 .
The S-coeycle ii proportion! to the I n oat of the tetrahedron.

Finally, we observe that Dirac's quantization restores associativity of fiaite
translations since then the 3-cocycle becomes — 2rn or zero, and has no effect ia
the exponential of (2.35), (2.41) and (3.15). Notwithstanding, the associativity of
fiailt translations, the infinitesimal eocyele remaias as an obstruction to the Jacobi
identiy because infinileiimtl generators do aot associate. The argument may be
reversed: By demanding that ultimately traastatioas matt be associative, we ieritt
Dirae's quantization of eg. This, of coarse, also insures that a globally defined
vector bundle exists.

IV. CHERN-SIMONS IN FOUH-DIMENSIONAL YANG-NOLLS THEORY

Much of the topological structure of four-dimensional Yang-Mills theory and
of Quantum Cbromodyaamics |QCD| has been understood with the help of the
Chern-Simons term. The following lists some applications.7

A. Chcm - Simons and the U(l) Anomaly

In QCD with massless quarks, the 0(1) axial vector current j * a not conserved,
rather it satisfies dhj£ = IP = 2 ^ 0 , . As a consequence, the conserved chinl
charge Qi includes a contribution additional to the fermionic cbiral charge Q% 3
l<PxJl, which is given by the integrated Cbera-Simons: <J» = Qf - 2 / d ' * f ) 0 =
Ql' - 2uo{A). Although Qi is time indepeadeat, it is not gauge invariant as a
consequence of (2.5). Thus, ehiral symmetry eaaaot be physically realUed, and thii

IS

resolves the "U(l) problem". Note no reference to iastantons is made in the above
exact result, although they play a ro<e is detailed, semi-elastic*] analysis of the
problem.7

B. Cbern - Simons and the Vacuum Angle

It is known that physical states in a Yang-Mills theory are not gauge invari-
ant; rather, they change under homotopically non-trivial gauge transformations by
a phase. In a Schrodinger representation, the stctes are wave fenetionab) of the
spatial components of the vector potential, • ( A ) , and the gauge traasformaton is
implemented by a unitary operator U(a): U(g)*(A) = * ( A ' ) = e-""i«>*(A).
Frequently, it is convenient to deal with gauge invariant states • I ( A ) , and these
may be obtained from * ( A ) by multiplying the latter by an A-depemleat phase
constructed from the integrated Chern-Simons density. • ' ( A ) = e""«lA> • ( A). It
follows from (2.5) that * ' ( A ) is gauge invariant: U{t)V(A) = • 1 (A«) = * ' (A) .
However, in quantum theory, a phase change of a wave functioa(al) corresponds to
a canonical transformation, which in genera! induces a change ia the Lagrangian
by a total derivative. To find the new Lagrangian, are consider the (faactioaalj
Schrodinger equation for * ( A ) = ei»"»l*>*1(A)

x)6Ai(x) + zl

= _It

and deduce that the modified Hamiltonian u, ai a eoaieqaeace of (3.11).
(4.1)

This leads to a Lagrangian density which include* the total-derivative Chera-
Pontragin density P.

£> = ltrF>"-Fm, + eP (4.3)

This is how the vacnum angle arises in the Yang-Mills Lagrangian.7

Note that the kinetic term in the Hamiltonian density (4.2) may abo be written
" }V, ' , where the {field) velocity A . = V , differs from the canonical momentum
by ». f'irther term, here g f r B . . This is as*>";ous to a point particle in aa crieratf
OeU described by a vector potential. Thus, we may say that the Hamiltonian (4.2)
iV.i-ribca a gauge potential A . , in an extenal (/(I) [functional] range Held, whose
(functional] connection is J ^ T B . . The (functional) curvature is determined by the
commutator of the velocities; compare (3.8). Here this commutator vanishes; the
curvature vanishes; the connection b a "pure gauge", as i* to be expected since
i f t B j = rfp 0uo(A). We shall meet this situation again, but with aoa-vasishiag
curvature. '
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C. Cfaern - Simons in * Solution to the Yang - Milb SchrSdinger Equation

The functional « (A) = e
±lT'H'<A> is a static [wro-energy) solution to (4.1).7

However, • a not normaliiable |by functional integration of over A,); also, it does
not transform under non-tivial gauge transformations as a physical stat-. I consider
this a tremendous teaser of modern gauge theory: we are dealing with & highly nou-
trivial functional differential equation and we can find an explicit solution.which is
unacceptable. Nevertheless, I continue to hope that we may yet learn something
about Yang-Mills theory from this solution.

V. CHERN-SIMONS IN GAUGE-FIELD DYNAMICS

The Chern-Simons density naturally is an odd-dimensional quantity, and the
variation of its integral a gauge covariant; see (2.11). Therefore, in a gauge the-
ory in three [or properly generalized in any odd-number] dimensions, we may use
the O-cocycle uo(A) to supplement the conventional Yang-Mills action IYM =

The resultant Held equations are gauge covariant.

= 0 (5.2)

The proportionally constant m has dimensions of mass, and an analysis of the
Abelian U(l) case [electrodynamics in three-space-time] shows that the "photon" is
indeed massive with spin j ° | = ±1. [In two-space, spin is a (pseudo-)scalar.] This
gives lie to the (sequent bat erroneous assertion that "gauge invariance prohibits a
massive photon". The model is called a iopologictlly m u m e gauge theory.

When quantizing the above non-Abelian theory, oue must confront the fact that
the total actiosi I is not gauge invariant owing to (2.5), even though the equations
of motion arc gauge covariant. Since quantum mechanics makes use of the phase
exponential of the action, e", we must insist that the Utter be gauge invariant and
thb requirement enforces a quantization condition on m: it must be an integer |in
units that h and the dimensionful three-dimensional coupling constant is unity],
so that the action changes only by an integer multiple of 2r. This Held theoretic
generalization of Diraz's monopoly quantization condition arises because the action
b multivalued.7

In a Hamillonian formulation, the unitary operator U(g) which implements
gauge transformations does not merely gauge transform the argument of the wave
functional, but abo multiplies it by a phase, which b just the 1-cocycle w,, intro-
duced in connection with (2,13).

(5.S)
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Gauss's law requires that physical states be unaffected by the action of U.

l/((,)*(A) = »(A) (5.4)

[There b no vacuum angle in three space-time dimensions.] Hence, in tbb theory
physical states are not gauge invariant, rather

•(A«) = e«""<".(Ai«>«.(A) (5.6)

Iterating the gauge transformation shows that ux(A;fl) must satbfy the 1-cocycle
condition; as of course it does.

The occurence of the 1-cocycle does not come as a surprise in view of our general
theory. The Lagrange density changes under gauge transformations according to
(2.15).

Consequently, the Lagrangian L = J cPx C changes as

L ~> L + 2wm [tPxBaOfiA;!!) = L + j2*m /
(6.7)

where spatial surface terms have been dropped. Therefore, not unexpectedly,
-2tmu,(A;ti) occurs as a 1-cocycle. ?/J shall see uelow that W|(A;a) is triv-
ial, Ui{A;g) = ao(A') — ao(A), where <>o(A) b spatially non-local. Hence, the
cocycle can be removed, and a non-local, gauge invariant Lagrangiaa can be fivra
for our topologically massive gauge theory.

The Hamiltonian b

(s.8)

and once again the field velocity in the kinetic term V'j = I1J - ^«'MJ describes a
gauge field in an external (/(I) functional connection fJ«''.AJ(x), thb time leading
to a non-vanishing curvature,

i\Vii*), V,'(y)] = jU.,«««(x-jr) Ml

which, being independent of the dynamical variable, ma}' be called a constant [func-
tional! magnetic field. One wonders whether there arc other forms of non-Abelian
field dynamics that »p,..«r aa field motion us an external 1/(1) functional connection.
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One may also coiple termions to the thiee-diroensional gauge Sheory. It has
been ahowo that massless fermiou in the fundamental representation of the gauge
group induct a Chern-Simons term, even if none is present in the "bare" LagranKi&n.
This gives rise to an anomalous violation of reflection symmetries \P aad T').T

A physical application of the above ideas is to QCD at high temperature, since
the high-temperature limit of a four-dimensional theory is governed by an effective
three-dimensional Lagrangian. Indeed, it has been shown that fenniouic CP\= P
and T] violating effects at high temperature induce the Chern-Simons action.*

Another application of the above, is an Abelian version, is used for a description
of the Hall effect. The dynamics of charged particles in that physical situation
confines them to a plane, owing to the presence of an external, homogenous magnetic
field. When also a homogeneous electric field is applied perpendicularly to thr
magnetic field, the charged particles induce a planar effective electromagnetic action
of the Chern-Simons form: /i.aictd = 3 » f f / ( f x j ^ i e°"''F<,/)ylr |The magnetic
field is in the (missing) J direction.] Here, a is not constrained by topological
considerations, since an Abelian gauge theory b under discussion. The induced
covaiant current ;,*,),„,, = -*/i.d,c.d/*^M = ~f; '"""Fat, leads to a planar
enrreat, j7,d , c ,d = f; t''E>, which b perpendicular to the electric field E'. This
s pm-iMly the sitastinn is tke H*U effect. The physical meaning of the parameter
v, and dynamical mechaabms that leaj to its quantization are subjects of current
research.*

VI. CHERN-SIMONS AND ANOMALOUS GAUGE THEORIES

A (onr-dimensional gaage theory with a single mattiplet r/» of chiral fermions in
the fundamental represeatatioB b ia general incoasbteat owing to the anomaly ia
the gauge current. The theory is governed by t - \ Ir F T * , , + ty(d + A)<t> and
tke field equatkm J^F 9 " = J* implies 0 = D¥D,tF'u' = D,J", bat is contradicted
by the anomaly

(B» J") . = ± 5 ^ ; Ir 0m <*"> Ir T{At,BfA1 + ^AfA,) * 0 . («.l)

[The sign depends on the ebinlity.| An alternative/equivalent symptom of the
problem a that the cfcinl fennion determinant D(A) = det(d + A) is not gauge
invariant.7

Although the model it ineoasbtent, one can go a certain way to give a con-
sistent mathematical description of its anomalies.1 Thb makes use of the Chern-
Simoss density and its desceidaats. However, the dimensional ladder begins
with the Chern-Pontryitgia density ia six dimensions, as b given in (2.18). "Let
me remind that the Chern-Pontryagio density P a a 6-form in six dimensions;
the Chen-Simons deajity f)0 it a Worm is five dimensions; t l | , a 4-form, lives
in four dimensions; while the 3-form fi, is three dimensional. From the latter
two, one may coutnc t a 1-cocycle and a 3-cocycle by integration: u, {A; g) =
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ui{A;g,,t%) = !<P*0t(A\a>,0i). The role that these cocycles
play in the [inconsistent] gauge theory b the following.

A. 1 - Cocycle

Since the fennion deteminant b not gauge invariant, OBC may iaqiire kow It
transforms under a finite gauge transformation. The answer it

(6.3)

witb a negative exponent tor the opposite duality. InflnitesimaUy, tab reproduces
the anomaly since according to (2.19b) 2Tw t(A,/ + 0) fa / 4 * * J ^ T Ir 84{AdA +
jjA'); compare (6.1). Moreover, it b easy to show that u>,(A;A) satbRet
Wi{A';g-lh) = ui{A;h) - ui(A;g). Hence, <.-'»»«•('«;») traistonns aider g the
same way as P(A), and -2rui(A;/>) b reconciled at the West-Zumiio action."- 1 0

Thus, we see that the haphazard-looking anomalous divergence (6.1) hat a
sensible mathematical origin. It is the infinitesimal gauge variation of the Chern-
Simons S-fonn; while the finite gauge change of the Chern-Simons S-fonn appears
as a 1-cocycle in the finite gauge change of tbe ferviionic determiaaat. Of course,
we recognize that the connection between these two statements arises from the
tact that the covariant divergence of a gauge current b directly ft measure of the
infinitesimal gauge variation of the fermionie effective actioa | = logarithm of ine
fenniouic determinant] since a current b the variation of a* actioa. with respect to
tbe gauge potential, which under an infinitesimal gange trautonmtkn changes by
a covariant derivative. Finally, it b teen that the 1-cocycle condition (3.33), taket
in infinitesimal form, is just the Wess-Zumino consbteacy condition.'* "

It b very elegant that one can unify the form of the anomaly, tke ttractare of
the Wess-Zumino term, and the Wess-Zumino consutency cosdition iito one math-
ematical structure: the Chern-Simons term, its gauge variatioa aad tke 1-cocycle.
However, we physicists most not be blinded by mathematical daule. la particu-
lar, contrary to some assertions in the literature,10 " it b not trae that til chiral
anomalies need satisfy the Wess-Zuminn condition, i.e., bo iklaiteximal 1-cocycles.
The point b the following. Ia a consistent gauge theory - ia one tor which all
gauge currents are covariantly conserved - there may be anomalies in fcrmionic
currents that are classically conserved not because they arc gauge currents, but for
some other reason, e.g., because of a Noether symmetry. These aaomalka are not
related to gauge variations of a fermionic determinant, and do not take the form
(6.1). Indeed, the gauge non-covariance of < G.I) indicates that gauge invariaace
b lost in an anomalous theory. But in a consistent gauge theory, ga«ge invari-
a n t is maintained, and all physically interesting quantities, UeludUg aaomalousty
uun-converscd symmetry currents, must be gauge invariant, and to nn«t be their
|auomalous| divergences.

Examples may be drawn from QCD - & consistent gasge theory - with Hassles*
quarks. Noetbcr's theorem would indicate that an axial vector itaglet canvnt ; f
is conserved as a consequence of the apparent chiral symmetry. However, »Ue axial
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anomaly gives the current tn anomalous divergence.

(6.3)

Although the right-hand side is a total divergence, see (2.1), it is not merely (6.1)
with r* replaced by / ; (6.3) is gauge invariant while (6.1) is not. In the massles?
QCO model, there are also non-singlet axial vector currents, j £ , which classically
are covariantly conserved. But, quantum mechanically, they too suffer covariant
anomalous divergences.

(6.4)

Eq (6.4), unlike (6.1), is gauge covariant, the right-hand it not a total divergence.
The Wess-Zumino consistency condition u not satisfied, but in no sense is (6.4)
"wrong", as has been occasionally stated in the literature.

Even though the gauge covariant anomalies are not given by the infinitesimal
gauge variation of the Chorn-Simons term, i.e., they are not infinitesimal 1-cocydes,
they are determined by the trbitsry variation of the five-dimensional Ghern-Simons
5-form; see (2.19). |To obtain the normalization in (6.4), we multiply (2.19) by 2x -
cochains enter with this additional factor as seen in (6.2); furthermore, we multiply
by 2 because the currents in (6.3) and (6.4) refer to massless Direc fenmons, which
are composed of a pair of chiral fermions.)

Since the following identity may be verified,

(6.5)

it follows that a gr.age current Jjf which satisfies the anomaly equation (6.1) is
mathematically related a current Jjf with anomaly of the form (6.4) by the formula13

aAfA^ + AaOfA1 + ̂
1

- ~

[The current j " is composed of both J"\ one for each chirality.] We empbasite that
ibis is a mathematical relation, not a physical one, since the two types of currents
arise in different physical contexts: ff is a symmetry current in a consistent gauge
theory; / , " » « gauge current in anomalous gauge theory.

The Feynmaa graphs which arise n the evaluation of matrix elements for the
two currents can coincide. What is different is the regulariiation procedure that is
required to evaluate them. The graphs do not have a unique value; their ambiguity,
confined to local polynomials, is not fixed mathematically, but physically.
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A similar story may be told for two-dimensional gauge theories. When the the-
ory is consistent, for example masslesa QCD, the classically conserved! ax:al currents
(singlet and non-singlet) possess an anomaly that ii gauge eovarUnt, but does not
satisfy the Wess-Zumino consistency condition.

(6.7)

( * W f ) 4 " S l r a V " F « » ' <68>
The expression in (6.8) is related to the arbitrary variation of the three-
dimensional Chern-Simons 3-fortn in the dimensional ladder descending from the
four-dimensional Chern-Pontryagia 4-form; tee (2.11) and (2,16a). In the inconsis-
tent theory, the gauge current's anomaly is

(6.9)

The first term, involving ff*"1 is not even a form, yet it is present to insure that
fermions with one chirality couple only to \{tfv + (I'V)AV which is non-vanuhicg
only in the light-cone component A~ and those with the other to }(y"" - il"/)Av

which is aon-vanishing only for A*. |Oae finds that this is what the interaction
V I ( 1 ± H J ) A 0 entails, owing to the two-dimensional formulaiimui$ = tMV7i|t«. The
gauge variation of the local polynomial \$<Px tr A"AM is tr T'O^A1', hrace this
contribution to the anomaly is trivial since it could be removed by modifying the
definition of the fcrniionic determinant. Nevertheless, such a modification cannot
be made as long as one wishes to preserve the algebraic fact that chiral fermiona
couple only to one component - either to A+ or to A~, deptading on chirality.
The second tern, in the anomalous divergence (6.9) is a form, and is related to the
gauge variation of the three-dimensioual Chern-Simons 5-form; see (2.12a), (2.13)
and (2.16b). Once again mathematical relationships between the gauge covarUnt
symmetry currents j%, and the gauge source currents Jjf may be given.

(O.10)

The two dimensional model puts into evidence yet another interesting fact. ID
the consistent gauge theory with massless Dirac fermions of both chiralities, the
total current formally is the sum of two individual curKst9 each obstructed with
spinors of the respective chirality. However, from (6.0) we set that owing to the
trivial tr Vd^A" term, even the sum of the two currents is not conserved. To
obtain a conserved current one must add the further term proportional to A* to
the current. Since the current is the vuiatios with respect to -AJ of the logarithm of
the fermion determinant, we conclude that gauge iavariance forces the determinant
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for niassless Dirac fermions to be composed of three factur-i. Two factors correspond
to fermions of definite chirality. However, there is a third iactor, dictated by gauge
invariance, involving e x p i / (r A"Atl. Thus, contrary to assertions in the literature,
the Euclidean space determinant of chiral fermions does not possess the same real
part as that of Dirac femions; nor, as in seen in (6.6), is the anomaly in Euclidean
space nlways imaginary [proportional to the anti-symmetric tensor].19

Finally, let us observe that according to (6.2), the 1-cocycle may be written as

e""""1" = HA')ID{A) (6.11)

which shows that U| is trivial, since it can be expressed as [compare (2.24)]:

Of course, In D(A) is a non-local functional of A; hence, the triviality noted in
(6.12) cannot be used to remove the anomaly. [One is free to redefine the fennion
determinant by the integrated exponential of local polynomials in A.] However,
one may use (6.12), continued to Euclidean space, to remove the 1-cocycle in the
realization of gauge invariance on wave functions in even-dimensional space where a
Hamiltonian description for a topologically massive Lagrangiau iu odd-dimensional
space-time is given, as in (5.3). We emphasize that in this application the fermion
determinant is being used as formal mathematical entity, satisfying (0.12), heuce
useful for the removal of the 1-cocycle, as in (2.25)." No statement is being made
concerning physical fermions in topologically massive gauge theories.

When • current J" posseis an anomalous divergence and is present in the
Hamiltonian owing to a gauge coupling, its components must satisfy anomalous
commutation relations, 40 that I\H, J°\ reproduce the naoma!y in the divergence
of y . l J It has aow been shown (hat these anomalous commutations are related to
the 2-cocycle introduced in (2.16) and (2.18).

When the composition law for operators implementing a representation a pro-
jective as in (2.30)

V ( f l iMei) = e"*"'<*:""»W(a,,) (6.13)

and an infinitesimal description is given

= / + f

where C,(x) Li the inSuitesimal gauge transformation generator, then the infinites-
imal composition law departs from the Lie algebra - S provides an extension

A;x,y) . (6.15)
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The generator consists of two contributions (D, j j - ) which implements the in-
finitesimal gauge transformation on the gauge Held variables, and J° which does
that job on chiral femions. Evidently, the extension in (6.14) compi jes both the
anomaly in the [JJ, J%\ commutator and the anomalous response to gauge trans-
formations of J? |naively and formally J j is gauge invariant].

S«4 (A; x, y) may be determined from the mathematical descent equations. One
fiuus in three dimensions [Hamiltonian formulation of a chiral gange theoiy ia four-
diniensional space-time| [see (2.18)]

S.t(A;x,y) = ~ tr r (7* f) (8.16)

In one dimension [Hamiltonian formulation of a dura] gauge theory U two-
dimensional space-time] the answer is |tee (2.16)]

£«.» «'(*-»)
On the other hand, the commutators may also be direct)) umpated and, of

course, the results should agree with the mathematical fonnuUtioi, apart trom
trivial |infin'<esimal) 2-cocycles. That they do in the Abeliaa cue cam be checked
by comparison with the old calculations, while the noa-Abeliaa case hat BOW also
keen analyzed.1*

It should be noticed that the Abelian 2-cocycles are trivial. la three dimesiions
we have

(«•«)
- / AMt

while in one dimension

(6.19)

However, the non-Abelian 2-cocycles are non-triviaL
The inconsistency of the theory is now apparent from (6.13): OM camnot re-

quire states to be gauge Invariant, even up «o a pa«e, when the repreteatMio*
composition law is projective. Therefore, gauge invariance it lost."

C. 3 - Cocyde

There b no known 3-cocycle associated with chiral aaomalict - ao failures of
relevant Jacobi identities have been found. However, a violation of the Jacob! iden-
tity appears in the quark model. When the Schwinger term i« tie commutator
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between time and space components of a current is a c-number, the Jacobi iden-
tity (or triple commutators ot spatial current components must fail." Since deep-
belastie scattering data indicates that the Schwinger term is indeed a c-number,u

consistent with quark-model calculations," the Jacobi identity fur spatial current
components should fail in the quark model, and this has been verified in pertur-
bative calculations.30 The quark-model algebra of time and space components ot
vector and axial vector currents closes on t/(G) x U[6)tl, and the above remarks
indicate that a J-eocyele occurs. However, a well-defined mathematical formulation
is problematical, since the Scbwinger term very likely is quadradically divergent.13

vn. CONCLUSION

The Chern-Simona structure has proven itself to be an unexpected and valu-
able addition to our mathematical tools in physics. I have here discussed some of
its applications; there are others in higher dimensions which have been found by
those working on various Kaluza-Klein programs, especially when embellished by a
•upersymmetry. Doubtlessly, other applications will come to light in the future.

Let me indicate one possible direction of research for higher-dimensional gauge
theories. In four dimensions, the energy momentum tensor may be written as

V* =

nod the energy density u

I" «£«£.+<4)

(7.1)

(1.2)

The "potential* term B',B', U expressible as the square of the variation of the
Chen-Simons O-coeyele by virtue of (2.11). Conventional, higher dimensional Yang-
Mills theory pouess the same energy density as in (7.2), since the Lagraugiao in
any number of dimensions is taken as in four. However, suppose we generalize
tlie potential term in (7.2) as it is expressed with the help of the Chern-Simons
O-cocyde. Thus, in five-space |relevant to a gauge theory in six-dimensional space-
time) **$£* oc il>k'mtrT*FikFlm [compare (2.19a)| and the square of this would
replace U;flJ in (7.2). Correspondingly, (7.1) would be generalized by retaining
(hat expression, but defining the dual by

a €<-""•»' (7.S)

This provides new higher-dimensional gauge theories, whose structure should surely
be unraveled.

In conclusion, one may ask why structures in physical dimensions - the ac-
tioo in four space-time and the Hamiltonian in three-space - should be described
by mathematical objects that descend from the six-dimensional Chera-Pontryagin
density and tic five-dimensional Chera-Simonj density. While such questions often
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have no answer, in the present instance the reason can be given.1* What is in-
volved is a topological obstruction to defining gauge nvariantly is the cSital fermlon
determinant. To expose this obstruction, one embeds the gauge potential into a
two-parameter homotopy family and the obstruction manifests itself is the vanish-
ing of the determinant as the parameters are varied. This vanishing correspond*
to zero eigenvalues of the Dirac equatioa in six dimensions |2 homotopy + 4 coor-
dinate) and these are counted by the six-dimensional Aliyah-Singer index taeoKm,
involving the Chern-Pontryagin 6-form.
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ERRATA

Page 3

Line 5: Speffing correction "their"

Page 4

2nd paragraph, line 3 from bottom: Replace comma by period after affl".
Replace remainder of text by: "The latter are devoted to explaining mathematical
preliminaries and exemplifying them in simple quantum mechanical settings."

Page 6

Last fine: Delete: "With the Xsdex a suppressed, we have" and also delete eq.
(2.9). Repfeee *y. *No simple expression is available for fif. However, for gaage
transformations :uear the identity, g = e9 = J + 0 + . . . we have [with the index a
supresseS]

i p ^ ^ ] . . . (2.9)"

Page 8

Delete last formula in eq. (2.15) and replace by:

Delete equation (2.16c) entirely.

Page 9

Delete last formula ia eq. (2.1B) and replace by:

) t

Line Above (2.19a): Replace 'the" by "other"; replace "needed" by "used"

Delete eq. pL19c).

Page IS

Line above (2.38): Spelling correction "correspondingry".



Page 19

In eg. (3.9): Replace formula by

V] [ ] B (3.9)

Line below (3.10): Spelling correction "occurence".

Page 21

First paragraph next-to-last line: Figure caption should read: "Tetrahedron at
point r defined by three translations a,. The 3»cocycle is proportional to the flux
out of the tetrahedron."

Page 22

At end of Section HI, before starting Section IV, insert:

"Let us also understand that the 3-cocyde arising from aribtrary magnetic
sources may be put into evidence in an algebraic, gauge invariant manner, without
introducing a Hilbert space, linear operators, and vector potentials as was done
above.

A magnetic field, B, regardless whether it is sourceless, does no work on a
charged (e) particle at r which moves in B. The particle's energy is only kinetic;
consequently, the HamUtonian does not see the magnetic field: H — ̂ v2, v = r.
The magnetic field is present in the Lorentz force law, v = ev x B, which is re-
gained upon commutation with H when the commutator algebra (3.8) is postulated.
[Commutators with r are conventional.]

Translations of r by a are implemented by U (a) = e**'v, since If (a)r ^~*(a) =

r + a. However, these quantities do not represent the Abelian translation group
faithfully, since (3.8) implies

VMVfa) = e'e*tf (ax + a2) (3.16)

Moreover, by considering the triple product U(&i)U(&i)U(&2), associated in the
two different ways, one finds a 3-cocycle, as before, which is the flux emanating
from the tetrahedron of Tig. 1.

When V B = 0, no flux emanates from a closed surface; the cocycle vanishes;
associativity is regained and v may be realized by the linear operator v = —»V —
eA, B = 7 x A. When there are sources, 7 - B j 5 ( l , the fiux is non-zero, but
associativity will prevail if ws is 2;T times an integer, since then eiu* - 1. This
requirement forces: (1) V • B to consist of delta functions so that the total flux not
vary continuously when the a^'s change, i.e., the sources must be monopoles; (2)
since a monopole os strength g produces the cocycle —ixeg, eg must satisfy the Dirac



quantization condition. In this way, removal of the 3-cocycle, which is necessary for
conventional quantum mechanics with associative operators on Hilbert space, limits
magnetic sources to quantized Dirac monopoles. Other magnetic sources lead to a
non-associative algebra.8"

Page 27

Delete last sentence: "Indeed . . . action.8"

Page 28

End of first paragraph: Change reference 9 to B. At end of Section V, before
Section VI, add new paragraph:

I n a third application, the Chern-Simons term has been used to model the
electomagnetic properties of graphite.9"

In eq. (6.1) left-hand side: Change u to p in subscript and superscript.

Page 32

Eq. (6.6) and lines above and below: It should be understood that the left-hand
member of both equalities and in lines above and below (four places) the symbol
.7" is script capital "jay" (J). Also, in the script captial ujay"'s, insert subscript ±
below superscript /i, to left of subscript a, in all four places.

Page 34

Eq. (6.10): In first formula " + £ . . . " is replaced by " - £ • • • " • In second
formula, " ^ ^ • • • " is replaced by u ± j £ . . . n . Also, in both formulas the left-hand
J£ is a script capital "jay", and so is the one two lines below (three places). Insert
in the script capital "jay" 's subscript ± below the superscript ft, to left of subscript
a, in all three places.

Page 39

Fourth line, bracketed phrase: Delete opening of parenthesis..

References Update

3. Delete Mickelsson citation both to Lett. Math. Phyi. and to Comm. Math.
Phy>. Insert after Faddeev and Shatashvili citation, after "(1984)": u[Thtor.
Math. Phyt. 60, 770 (1984]; J. Mickelsson, Comm. Math. Pkj/t. 97, 861
(1985)".



5. Jackiw reference: Phys. Rev. Lett. 54, 159 (1985). Phys. Lett, (in press),
Phys. Rev. Lett, (in press). Grossman reference: Phye. Lett 152B, 93 (1985);
Hou reference: Chinese Phyg. Lett, (in press); Wu and Zee reference: Phys.
Lett. 152B, 98 (1985). Add after Wu - Zee reference: "In a non-associative
algebra, where the three-fold Jacobi identity fails, one may impose a four-fold
identity, the so-called Malcev identity, which requires that v B be constant.
When this fails, one can impose a five-fold identity, etc. For details see B.
Grossman (preprint); M Gunyadin and B. Zuxnino (preprint)".

8. Delete entire reference.

9. Renumber this as 8. Insert new reference 9: ttG. Semenoff, Pkyg. Rev. Lett
SS, 2449 (1964)."

11. Change Z. Zee to A. Zee; delete "R. Stora (preprint)". Bardeen and Zumino
reference: Nucl. Phys. B244, 277 (1984), add after "modified": "The variety
of possible anomaly equations is surveyed by K. Fujikawa, Pkyt. Rev. D 81,
S41 (1985)."

12. Change last. (period) to ; (semicolon) add "and (preprint)".

15. Next-to-last line, change J. Frenksl to I. Frenkel.

16. Jackiw and Rajaraman reference: Pkyt. Rev. Lett. 54,1219 (1985); add: "and
R. Rajaraman (preprint)".

24. Add: UJ. Lott, Comm. Math. Phyt. 97, 371 (1985)."


