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1. INTRODUCTION

Long bafore gauge theories became the focus of research for many of uz, Profes-
sor E. S. Fradkin recognized their importance and took the first steps in uneavelling
their intricacies. These days he is blazing new trails in supersymmetric thickets, but
1 thought he might like to know where his old subject stands today. In this esssy,
dedicated to Fradkio for his sixtieth birthday, ! review comtemporary topologi-
cal rescarch in Yang-Mills theory, emphasizing the J'--g.Simons terms and their
relatives, which currently are widely studied.

Topological aualysis of clessical gauge ‘heorcs began when A. Belavin,
A. Polyakov, A. Schwartr. and Y. Tuypkiu pomnted out that the four-dimensional
Chera-Pontryagin density P = — ;Aytr* i'™ F,, = — oLy tr ¢#¥*PF, Fop, already
familiar to pbysicists - but not uader that name ~ as the anomalous divergence of the
axial vector current, has s well-knowo and important place in mathematics, Sperif-
ically, its four-dimensional integral is a topological invariant, whose non-vanishing
value is a signal for topologically soe-trivial properties of the gauge felds. Tbe study
of insiantons, the U(1) problem and the vacunm angle put physicists in touch with
mathematicians, who had come to similar investigations from their own subject,
The particulae point of eontact is the Atiyak-Singer index theorem, which is now
recoguized in its lucal form as the axial anomaly equation. Physicists benefitted
from the intersction with mathematicians by learning and using their topological
methods, which greatly sided in establishing mon-perturbative resylts about the
guantized gauge theory. It turns out that the Chern-Simons structute [secondary
charecteristic class] ~ a relative of the Chera-Pontryagin quantity ~ is the more
useful, and will concern ys here.

Thus far there are three roles for the Chern-Simons term in physical theory:
(1) it helps understanding gauge theories in even dimensional space-time; {2) it can
contribute to gauge fleld dyaamics in odd dimeasional space-time; (3) it is used
ia & mathematically coherent description of [evel—dimensionl] gauge theories with
chiral fermions that are apparently inconsisteat, owing to chiral anomalies. These
three applications are described in three Sections which follow Sections I{ and I,

where mathematical preliminaries are explained and exemplified in simple quantum
mechanical settingy.

II. MATHEMATICS

A. Chern — Pontryagin and the Dimensions) Ladder to its Relatives

Simee the integzal of P in a topological invarisat, one expectes that P ean be
written as & total divergence, so that fd'x P can be cast onto an integral over the
surface at infinity and deterrained by the lowg-range properties of the gauge fields.
This is indeed so, and the following formula is easily verified.!

= -5-2-';; tr ™ F, F,p = 0,0 (24)

1 2
nb(4) = ~ga b P A00A, + sA.A,A.,) . (2.3)

014 is called the Chers-Simons density.
Let us observe che following propertgies of the Chern-Simons demisy:

1. The Chern-Simons density naturslly lives in one dimension lower than the
Chern-Pontryagin, in the following seuse. Owing to the ¢ symbo), picking
one componcnt of ¥, say g = pp, forces the remaining components of the
derivatives 2nd gauge potentials occurring in (2.2) to be other than go — t.e.,
they belong ¢o the three-dimensional subspace of the four-dimensional space
that is complementary to pg. As 8 consequence, we suppress one dimension
and write the Chern-Simons density as a S-dimensicas] object.

Bol4) = ~ 533 1 7 (AadpAy+ FAaAs ) (23

2. The passage from P to flp is ambiguous. More specifically, £, is gavge depen-
dent, while 7 is gauge invariant. Whea f d'aP is non-zero, o will possess
gauge dependent singularities and/or slow long-range fall-off,

3. The gauge variation of {l, is given by

Ay = Np(AT) - Np(A) = s—:—,— tr 71 0,(apA,) + -le'; tr Mg 000,

fa=0Oup g™
(24)
Moreover, the integral of g, wo{A) = f d*311y, changes by the winding sumber
of the gauge transformation. |This is related to poiat 2, above)

wo(A) = wo(4) + n(g)
nlg) = / d':z—:;; treFlagapn,

For well-behaved gauge iransformations, n is an integer charscterizing the hoe-
motopy class to which g belangs, and is non-trivial whes Ii; of the non-Abelian
gaunge group = Z, the group of lotegers uader addition.

(25)

4. The descent from four dimensions to three dimensions, &.¢., from the Chera-
Pontryagin density to the Chern-Simous density, may be continued since Aflp
is again a total divergence, Afly = 8. RT(A; ), where 017 {4; g) agsin may be
singular and/or possess slow fall-off at infinity. It is manifestly true that the
next-to-last term in {2.4) is & total divergence. The fact that the laat term may
also be 0 written is not self-evident, but it is true. For example, in ea SU(2)
mode), one finds

1 nind
0 (Aig) = —s-:—'(r P18,007 A i%;" Magdplegdlog (F - ‘F‘") )
2.8



with 67 = —2ir(Ing)?. Similar formulas kold for other groups.? Evidently, N7
fives io one dimension lower than Qp, Le., in two, and again the index o wmay
be suppressed. We shall write

1 - ¢!
fi(A;g) = =1 P 3,007 Ap + e “?a.az0, {(2.7)

were the last term is a symbolic represcntation of the Jcomplicated] last term
in (2.6) or analogous expressions for groups other than SU(2).

. The descent may be continued further.? We define the A operation on 01, by
Afly S M(A";g3) - M (A;0009) + Mi(Ain) (2.8)

and verify that Af), is again a totel divergence of an object which lives in one
dimension: Afl; = 3,115{A; ¢y, 03). With the index a suppressed, we have

1 d d
Bidisa)= - tr [lns.. ety Ehinlﬂﬂa] . (29)

. When an arbitrary infinitesimal variation is made on the vector potential
A, =+ A, +6A,, the Chern-Simons density varies as

5flp(A) = _B_i" tr &2 FapbAqy+ 3_:‘; ¢"’70.,(A,6A.,) (2.10)
so that A '
&,
'JOT‘-! =g W T Ry = s OME, . (21)

When the variation is a gauge transformation, §A4, = D,6, §flp may be read
of equation (2.4) witho, = 3.0 +...

1
&M (A) ‘14,=p,. = 8—; ér tap.'a..(op@A-,)

) (2.124)
= -'87" t°’1ﬂa(08’441)
or eqivalently from (2.7)
M(AT+0)..)= 8-;; P0,0A0 + ... (3.125)

Defining the two-dimensiona) integral of 0y by wy(4;g) = f d*20,(A;g), we
find

Wil T4+04..) = -'i;;/d"z tr 0P 0o An+...  (213)

)

It will be important for the subsequent to note that the vatiation (2.11) of wy(A)
is gauge covariant. Furthermore, if the right hand side in {2.11) is written as
a two-dimensional object, d.c., if it is considered in the plane orthogonal to
the direction of variation - —‘-; € F2, - then it and the two-dimensional
quantity in (2.28) - ~z&5 #r 0¢°’0¢,A, - have a place in two dimensional
physics: they are varlous (orms of the axial vector anomaly in two-dimensional
gauge theories. This will be further explained in Section VI.

The series of formulas {2.1) - (2.13) msy be compactly presented with the
help of differential forms. Iu our notation, we depart from the conventional use of
the wedge product; rather, the forms dz¥ are taken as anti-commuting variables
dz*dz¥ = —dz¥dz*.* Thus, we have

A=A d®, Fs %F,,..dz"dz", F=dA+A® (2.04)

The Iadder of descent, beginning with the four-dimersional Cherp-Pontryagip term,
is

pP=- 2](2')’ tr = mo(A)
y(A) = 2‘(2 E tr(dAA + §A')

Afl, —-dﬂl(A 9
- (215)
0.(A,g)— h’aA+2‘,l a
AQ, = dﬂ:(A; ono)

M(Aig1,09) = -l—;;; lr(lng‘ dingy -dl.u;,lng,)

Here 0 = dpp™! and the A operation is defined as in {2.4) and {2.8). The infinites-
imal variation reads

§p(A) =~ -— tr FGA i dlr(AbA) (2.1Ga)
while for infinitesimal gauge transformations we have

M4; I+0+.. )= — rddds.. {2.163)

A I4+0, 4., I+6,+..) = tr(6ydty — d6,0a) . {2.18¢)

16’

One may consider similar chainy of dzscent beginning in any even dimension.

0



Thuy, starting in two, we obtain
i
P= i; ir F~.dno(A)

o{A) = ;—' rA
Afly = d0,(4;g)
Mi(Aig) = 2—'; fr og

(2.17)

The six-dimensional dimensional ladder, which will play an importapt role in
Section VI, reads

P= 3!(2:)’ tr F? = dlo(A)
Mo(4) = s rlldAP'A + -4.4 AL E,ﬂ
Afip = au.(A,g;

-1
trldAAo + AdAs + A'a - -(M)' A+ % o?

0,(4;9) = 12(2,)3
Anl = dﬂ:(‘-ﬂmh)
D3(A;01,02) = 12(;—:)' tr[A(dmdm; ‘or" - ooy 'm“dm?')

-d! (d Ing,(d lng, d Iag, + :

2
(2.18)
Again, the infinitesimal qunmtitics need be recorded, as they will be needed later.
0o(4) = o5 tr F%A - Wcﬂr(}‘d +AF - -A’)M (2.19a)
s T464..)= 12(2 g ir{dAR + AdA + A*)dO +. {2.20)

M4 T+ +..., T+0+..) = tr A{d9,dfy ~ d8d0;) +... (2.19¢)

12(2 12(22)°
B. Cochains, Cocycles and the Cobonadary Qperation

Next, we take note of & series of mathematical concepts which derive from
representation theory for transformation groups.*® Let us consider a traxaformation
group with elemants g and componition law gygy = gyy acting on quantities ¢:
g— g%, Next, consider functions W({g) deflned on ¢, and represent the group
action on these functions by an operator U(g). In the simplest case, we bave

Ule) (o) = ¥(¢") (2:20)
7

d Ing, d Ing, +d lag, d Ing,) d lug, ]

and the composition faw for the operators foliows that of the group.

V(o) Ule) = U(aus) (2.21)

However, various generalirations are possible. The first generalization consizts of
allowing & pkase in (2.20).

U(o)®(g) = > (60)%(g7) (222)

Imposing (2.21) shows that w; mast satisfy
wi(g™; o) = wi(gig1a) + wa(g; g:) = O (med isieger) {z33)
which may also be written as {compare (2.8)] Awy = 0. A quastity depending on

one group element and satisfying (2.23) is called a f-cocyele, It may be that w; cas
be witten as

wi(g:0) = eo(g”) ~ aole) (2.24)

or [compm (2.4)] wilg: g) = Aao(q), for some quantity of ap. In that cuse, the
1-cocycle is called trivisl, end may be removed by rewriting (2.22) a8

3N (g)e—11mon(0) i 1raele) g(g) = (I ral) g (1) (2:25)

i.e., by defining new functions
Ml g(g) = w'(q) (2.26a)

and new, conjugated operators
inaeltiy (g)e=2rorld) = U'g) (226)

The primed Guantities satisfy the simple rules (2.20) and {2.21).
Aucther generalizaton occurs when the action of U on @ requires a further

operator. )
Ua)¥(e) = Ai(g; 9)¥le?) (2.27)

[For example, % may possess componeats and A; mixes them.) 3f (2.21) is antiafled,
then A; must satisfy the composition iaw

@0 A(e" ;00 = Ai(gion) ' (2.28)

which can be called the operator 1-cacycle condition. However, it can happen that
a phase occurs in (2.28):

Mg ) Ai (g 4) = 20NN 4 (0,044) (2.29)

which means that we are dealing with a projective cepresentation, i.¢., (3.28) &
modifted to

Ula)V (@) = o*reeteinnsndy(g,y) (2:30)



Associativity of the triple product imposes the condition

wale"; 03,03 ) - w3 (g5 013, 0)+w3 (g 01, 929)~wa(gi 01, 0a) = O (mod integer) (2.31)

which by deflnition we write a3 Awa = 0, and wa(g; g1, ¢a) s called a £-cocycle.
Once again, if wg can be written as A of some quantity of a,.

wilgigr ) = aalg”, ) — ar(gima) + aulgs ) = Aag (2.32)
then (2.20) may be presented as

ciman(ain) Alg o) e~ (4"ps) A o)

= e~i37as(€i913) Mg ara) (2.33)

and the modified operators
a1 (69 4, (q:0) = Al(g:0) (2.34)

satisfy the naive composition law (2.28); the 2cocycle may be removed. It is clear
that if the quantities A, are numbezs, rather than operators, the 2-cocycle is always
trivial

The pext generalization, involving 3-cocycles arises when tke representation
behaves truly anomalously in that the operators implementing the transformation
do mot associate. This means that they cannot be linear operators on a vector or
Hilbert space, because such operators associate, by definition.

We suppose that the group action involves the operator £, as in (2.27), but
that the composition law for A; is not associative: different ways of associating a
triple prodnct differ by a phase.

(‘l(q; ﬂl)“l(ﬂ"i‘h))‘l(?’";ﬂs)

(2.35)
= g'imnlungan) 4, (o 01)(‘1(0" 102 ) A (g ﬂa))
Farthermore, four-fold products are taken to satisfy
((ﬁ.(q;m)ln(o";m))ln(q"';aa))ln(q"";au)
(2.360)
= dfimunlvanngng,) (l. (7:01)4 (q":na)) (‘u(v'"; ﬂa)‘l(ﬂ""iﬂc))
(ln(ﬂm)‘n(c‘"m)) (ln(q'"m)‘n(c'“';ao))
(2.366)

= mnlsminan) g (g, m)(h(c":th) (‘n(v'": o) (g™ ﬂd)))

¢

(staion) (410" srta#s00)) )00

= tnltannnsd 4,(g,g,) ((‘n(c";o:)‘:(q"’;va))d.(q°-";g.)) (230
Oue may derive (2.36) from (2.34) if one generaiizes (2.29) so
A ) Ai(g™i0a) = Aal9i 01, 93) A (9 01a) (2.37)
and correspondingly (2.30) to
Ulga)V(m) = Aa(ai 00 0)V(0ra) - (2.38)

It is assumed that A3, an operator 2-cocycle, commutes and associates with all
the other operators. By substituting (2.37) into (2.30), using (2.35) to change tie
association in the resulting triple product, and finally eliminating A, with the belp
of (2.37) again, establises (2.36) as consequence of (2.35) and (2.37).

In order that (2.35) be consistent with non-vanisiug w;, that phiase must satisfy
& condition, which is found, by multiplying (2.35) on the right by A, (¢¢'**; gy}, and
repeatedly using (2.35) and (2.36) to bring the association of the four factors in both
elements of the equality into tae same form. We then find that wy; must satisfy the
3-cocycele condition.

Aws = wa(g™ 02,03, 04) — Ws(g: 019, 09, G4) + wa(Qi G2 023, 04)

' 2.39
~ w3(gi 91,02, 034) +w3(2: 01,02, 03) = O (mod integer) (239)

A 3-cocycle is trivial it if can be written as

ws(gi 011 02, 0s) = a3(9%" s 92, 03) — @a(@i 013, 05) + 02 (@ 01 das) — (g3 01 a) =(An:)
2.40
where a; is an arbitrary quantity. When (2.40) bolds, ws may be removed by
redefining A3. It is clear that if A3 is a number rather than an operator, w; is
trivial.
Finally, we sce that the non-associativity may also be described by

(v )ute) = rmesenmiyo) (vimvia) a1

We shall call the above a mon-assovistive represcntation of the group.

Nex., we examine the implication of all this for the infinitesimal, algebraic
relations when the transformation group is a continuoua Lie group, and the finite
transformation may be expressed in terms of influitesimal gencrators. The group
clement is represented by g = ¢'7", where 6 is the infinitesimal parameter. The
occurrence of s 2-cocycle, as in (2.30) or (2.37), manifests itsell in the infinitesimal
formulation by the fact that she Lie algebra of the generators does ot follow the

10



Lie algebra of the group; rather, there is an extension. Moreover, with a 3-cocycle,
the Jacobi ideatity fails.®

Let me now set down some mathematical terminology. Quantities that de-
pend on n group elements are called n-cochains. The A operation, which ha+ been
presented for n = 0,1,2,3 is called the cobonndary operation and can be given =
general defnition.

Bwa S wala?ig2, 0 Gak1) =~ Wal@itinsBsae - s fua) - F

(-1)""-’-(9;011-“.0"- m+lv---vgl+l)+ -~-+(-l)'+'w-(vim»-'-.0.)
(2.42)
Evidently, operating on an n-cochain, A creates an n + l-cochain, and one sees
that A? = 0. An n-cochain whaich can be written as A of an n - 1 cochain is
an n — coboundary, while a cochain w, satisfying Aw, = 0 (mod integer) is an
n ~ cocycle, which iy trivial if it is a coboundary, Le., if wy = Awa-).

Ik COCYCLES IN QUANTUM MECHANICS

While tbe structures introduced above have a general mathematical sei-
ting, they possess particular significance in quantom mechanics which natu-
rally concerus itself with unitary operators U(g) that implement transforma.
tions g of dypamical variables ¢ on wave functions ¥(g). Our principal in-
terest here is quantum gauge field theory, where g corresponds to the spatial
compoucnts of the vector potential A - the dynamical variable in a canoni-
cal/Hamiltonian description ~ while the states are [in the Schridinger repre-
scntation] wave functionals of A, ¥(A), and the group elemeats g are local
gange functions depending on x. Indeed, we sce that the previously defined
D, (A;01,....08) B = 0,1,2 are examples of cochsins and thst their integrals,
wy = [, are cocycles since they satisfy Awy = fAfl, = [dflay, = 0
(mod integer). However, before delving into the quantum ficld theoretic application
aof these ideas, it is r3eful to exemplify them in the much simpler context of quantum
mechauies of point particles. Indeed, quantum gauge field theory behaves exactly
in the same way, except that une is dealing with gauge transformations, whose ef-
fect ultimately must be unobservable, while in the quantum mechanical examples
discnssed below the transformations describe actual changes in the physical system.

A. 1 - Cocycle
A l-cocycle occurs in quantum mechanics whenever one is dealing witb a trans-

formation which is a symmetry operation of the action, but not of the Lagrangian.
Specifically, if we consider a transformation specified by

9 Flg) (3.1a)
or in infinitesimal form
g = flq) (3.18)
11

which does 20t leave the Lagrangian invariact, but changes it by a total derivative,

d
L-l-2u (3.20)

d
SL=-3x (3.2)

then Noether's theorem gives the infinitesimal generator as
aL
C:—a—,6q+x=p6¢+x (33)
Q
and the unitary operator effecting the flnite transformation
U=¢° (34)

acts on wave functions with a 1-cocycle, which is just the quantity that appeans in
the fnite transformation of the Lagrangiaa.

UR(q) = %(F(a)) . (s5)

Moreover, if the cocycle is trivial, w = Aa, then it can be removed by adjusting
the phase of the wave function, as in (2.26). A phase change ia a wave function
correaponds to a canonical transformation, which in general changes the Lag;

by a tota! time-derivative. In the present case, the new Lagrangian will read

d
! = — B
L'=L+ i {s.¢)
and it will have the property that it is invariant under the traasformation. [In this
Section cocycles are defined without the 2 factor)
These remarks are well-illustrated io the example of a Galilean transformation,
g — ¢ - ol in a free theory governed by the Lagrangian L = 1¢". We have
L — L-%(gv— 3%) and 6g = —ul, 6L = ~Aqv. The constant of motion
C = —gul + gu gives rise to the unitary operator U(v) = ¢'C = e (=) whose
effect on wave functions ¢in) can he easily cvaluated with the Baker-Hausdorff
lemma, U(v)¥(g) = e'“1{&*)y(g ~ vt). One recognizes the 1-cocycle wl(m_") =
qu — }lr’t. which is also seen in the fite change of L. The l-cocycle condition,
Aw; = wy(g - vivg) = wy(g; vy + v3) +wy{g;v) = 0, is easily verified. Moreover,
the l-zocycie is trivial since it can be written a3 wy(g;v) = aolg - of) - aolg) =
Aag, oy = —g*/2L. To remove the 1-cocycle, we redefine the wave functions as in
(2.26a), c=i" /3ty (g) = ¥'lg). To sce how the Lagrangian changes, we first compute
the Hamiltonian relevant to o' from the Schrodinger equation for ¢.

.8 , s ) 1, . ¢ '
'5‘;(9“./"1’ )= %p' (e“ /:lw) — .awl = (§(p+ _‘_)! - 2_F)',r .

12



Hence, the new Hamiltonian H' = }(p+ })' - i'i" leads to the new Lagrangian
r=ip-44+ -,"-’,- =L-4 5 =L+ %@, and one verifies that L' is indeed
invariant ageiast Galilean transformaticns.

B. 2 - Cocycle

A quantum mechanical 2-cocycle arises in the representation of translations
on phase space [coordinates and momenta]. The transiation generators are r
and p, whose Lie algebra is non-commutative, possessing a central extension -
the Heisenberg commutator ilp',¢’] = 6§'5. The fnite translations are imple-
mented by Ufa, b) = ¢(*P+*9) which composes as U(a, b,)U(a;, bs) =
e$(81%-0: 8 ){f (g, + a5, by +b,). These operators also serve as coherent state
creation operators.®

C. 3- Coeycle

Quantom mechanics makes use of a 3-cocycle as well, which thuys far as not been
seen in quantum field theory. When translations are represented on configuration
space {q}. Conventionally, the finite translation operator is taken to be U(a) =
¢'*?, and no cocycles occur in this reriesentation. However, in the presence of a
mangetic field B, p is not gauge invariant, but the velocity operator v = p — eA
is, where B = 7 x A_ Since v satisfies the same commutation relation with ras p.
we may use

U(a) =" 3.7)

as the translation operator. However, it does not rep t the Abeli lation
group trivially, since the components of v do not commate.

fof, o] =ie STt B* (3.8)

Moreover, the triple commutator

[lvl.l"]. u’] + [v’,v‘l,v'] + [Iu'. v, u'] =-ep-B (3.9)

is non-vanishing in the presence of a magnetic point monopole of atrength g, located
at ro, for which the divergence is non-vanishing.

eV - B = dxgeb{r - ro) {3.10)

When the Jacobi identities fails, we anticipate the occurrence of a 3-cocycle, and
it remains to understand why the flnite quantitics {3.7) do not associate in the
presence of a magnetic monopole.®

Before proceeding, let me discuss the numerical coefBeient in (3.10). According
to Dirac, a consistent quantum dyoamics for the monopole requires that ey be

13

quantized in balf integer units. Hence, the coefficient in {3.10) is in fact 2xn. For
the momeat, let us ignore this, and remain with arhitrary value for eg.
To recoguize the non-associativity, we write [compare (2.27)]
U(a)¥(r) = 4, (r;a)¥(r + a) (s.1)
where
~~a
Ai(rim) = Ve P = exp—-ie ds- Afs) (3.42)
L

with the lige integral running alopg the straight line joining r and r + a. Further-
more, from [compare (2.37)]

A (r;a,)4,(r +a5;25) = Az(ri @y, a3) 4, (r; 0 +a;) (3.13)

we see that

Ay(ra;,05) = ** (3.14)

where & is the outward [direction a, x ;] flux through the triangle with vertices
(rr+ay,r+a; +ay).

Consider now three translations in non-coplanar directions a,, 3, &3; see Fig-
ure 1. Forming the triple products as in (2.35), we find for the left-hand side

(A;(r;n.).ﬂ,(r+n|;|,))l.(r+n| + ag;a)
= exp —ie®(ABC)A;(r;a; + az)A;(r + a; + az;ay) (3.18q)
= exp —ie(O(ABC) + Q(ACD))A.(r;a. +a3+ )

while the right-hand side becomes

elvairias .lu.n)‘l(r; ay) (‘. (r+ a;a)d(r+a, + l);l;))
= eturlranann g (g Yexpie®(BCD)A, (r + a;: 85 +83) (3.158)

= e (FiR10180) oxp e (O(BCD) + Q(ABD))h(r; a; +a; +as)

Each flux is pointing outwards and passes through the triangle specified by the
three letters; see Figure 1. Comparison of the two equations (3.15) shows that the
3-cocycle is ~e times the total fux emerging from the tetrahedron formed fiom the
three vectors a,, with one vertex at r. Hence, it is ~4xzg when the monopole is
enclosed and rero otherwise. Shrinking the three vectors to produce the infinitesimal
cocycle leads to the violation of the Jacobi identify (3.9) and gives rise to the dclta
function in (3.10).

The 3-cocycle is trivial in that it equals, as in (2.40), to a sum of terms, each
of which is the flux through the appropriate tricngle. Nevertheless, if we wish to
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represent translations by gauge invariaat operators, we must remain with the trivial
$-cocycle. Cf course, removing it returas the representation to a trivial one in terms
of p.

80000,

Figure I: Tetrzhedron at poist v defined by three transiations ¢;.
The 3-cocycle is proportional to the flux out of the tetrahedron.

Finally, we observe that Dirac’s quantization restores associativity of fiaite
traasiations sioce then the 3.cocycle becomes ~2xn or zero, and has no effect in
the exponential of (2.35), (2.41) and (3.15). Notwithstanding, the associativity of
finite tranalstions, the infinitesimal cocycle remains ay an obstruction to the Jacohi
identiy because infinitesimal generators do not associate. The argument may be
reversed: By demanding that ultimately translations must be associative, we derive
Dirac's quantization of eg. This, of course, also insures that a globally defined

vector bundle exists.
1V. CHERN-SIMONS IN FOUR-DIMENSIONAL YANG-MILLS THEORY
Much of the topological structare of four-dimensional Yang-Mills theory and
of Quantum Chromodynamics [QCD] bas been understood with the help of the

Chern-Simons term. The following lists some applications.”

A. Chern — Simons and the U(1) Anomaly

In QCD with massless quarks, the U (1) axial vector current J3' is not conserved,
rather it satisfies d,j3' = 2P = 28,013. Asa quence, the ved chiral
chaege Q4 includes a contribution additional to the fermionic chira) charge Q," =
{ Pzj), which is given by the integrated Chern-Simons: Qy = Qf -2fd*2n =
Qf = Zwp(A). Although Q; is time independent, it is not gauge invariaat as a
consequence of (2.5). Thus, chiral symmetry cannot be physically realited, and this
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resolves the “U(1) problem™. Note 0o reference to instautons is made in the above
exact result, although they play a ro in detailed, semi-classical analysis of the
problem.”

B. Chern — Simons and the Vacuum Angle

It is known that physical states iu a Yaog-Mills theory are not gange iovari-
ant; rathee, they change under homotopically non-irivial gauge transformations by
a phase. In a Schrodinger representation, the stctes are wave functionals of the
spatial components of the vector poteatial, W(A), and the gauge transformaton is
implemented by a unitary operator U(g): U(g)¥(A) = W(Af) = c—"*{9w(A).
Frequently, it is convenient to deal with gange invariagt siates ®'(A), and these
may be obtained from W(A) by multiplying the latter by an A-dependeat phase
consteucted from the integrated Chern-Simons density. ¥'(A) = &?“slA)g(A). It
follows from (2.5) that W'(A) is gauge invariant: U(g)¥'(A) = W'(Af) = ¥'(A).
However, in quantum theory, 5 phase change of a wave functioa(al) corresponds to
a canonical transformation, which in general induces a change in the Lagrangian
by a total decivative. To find the uew Lagrangian, we consider the [tumctional
Schridinger equation for W(A) = £*“s{A) ¥ (A)

0 _isue(n) gt _/ [_1 s 1. " —ius(A) @*(A)
igee W(A)= [ &2 3 E_A:(x)sAi(x)+ZB‘(x)B'(x) ¢ (A)
= -Lomep
(4.3)
and deduce that the modified Hamiltonian is, as & consequence of (2.11).

A= / a‘:[% (ﬂ:(x) - %,—B:(x))’ + ;B:(x)ﬂ:(x)] 42)

This leads to a Lagrangian density which includes the total-derivative Chers~
Pontragin density p.

L't FF,, 40P (3

This is bow the vacuum augle arises in the Yang-Mills Lagrangian.”

Note that the kinetic term in the Hamiltonian deasity (4.2) may also be written
as 4V}, where the [field] velocity A, = V, differs from the ¢agonical momeatum
by = favther term, here 32y B,. This is az=lngous to a point paztick in n_cdcrld
‘leld described by a vector potential. Thus, we may say that the Hamiltonian (4.2)
Jercribes a gauge potential A,, i an extenal U(1) [functional] gauge !L"d. whose
[functional] connection is ;ZyB,. The [functional] curvature is determined by the
commutator of the velocities; compare (3.8). Here this commutator mnhes;_thc
eurvature vanishes; the connection is & “pure gauge”, a3 is to be expected. since
iGBi = i',‘q 6wy(A). We shall meet this situation again, but with mon-vanishing
curvature.
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C. Chern — Simons in & Solution to the Yang — Mills Schrdinger Equation

The functional W(A) = e337*W(A) js u static [zero-energy] solution to (4.1).7
However, ¥ is not normalizable [by functional integration of over A,]; also, it does
not transform under non-tivial gauge transformations as a physical stat-:. 1 consider
this a tremendous teaser of modern gauge theory: we are dealing with a highly non-
trivial functional differential equation and we can find an explicit solution,which is
unacceptable. Nevertheless, | continue to hope that we may yet learn something
about Yang-Mills theory from this solution.

V. CHERN-SIMONS IN GAUGE-FIELD DYNAMICS

The Chern-Simons density naturally is an odd-dimensional quantity, and the
variation of its integral is gauge covariant; see (2.11). Therefore, in a gauge the-
ory in three [or properly generalized in any odd-number] dimensions, we may use
the O-cocycle wy(A) to supplement the conventional Yaug-Mills action Iyn =
!d‘s} tr FVF,T

I = Iyn +2zxm wo(A) (5.1)

The resultant field equations are gauge covariant.
D F* + ;"—' EPF,, =0 (5.2)

The proportionslly constant m has dimensions of mass, and an analysis of the
Abelian U(1) case [electrodynamics in three-space-time] shows that the “photon” is
indeed massive with spin IET = +1. [In two-space, spin is a (pseudo-)scalar.] This
gives lie to the frequent but erroncous assertion that “gauge invariance prohibits a
massive photon”. The model is called a (opologically massive gauge theory.

When quantizing the above non-Abelian theory, one must confront the fact that
the total action 1 i3 not gauge invariaat owing to (2.5), even though the equations
of motion are gauge covariant. Since quantum mechanics makes use of the phase
exponcatial of the action, e/, we must ipsist that the latter be gauge invarinut and
this requirement enforces a quantization condition on m: it must be an integer [in
units that A and the dimensionful three-dimensional coupling constant is unity],
g0 that the action changes only by an integer multiple of 2#. This feld theoretic
generalization of Dirac’s moaopole quantization condition arises because the action
is multivalued.”

In a Hamiltonian formulation, the unitary operator U(g) which implements
gauge transformations does not merely gauge transform the argument of the wave

functional, but also multiplies it by a phase, which is just the 1-cocycle w;, intro-
duced in conneetion with {2.13).

Ul ¥(A) = cmrmehinlg(As) (63)

\7

Gauss's law requires that physical states be unaflected by the actiop of U,
U(g)¥#(A) = ¥(A) (5.4)

{There is no vacuum angle in three space-time dimensions.] Hence, in this theory
physical states are not gauge invariant, rather

W(A?) = SITm(Ailg(A) (55)

Iterating the gauge transformation shows that wy(A;g) must satisfy the 1-cocycle
condition; as of course it does.

The occurence of the 1-cocycle does not come as a surprise in view of our general

theory. The Lagrange density changes uuder gauge transformations according to
(2.15).

= %lr F* F,, + 2xmilo(A) - %lr FHFyy + 28mQ1 (A7)

) (5.6)
= glr FFyy + 2emilo(A) + 2xm8,017(A; g)
Consequently, the Lagrangian L = [ d¥z £ changes as
L-L +2:m/d’zﬁ°ﬂ‘,’(A;a) =L+ }Ztm/d’zﬂ.(A;a)
d (5.7)

d
=L+ aZlm&u(A;g)

where spatial surface terms have been dropped. Therefore, not unexpectedly,
~2xmun (A;g) occurs as a l-cocycle, ¥: shall see velow that w;(A;p) is trive
ial, w1{A;g) = ao(A?) — ag(A), where ag(A) is spatially non-local. Hence, the
cocycle can be removed, and a non-local, gaage invariant Lagrangian can be giveaa
for our topologically massive gauge theory.

The Hamiltonian is

ne | d'z{%(":(i) - ;"—;‘"M(’*’)’ +58! } (08)
B, = —%a"’F." |

and once again the field velocity in the kinetic term V! = N§ — B¢ A] describes a
gauge field in an external U{1) functional connection J¢'* A}{x), this time eading
to a non-vanishing curvature,

. ; m p
l[V.‘(x). Vb’(y)] = ‘—'-6,(, ¢o(x - y) (6.9
which, being independent of the dynamical variable, may be called a constant jfunc-
tional] magnetic field. One wonders whether there are other forms of non-Abelian

field dynamics that ap;-..r asfield motion in an external U (1) functional connection.
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One may also couple fermions to the three-dimensional gauge theory. It has
been shown that massless fermions in the fundamental representation of the gauge
group induct a Chern-Simons term, even if none is present in the “bare” Lagrangian.
This gives fise to an anomalous vialation of reflection symmetries |P aad T).7

A physical application of the above ideas is to QCD at high temperature, since
the high-temperature limit of a four-dimensional theory is governed by an effective
three-dimensional Lagraagian. Indeed, it has been shown that fermionic CPj= P
and T} violating effects at high temperature induce the Chern-Simons action.®

Another applicaiion of the above, in an Abelian version, is used for a description
of the Hall eflect. The dynamics of charged particles in that physical situation
conflues them to a place, owing to the presence of an external, homogenous magnetic
field. When also a homogeneous electric fleld is applied perpendicularly to the
maguetic field, the charged particlesinduce a planar effective electromaguetic action
of the Chern-Simons form: Jiuauces = 370 [ P23ty @?7F,pA,. |The magnetic
fleld is in the (missing) 3 direction.] Here, o is not trained by topological
considerations, since an Abelian gauge theoty is under discuasi The induced
covaiant current j,:‘,m,' = —61...,,,.,/6.4,. = —;"; ¢"°"F¢,,. leads to a planar
current, fhqucea = & ¢ E7, which is perpendicular to the clectric field E*. This
ia precisely the situating in the Hall effect. The physical meaning of the parameter
#, and dynamical mechanisms that lead to its quantization are subjects of current
research.®

V1. CHERN-SIMONS AND ANOMALQUS GAUGE THEORIES

A fonr-dimensional gange theory with a single multiplet ¢ of chiral fermions in
the fundamental represeatation is in general incomsistent owing to the anomaly ia
the gauge current. The theory is governed by £ = 1 tr F**F,,, +i¥(0 + A)¢ and
the fleld equation D F* = J* implies 0 = D, D, F¥** = D, J¥, but is contradicted
by the anomaly

(D, J*)s = ti-:—'; tr 3, 7 tr T*(AaBpA, + ,!,A,A,A.,) #£0 .  (61)

[The sign depends on the chirality] An alierustive/2quivalent symptom of the
problem is that the ckiral fermion determinant D(A) = det(d + 4) is not gauge
invariant,”

Although the model is inconsistent, one can go a certain way to give a con-
sistent mathematical description of its anomalies.? This makes use of the Chern-
Simoss density and ita descendaats. However, the dimensional ladder begins
with the Chern-Pontryagin density in six dimensions, as is given in (2.18). et
me remind that the Chern-Poatryagin density P is a 6-form in six dimensions;
the Chern-Simona density {1, iv a 5-form in Ave dimensions; fly, a 4-form, lives
in four dimensions; while the 3-form fy is three dimensional. From the latter
two, one may conxtruct & 1-cocycle and a 2-cocycle by integration: w,(4;g) =
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[d'30,(4ig), wa(Aig, ;) = [ Pally(A;g;,01). The role thas these cocycles
play in the |inconsistent] gauge theory is the following.

A. 1= Cocycle

Since the fermion deteminant is not gauge invariazt, ose may iaquire how it
transforms under a finite gauge transformation. The answez is

D(A?) = S lAudpia) | (6.3)

with a negative exponent for the opposite chirality. Infinitesimally, this reproduces
the anomaly since according to (2.10b) 27w, (A, I +6) & fd* 25k tr 6d{AdA +
1A%); compare (6.1). Moreover, it is easy to show that w,(A;A) satisRes
wi(A%07'h) = wi(A;h) = wy(A;g). Heuce, e~37(AM transformy uader g the
same way as D(A), and —2xw, (A; h) is recognized as the Wess-Zumino action.™ 19

Thus, we see that the hapharard-looking anomalons divergeace {8.1) bas &
scnsible mathematical origin. It is the infinitesimal gauge varistion of the Cl.ern-
Simons §-form; while the finite gauge change of the Chern-Simons S-form appears
as a l-cocycle in the fnite gauge change of the feriiionic determinant. Of course,
we recognize that the connection between these two statements arises from the
fact that the covariaat divergence of a gauge current is directly & measure of the
infinitesimal gauge variation of the fermionic effective action [= logarithm of ine
fermionic d=terminant| since a current is the variation of a8 action with respect to
the gauge potential, which under an infinitesimal gauge transformation changen by
a covariant derivative. Finally, it is seen that the 1-cocycle condition (2.23), taken
in infinitesimal form, is just the Wess-Zumino consistency condition.? 10

It is very elegant that one can unify the form of the anotnaly, the strmcture of
the Wess-Zumino tezm, and the Wess-Zumino consistency cosdition into one math-
ematical structure: the Chern-Simons term, its gauge variation and the 1-cocycle.
However, we physicists must not be blinded by mathematical dazele. In particu-
lar, contrary to some assertions in the literature,'® ! it is not true that &l chiral
anomalies need satisfy the Wess-Zumino condition, i.¢., be infimiteximal 1-cocycles.
The point is the following. In a consistent gauge theory - in one for which all
gauge currents are covariautly conserved ~ there may be amomalies in fermionic
currents that are classically conserved not because they are gauge currents, but for
some other reason, e.g., because of & Noether symmetry. These asomalics are not
related to gauge variations of a fermionic determinant, and do mot take the form
(6.1). Indeed, the gauge non~covariance of ;i.1) indicates that gauge invatiance
is lost in an acomalous theory, But in a consistent gauge theory, gauge invari-
ance is maiotsined, and all physically interesting quantitics, including anomalously
uen-conversed symmetry currents, must be gauge invariant, and so mast be their
[anomalous] divergences.

Examples may be drawn trom QCD - & tonsistent gauge theory - with massless
quarks. Nocther's theorem would indicate that an axial vector siaglet cureat j;‘
is conserved as a q of the apparent chiral symmetry. However, tae axial
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anomaly gives the current &n anomalous divergence.
, 1, .
Ouiy = ~g5ir *F*Fyy (6.3)

Although the right-hand side is a total divergence, see (2.1), it is not merely {6.1)
with T* replaced by I; (6.3) is gauge invariant while (6.1) is not. In the masslesa
QCD model, there are also noc-singlet axial vector currents, ji., which classically
are covariantly conserved, But, quantum mecbanically, they too suffer covariant
anomalous divergences.

(Duj:). = -8.?" T“F‘“'Fm, (6.4)

Eq (6.4), unlike (6.1), is gauge covariant, the right-hand is not a total divergence.
The Wess-Zumino consistency condition is not satisfied, but in no sense is (6.4)
“wrong", as has been occassionally stated in the literature.

Even though the gauge covariant anomalies are not given by the infinitesimal
gauge variation of the Chern-Simons term, s.e., they are not infinitesimal 1-cocycles,
they are determined by the erbitary variation of the five-dimensional Chern-Simons
S-form; see (2.19). {To obtain the normalization in (6.4), we multiply (2.19) by 2x -
cochains enter with this additional factor as seen in {6.2); furthermore, we multiply
by Z because iiie currents in (6.3) and (6.4) refer to massless Dirac fermions, which
are composed of a pair of chiral fermions.|

Since the following identity may be verified,

;- CFWF, =0, PP ALBpA, + %AGAHA‘I) (6.5)
+ D, P9, ApA, + AaBpA, + ;AoApAv)

it follows that a grage current J¥ which satisfles the anomatly equation (6.1) is
mathematically related a current J with anomaly of the form (6.4) by the formula!?

T =T & e tr TP (a.A,A., + AaBpAy + S AsAsA,
(Dud¥) = t#;, trT*« F¥F,,

[The current j* is composed of both J#'s, one for each chirality.] We emphasize that
this is a mathematical relation, not a physical one, since the two types of currents
arise in different physical contexts: jP is a symmetry current in a consistent gange
theory; J2' is a gauge current in anomalous gauge theory.

The Feynman graphs which arise  the evaluation of matrix elements for the
two currents can coincide. What is different is the regularization procedure that is
tequired to evaluate them. The graphs do not have a unique value; their ambiguity,
confined to local polynomials, is not fixed mathematically, but physically.
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A sinilar story may be told for two-dimensional gauge theories. When the the-
ory is consistent, for example massless QCD, tke classically conserved axial currects
[singlet and non-singlet] possess an anomaly that is gauge covariant, but does got
satisfy the Wess-Zumino consistency condition.

i i
Ouip = 2 tre*"Fl, (6.3)

; 1 ~
(Duid), = ' T Fyyy (6.8)

The expression in (6.8) is velated to the arbitrary variation of the thres-
dimensional Chern-Simons 3-form in the dimensional ladder descending from the
four-dimensional Chern-Pontryagin 4-form; see (2.11) and (2.16a). In the inconsis-
tent theory, tke gauge current’s anomaly is

(D, ¥}, = % Ir TP £ %)0,4, . (6.9)

The first term, involving g"* is not even a form, yet it is present to insure that
fermions with one chirality couple only to 1(0“" + €*¥)A, which is non-vanishirg
only in the light-cone component A~ and those with the otker to 3(g* = #¥}A,
which is non-vanishing only for A+, [Oze finds that this is what the interaction
¥(1xivs) Ay entails, owing to the two-dimensional formuls 1™ uvs = e**v,u. The
gauge variation of the local polynomial 1 [d'z tr A A, is tr T*0, A%, hence this
contribution to the anomaly is trivial since it could be removed by modifying the
definition of she fermionic determinant. Nevertheless, such a modification cannot
be made as long as one wishes to preserve the algebraic fact that chiral fermions
couple only to one component - either to A* or to A~, depending an chirality.
The second tevm in the anomalous divergence (6.9) is & form, and is related to the
gauge variation of the three-dimsensional Chern-Simons 3-form; see (2.12a), (2.18)
and (2.16b). Once again mathematical relatiouships between the gauge covariant
symmetry currents ji, and the gauge source carrents J¥ may be given

1
B = JB e e TP F M)A,
AL BT
) . . (8.10)
(D"J3 ). = ﬂ:z; Ir T%¢ F‘w

The two dimensional model puts into evidence yet another interesting fact. In
the consistent gauge theory with massless Dirac fermions of hoth chiralities, the
total current formally is tde sum of two individual cusrents each conatructed with
spinors of the respective chirality. However, from (8.9) we see that owing to the
trivial &r 793, A® term, even the sum of the two currents is not conserved. To
obtain a conserved current one must add the further term propotiionsl to A% to
the current. Since the current is the variation with respect to Aj, of the logatithm of
the fermion determinant, we conclude that gauge invariance forces the determinant
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for massless Dirac fermions to be composed of ihree facturi. Two factors correspond
to fermions of definite chirality. However, there is a third factor, dictated by gauge
invariance, involving exp i [ tr A*A,. Thus, contrary to assertions in the literature,
the Euclidean space determinant of chiral fermions does not possess the same real
part as that of Dirac femions; nor, as in seen in (6.9). is the anomaly in Euclidean
space nlways imaginary |proportional to the anti-symmetric tensor].'?

Finally, let us obscrve that according to (6.2), the 1-cocycle may be written as

¢ (49) = D(A%)/D(A) (6.11)

which shows that w, is trivial, since it can be expressed as [compare (2.24)}:
wi(A;g) = -i'—'-[ln D(A%)~in D(A)] . (6.12)

Of course, In D(A} is a non-local functionai of A; hence, the triviality noted in
(6.12) cannot be used to remove the anomaly. [One is free to redefine the fermion
determinant by tle integrated exponential of local polynomials in A.] However,
one may use (6.12), continued to Euclidean space, to remove the i-cocycle in the
realization of gauge invariance on wave functions in even-dimensional space where a
Hamiltonian description fur a topologically massive Lagrangian iu odd-dimensional
space-time is given, as in (5.3). We emphasize that in this application the fermion
determinant is being used as formal mathematical entity, satisfying (6.12), heuce
useful for the removal of the 1-cocycle, as in (2.25).!* No statement is being made
concerning physical fermions in topologically massive gauge theories.

B. 2 ~ Cocycle

When a current J¥ possess an anomaloua divergence and is present in the
Hamiltonian owing to a gauge coupling, its components must satisfy anomalous
comimutation relations, «o that /{H, J°| reproduce the anomaly in tie divergence
of J#.'* It has now been shown that these anomalous commutations are related to
the 2-cocycle introduced in (2.16) and (2.18).

Wien the composition law for operators implementiug a representation is pro-
jective as in {2.30)

U(gi)U(gs) = "2 Am907 (g,) {6.13)
and an infinitesimal description is given

U[l+0)=!+/d’zo‘G.(x)+... 020
6.14
i2rua(A; ] + 0y, 13)0) = % / & 2 o2 (x) B (y)Sus(A: x.¥)

where G, (x) is the inSuitesimal gauge transformation generator, then the infinites-
imal composition law departs from the Lie algehra - S providey an extension

[Gl(x)l GD(Y)] = fabe Gc(x)ﬁ(x -~ Y) + SQU(A;x|Y) . (6'15)
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The generaior consists of two contributions (D,;4-), which implements the in-
finitesimal gauge transformation on the gauge field variables, and Jf which does
that job on chiral femions. Evidently, the extension in (6.14) compises both the
anomaly in the |[J?, JP| commutator and the anomaloos response to gauge trans-
forations of J? [naively and formally J? is gauge invariant].

Ses(A;x,y) may be determined from the mathematical descent eqnasions. One
fiuds in three dimensions [Hamiltonian formulation of a chiral gauge theory in four-
dimensional space-time] [see (2.18)]

SulAixy) = zs tr T[T, T¢) ¢ 0,410,8(x - ) (6.16)
In ope dimension [Hamiltonian formulation of a chiral gauge theory in two-
dimensional space-time] the answer is [see (2.16)]

Swldiss) = (b0 8(s-) (6.7)

On the otber hand, the commutators may also be directly .omputed and, of
course, the vesults should agree with the mathematical formulation, apart from
trivial [infiniiesimal] 2-cocycles. That they do iu the Abelian case can be checked
by comparison with the old calculations, while the non-Abelian casc has mow also
been apalyzed.'®

It should be uoticed that the Abelian 2-cocycles are trivial. In three dimensions
we have

wa(A: 0, 0) = /m.a. = 4oy
(e.18)
ay(A;d) = -IIMAO
while in one dimension
wr(01,63) = [(dhndy ~100) = By
(6.19)

ay(A;8) = ;/.40

However, the non-Abelian 2-cocycles ere nnn-trivial

The inconsistency of the theory is now apparent from (6.13): one cammot re-
quire states to be gauge ipvariant, even up to a phase, when the representation
composition law is projective. Therefore, gauge invariance b lost.*

C. 3-Cocycle

There iy no knowa 3-cocycle associated with chiral anomalies - no failures of
relevant Jacobi identities have been found. However, a viclation of the Jacobi iden-
tity appears in the quark model. When the Schwinger term in the commutator

24



between time and space components of & current is a c-numbez, the Jacobi idea-
tity for triple commutators of spatial current components must #ail.'? Since deep-
inelastic scattering data indicates that the Schwinger term is indesd & c-number,'*
consistent with quark-model ealculations,'® the Jacobi identity fur spatial current
components should fail in the quark mode!, and this has been verified in pertur-
bative caleulaticns.?® The quark-model algebra of time and space components of
vector and axial vector currents closes on U(G) x U(6)3%, and the above remarks
indicate that a 3-cocycle occurs. However, a well-defined mathematical formulatiou
is problematical, since the Schwinger term very likely is quadradically divergeut.?

VIl. CONCLUSION

The Chern-Simons structure has proven itself to be an unexpected and valu-
able addition to our mathematical tools in physics. I have bere discussed some of
its applications; there are others in higher dimensions which have been found by
those workiug on various Kaluza-Klein programs, especially when embellished by a
supersymmetry. Doubtlessly, other applications will come to light in the future.

Let me indicate one possible direction of research for higher-dimensional gauge
theories. In four dimensions, the energy momentum tensor may be written as

¢ = ty(F**F, + °F*°F%) (1.1)
and the energy density is

¢ = 2(ELEL + BLBY) (2.2)

The “potential® term B!B! is expressible as the square of the variation of the
Chern-Simons O-cocycle by vittue of (2.11). Conventional, higker dimensicnal Yang-
Mills theory possess the same energy dennity as in (7.2), since the Lagraugian in
ony number of dimeusions is taken as in four. However, suppose we generalize
the potential term in (7.2) as it i3 expressed with the help of the Chern-Simons
0-cocycle. Thuy, in five-space [relevant to & gauge theory in six-dimeasional space-
time) !%f‘L..ﬁ o ¢ T F, Fin  [compare (2.19a)] and the square of this would
replace D30} in (7.2). Correspoudingly, (7.1) would be generalized by retaining
that expression, but deflning the dual by

“F8Y o VOB 1y TOFopFoy (1.3)
This providea new higher-dimensional gauge theorics, whose structure should surely

be unraveled.

In conclusion, one may ask why atructures in physical dimensions - the ac-
tion in four space-time and the Hamiltonian in three-apace ~ should be described
by mathematical objeets that descend from the six-dimensional Chiern-Pontryagin
density and the five-dimensiona) Chern-Simens density. While such questions often
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bave no answer, in the present instance the reason can be given.?® What is in-
volved is a topological obstruction to defining gauge nvariantly is the chiral fermion
determinant. To expose this obstruction, one embeds the gauge potential into a
two-parameter homotopy family and the obstruction manifests itself in the vanish.
ing of the determinant as the parameters are varied. This vanishing correspouds
to zero eigenvalues of the Dirac equation in six Jimeasions |2 homotopy + 4 coor-
dinate| and these are counted by the six-dimensional Atiyah-Singer index tacorem,
involving the Cherc-Pontryagin 6-form.
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Page 19
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) [v’,[v’,v’]] + [v’,lv’,vll] + [Uslvlzvgl] =ev-B (29)
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First paragraph next-to-last line: Figure caption shouid read: “Tetrahedron at
point r defined by three translations a;. The 3-cocycle is proportional to the flux
out of the tetrahedron.”

Page 22
At end of Section I, before starting Section IV, insert:

“Let us also understand that the 3-cocycle arising from aribtrary magnetic
sources may be put into evidence in an algebraic, gauge invariant manner, without
introducing a Hilbert space, linear operators, and vector potentials us was done
above.

A magnetic field, B, regardless whether it is sourceless, does no work on a
charged (e} particle at r which moves in B. The particle’s energy is only kinetic;
consequently, the Hamiltonian does not see the magnetic field: H = ‘}v’, VEL
The magnetic field is present in the Lorentz force law, ¥ = ev x B, which s re-
gained upon commutation with H when the commutator algebra (3.8) is postulated.
[Commutators with r are conventional.]

Translations of r by a are implemented by U{a) = e'® ", since U{a)r U~!(a) =
r + a. However, these quantities do not represent the Abelian traunslation group
faithfully, since (3.8) implies )

U(a,)U(as) = U (o, + a3) (3.16)

Moreover, by considering the triple product U(a;)U(as)U(a;), associated in the
two different ways, one finds a 3-cocycle, as before, which is the fux emanating
from the tetrahedron of Fig. 1.

When - B = 0, no flux emanates from a closed surface; the cocycle vanishes;
associativity is regained and v may be rezlized by the linear operator v = iy -
cA, B = ¥ x A. When there are sources, 7 - B # 0, the fux is non-zero, but
associativity will prevail if wy is 27 times an integer, since then e¢'“* = 1. This
requirement forces: (1) ¥+ B to consist of delta functions so that the total Sux not
vary continuously when the a;s change, i.e., the sources must be moncpoles; (2)
since a monopole os strength g produces the cocycle —4reg, eg must satisfy ihe Dirae

2

3



quantization condition. In this way, removal of the 3-cocycle, which is necessary for
conventional quantum mechanics with associative operators on Hilbert space, limits
magnetic sources to quantized Dirac monopoles. Other magnetic sources lead to a

pon-associative algebra.b”
Page 27
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Page 28
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