ИТЭФ --136

институт теоретической и Экспериментальной физики

О.Н.БАЛОШИН, Б.П.БАРКОВ, Б.В.5ОЛОНКИН, В.В.ВЛАДИМИРСКИЙ, В.К.ГРИГОРЬЕВ, А.П.ГРИШИН, И.А.ЕРОФЕЕВ, Ю.В.КАТИНОВ, И.Я.КОРОЛЬКОВ, В.Н.ЛУЗИН, В.В.МИЛЛЕР, Е.С.НИКОЛАЕВСКИЙ, В.Н.НОЗДРАЧЕВ, В.Н.ПЕТРУХИН, Ю.С.ПЛИГИН, Л.А.ПОНОМАРЕВ, В.В.СОКОЛОВСКИЙ, А.И.СУТОРМИН, Г. Д.ТИХОМИРОВ, К.А.ТРОСТИНА, Ю.П.ШКУРЕНКО

MOCKBA 1984

JIK 539, 172

Представлены результаты амплитудного внализа КСКО системы из реакции п р + KIKIN при импульсе налетающего # -мезона 40 ГаВ/с. Ход Доволны в области эффективных масс I ГэВ<М_{КОКО}<І,6 ГаВ удовлетворительно описывается супериози-цяей $f \stackrel{III}{-}$ мезонов. Получено указание на существование дополнительного сравнательно узкого 2** состояния с массой I,33 ГаВ, статистически недостаточно обеспеченного. В S-волне подтверждено наблюдавшееся ранее расшепление широкого резояанса 🔏 (1300) на два более узких 0++ пика с массами 1,26 и I.42 ToB.

M-16

О Пистотут теоротической и эксперимонтальной физики 108-1

I. <u>Введение</u>

Мы представляем в эгой работе результати амплатудного анализа К^O_IK^O_I -системы из реакции п⁻р → К^O_IK^O_IN при импульсе налетакщего **п**⁻-мезона 40 ГэВ/с.

Интерес к изучению $K_1^{O}K_1^O$ -системы обусловлен двумя следущиеми обстоятельствами. С одной стороны, неразличимость двух K_1^O мезонов ограничивает набор квантовых чисел $K_1^OK_1^O$ -системы значениями J^{P} = четное⁺, $I^{-} = 0^+ m I^-$, C = +I. С другой стороны, основные состояния спектра глаболлов ожидаются в состояниях $J^{P} = 0^{++} m 2^{++} / I, 2, 3/.$

Поэтому К⁰_IK⁰_I -система является одним из наиболее важных объектов для исследования состояний с положительной четностью.

Изучение К^O_IK^O_I -системы к настоящему времени выполнено в работах /4-IO/ в днаназоне импульсов налетанцих *****-мезонов 6 - 23 ГэВ/с, однако при сходстве в общих чертах результати заметно отличаются в деталях. Поэтому нам представлялось целесосоразным выполнить амплитудный анализ К^O_IK^O_I -системы, периферически родалщейся при существенно отличащемся импульсе налетанщего

-мезона.

2. Экспериментальная аппаратура

Подробное описание 6-метрового слектрометра приведено в работе /II/. Здесь мы только коротко опинем постановку эксперимента. Схема расположения оборудования представлена на рис.I. Пучок — — мезонов от внутренней мил.сли ускорителя ИФВЭ на 70 ГаВ выводился магнитаным трактом на индковсдородную нашень длиной 40 см и диаметром 6 см. Внутренний и внешний комуии мишени изготовлены из неркаверцей сталя толщиной 0.3 мм х I.5 мм., соответственно. Наружный комух по пучку свабиен лавсамосьми окнами 2x0,2 мм. Средний импульс пучка 40 ГэВ/с, среднекведратичное отклонение импульса пучка 0,5%.

Для регистрации пучка использовался телескоп из 5 счетчиков T_I - T₅ и счетчика с центральным отверстием ТА. Сигнал телескопа вырабатывался при условии

$$\mathbf{T} = \mathbf{T}_{\mathbf{I}} \bullet \mathbf{T}_{\mathbf{2}} \bullet \mathbf{T}_{\mathbf{3}} \bullet \mathbf{T}_{\mathbf{4}} \bullet \mathbf{T}_{\mathbf{5}} \bullet \mathbf{\overline{TA}}.$$

Сцинтилляционные счетчики A_IA_I - A₅A₆ вокруг мишени регистрировали заряженные частицы я В -кванты. Счетчик A₅ располагался в 2,5 см от водородного объема, а протяжениссть всей сборки А₅A₆ вдоль шучка составляла 5 см. Тригтерный ампульс вырабатывался при условия

 $M = T (\overline{A}_{I} + \overline{A}_{I} + \dots \overline{A}_{6}).$

Для уменьшения количества пустых снижков использовался годоскоп за магнятом спектрометра, перекрывающий размеры зазора магнята. Эфректявность годоскопа составляла 86%, часть статистика была получена без него.

Неэфјектизность счетчиков A₅, A₆ составляла 10⁻⁵. Эффективность регистрации ность регистрации ставляла 96%. Случайное подавление реакция этими счетчиками ~5%, подавление за счет регистрации K₁⁰ -мезона и нейтрона в результате сильного взаимодействия составляло около 20%.

Заряженные пролукти реакции п⁻р → 2 V[•] регистрировались двенадцатьв 8-зазорнаем яскровляя камерами, помещенными в макнитное поле. Паряметры камер: размер 1450 х 750 мм, зазори но 10 мм, толщина электродов 14 мкм Al, две стенки из лапезна толщиной 70 мкм. Съем информации – онтическиј, на фотенденку, тък стереопроекции 0° и \pm 15°. Эфективность зазора к одной частиде и четырем частицам 95% и 73%, соответственно, время памяти 3,5 мкс. Точность измерения координат искр и магнитного поля обеспечила точность $\Delta p/p \sim 0.3\%$, $\Delta g \sim 0.3$ мрал, $\Delta \Theta \sim \sim 0.3$ мрал.

3. Эффективность спектрометра

Геометрическая эффективность спектрометра для реакции п[¬]р → K⁰₁K⁰₁ / была вычислена методом Чонте-Карло с помощью программы, позволяющей генерировать случайные звезды с ресами, имеющими экспоневциальную зависимость с¬ квадратов передаваемых 4-импульсов /12/.

Эффективность спектрометра ин определили следующим соотношением

Здесь Р_I, Р_к - Вабор кинематических переменных, от которых зависит матричный элемент исследуемой реакции, $\sum W'_i$ -сумма зесов разытранных событий, удовлетворяющих условию регистрации события, а Wo -сумма весов всех разыгранных событий.

Для реакции п⁻р — К⁰IК²N с последующим распадом К⁰I – мезона на **н⁺и** *п*⁻-мезоны в качестве независимых переменных была выбраны спедующие переменные:

Ч_{КК} - эффективная масса К<mark>I</mark>К<mark>O</mark> -системы,

- t квадрат 4 -импульса, переданный от протона к нейтрону.
- . Сов косинус угла вылета К⁰ мезона в системе покоя двух К⁰ мезона косительно надетакцего **ж**-мезона (угсл Готфри-: да-Джексока),

9 - угол между плоскостью рождения и плоскостью распада в 108

же системе (угол Треймана-Янга).

Все переменные, кроме \pounds , при резыгрывании считались равновероятными, а для \pounds предполагалось, что

do/dt ~ exp(-81t1)

в соответствии с экспериментальным респределением. Событие считалось зарегистрированным в спектрометре, если каждый из четырех # -мезонов проходил не менее трех искровых камер (24 зазора), причем угол между треком и нормалью к зазору камеры был меньше 45°. Принятые ограничевия генерированных событий приблазительно спответствовали критериям отбора при обработке снимков.

Расчет показал, что эффективность практически не зависит от t и S, пязьно уменьшается с ростом M_{KK} в близка к нуль при $W_{KK} > 3$ ГэВ и /Gs θ /> 0.9. Не рис.2 представлено поведение эффективности в зависимости от /Co θ / для вескольких значений M_{KK} и для двух полохений водородной мишени, при которых выполнялся эксперимент.

4. Обработка данных

За все времи работы спектрометра с нейтральным триггером, описенным выше, чегез установку било пропущено $\sim 5 \cdot 10^{10}$ n⁻ мезонов и получено около ССС ССО фотографий. Ессь полученный метериал был дважды просмотрен для отбора кандалотов в двухвилочные события. При просмотре отысчались то снимки, на которых было не менее двух пар треков противоположного знака. Выборочная ревнами просмотренного материала позволила оценить эффективность просмотра в 97%.

Случая, отобранные при просмотре, обмерялись на сканирурцем автомате ПСП (оптико-механическое устройство типа НРЛ /13/)

Результаты обмера записываннов на магнатную денту, которая и аспользовелась на последующих этапах обработик.

Распределение по эффективной масое п[†]п⁻ -комбинации до уравновещивания для тех пар треков, которые были идентифицированы в качестве образущих вилку, показано на рис.3 для одной из серий фотсграфий. Бидно, что К^O₁ -мезонч идентифицируются нами достаточно надежно при пренебражимо малом фоне. Полное число собятий, в которых обе вилки были идентифицировани как К^O₁ -мезови, составлило 6717 собитий.

На рис.4 представлено распределение по квадрату нецостарчей массь MM² для этих событий до уравновенивания нараметров треков. В качестве импульса и направления входной частици и оппбок этих величин использовались средние значения, подученные в специальных пучковых сериях снимков. По-вядямому, это привело и систематическому сдвагу центра тяжести распределения и к донолнительному его уширению. Для дальнейного анализа бых взяти собития, для которых квыдрат недостанцей массы находился в пределах -0,5 - 2,8 Гэв². Пределы были выбраны из условия приближенного равенотва числа событий, теряемых из-за сбрезания, числу событий фона под шиком. В указанных пределах оказалось 6192 собития.

5. Сечение процесса.

Для определения сечения была отобрана одна из серий снимков. Кроме попразки на потери при обработке (+12%) были внесены следущие поправки:

45% на случайное подавление реакции из-за загрузки вето-счетчиков вокруг иншени;

+20% на триттерние потери из-за регистрации нейтрона или К. -

мезона в вето-счетчиках вокруг мишени; +3% на примесь — —мезонов в К -мезонов в пучке; Поправка на фон от пустой мишени была найдена пренебрежимо малой. Учет ненаблюдаемых мод распада К⁰ -мезона приводит к мнокителю 2,125, на который должно быть умножено наблюдаемое сечение. Множитель, учитывающий эффективность регистрацки реакции п р - К⁰К⁰/1 спектрометром, составляят 2,133.

После введения всех перечисленных поправок и множителей для сечения язучаемого процесса получилась величина 0,4<u>4</u>0,04 мкб

с возможной систематической ошнокой ±30%.

Сравнение этой величины с сеченаями этой реакция при импульсах 5,7 и 12 ГаВ/с, взятным из работы /14/, показало, что все они хорощо описываются соотношением ог Р^В. При этом величина В оказывается равной В = -1,66±0,1 и олизкой к величине, окидаемой для процессов, в которых доминирует обмен п -мезонной траекторией.

6. Эбщие характеристика КТКТ -системы

На рис.5 представлено полученное нами распределение по эффективной массе К⁰₁К⁰₁ -системы. Зачернена гистограмма, показывакщая распределение до его исправления на эффективность прибора. Учет эффективности при построении этой и других гистограмм, в также во всех последующих распределениях делалоя приписыванием каждому событию веса, в качестве которого бралась величина, обратная вычаслевной эффективности регистрации данного события. События с весом, равным десяти или более, отбрасивалясь. В интервале насс от порога до 2.0 ГаВ эффективность прибора является достаточно гладкой функцией и не приводит к появлению в спектре масс каких-либо структур, связанных с прибором. При массах выля

2 ГаВ поправки становятся велики и ненадежни.

Как и во всех работах по исследованию КК -системи, упоминавшихся выше, спектр имеет резкий подъем в околопороговой области, сложную структуру в области $f - A_2 - f$ -мезонов и длинный хвост, тянущийся далено в область кинематически доступных масс и, возможно, обнаруживающий некоторую структуру в области масс I, 7 - I.9 ГаВ.

7. Угловое респределение распеда КСКТ -систем-

Ненорыпрованные и исправленные на эффективность моменти сферических гармоник углового распределения представлены на рис.6. Моменты были вычислены для 25 МаВ-интервалов по массе $K_1^0 k_1^0$ - системы и с ограничением на квадрат переданного к $k_1^0 K_1^0$ -системе 4 -импульса /t/< 0 2 ГэВ². Это было сделано с ценъв подчеркнуть видад процессов, идущих с малыми переданноми импульсами, и для удобства сравнения с уже опубликованиоми данноми.

Из работ по исслелования $K_{I}^{O}K_{I}^{O}$ -системы /4-IO/ известно, что для масс ИК -системы, меньших I,6 ГэВ, существенно значимыми моментами оказываются моженты с $\angle = 0, 2, 4$ и $\pm 0, I, 2$. Чоменты с $\mathbb{N} = 0$ значительно больше остальных, как это и ожниется для реакций, в исторых доминирует обмен ¶-шезонсм. Моменты, вычысленные нами, показывают еналогичные соотношения, что, по-выдичому, свидетельствует о сохранения, в общих чертах, механизма обравованыя $K_{I}^{O}K_{I}^{O}$ -системы.

При общем сходстве поведения молентов с изменэние масси К¹_I d⁰_L -системы в нашей работе и ранее опубликовенных работах /4-9/ имеются и вполне отчетливые различия. Так, можент в области масс I,45 - I,6 ГаВ в нешей работе и работе /6/ на порилок меньше, в то время нак в работе /4/ он отличается не бо-

8. AMINETVANNE SHARES

Связь экспериментально наблюдаемых моментов углового распределение с амплитудаме рождения \angle_{2} , где \angle и λ означают снии и аниральность $K_{1}^{O}R_{1}^{O}$ -системи, а + и - натуральную и ненатуральную обменную четность, выражается соотношениями, сооранными в таблюце I. Вывод втих соотношений и предположения, положенные в его основу, неоднократно были опубликованы в литературе /6,7/.

· Tadama I

 $< Y_0^* > = S^* + D_0^* + D_-^* + D_+^*$ $< Y_0^* > = L \cdot |S| \cdot |D_0| lon \phi_{SD_0} + 0,639 D_0^* + 0,319 (D_-^* + D_+^*)$ $< Y_0^* > = -1,414 \cdot |S| \cdot |D_0| \cdot lon \phi_{SD_0} - 0,452 |D_0| \cdot |D_-|$ $< Y_0^* > = 0,391 (D_-^* - D_+^*)$ $< Y_0^* > = 0,857 D_0^* - 0,571 (D_-^* + D_+^*)$ $< Y_0^* > = -1,107 |D_0| \cdot |D_-|$ $< Y_0^* > = 0,452 (D_-^* - D_+^*)$

Так как статистически обеспеченной ми считаем только часть спектра масс $K_1^{0}K_1^{0}$ -системы от порога до ~1,6 ГаВ, где для амилитудного анализа достаточно только $\mathcal{N} - \mathfrak{u}$ \mathfrak{D} -воли, то в таблицу включени только моменти с $\angle \leq 4$. Кромс того, из близости к нулю моментов с $M \ge 2$ следует, что нет необходимости рассматривать состояния $K_1^{0}K_1^{0}$ -системы со спиральностью, большей единици. Это позволило ввести следующие сокращения в обозначеилях: $\angle \mathfrak{o} = \angle \mathfrak{o}^-$, $\angle \mathfrak{t} = \angle \mathfrak{s}\mathfrak{t}$. Мы также в явном виде использовали равенство π разности фаз \mathfrak{D}_0 - в \mathfrak{D}_- воли, следующее из фезовой когеррентности /6,15/.

Следует отметить, что амілнітудный анылиз даже с участнем только $S - n \supset -$ волн оказывается достаточно сложным, так как в обеах волнах присутствуют резонанси. Поэтому при вычаслениях использовалось еще одно ограничение $\supset_{-} = \supset_{+}$, согласущееся с моделью ОРЕА /I5/ и опрандываемое малостью моментов $< Y_2^{\xi} > < Y_4^{*}$. Таким образом, в наших вычислениях были нопользованы следующие переменные: /S/, /D/, /D-/ =/D+/ и таза ρ_{SDo} .

Результаты амплитудного анализа представлены на рис.7, где показаны квадраты амплитуды $\mathcal{N} - u$ \mathcal{D} -волн = разность фаз $\mathcal{N} - u$ \mathcal{D}_{σ} -волны. Амплитуды $\mathcal{D} - u$ \mathcal{D}_{ϕ} оказались, как и следовало окидать из новедения моментов с M = I и 2, малыма, а в амплитудах $\mathcal{N} - u$ \mathcal{D}_{σ} -волн, как видно из рисунка, имертся ясно выраженные структуры. Сначала мы остановымся на изучении структуры \mathcal{D}_{σ} -волны.

Как я во всех преднаущих расотах по исследованию КК -системы, мы полытались описать поведение До-волны f - и f мезонами. Брейт-Вигнеровская амплитуда f-мезона онла взята в виде ...

ŝ

 $f_{BW} = \frac{A \mu \left(\int_{\overline{M}} \frac{1}{M_{e}} \cdot \int_{KK} \right)^{1/2}}{M_{e}^{2} - M^{2} - i M \mu \Gamma_{tot}} ,$

где И**f** - эффективная масса К^O_IK^O_I-системы, Af - амалитуда, в которую собраны все множители, не зависящие от M,

и, Гин, Г_{ин}, Г_{ис}, Г_{ис} -масса, парциальные и полная ширины мезона, взятые из данных РДС /16/. Аналогично для К-мезона

$$f_{BW} = \frac{A_{R'} \Gamma_{tot}}{M_{R'}^{2} - M^{2} - i M_{R'} \Gamma_{tot}}$$

где И / и Гност скова фиксированы их табличными значениями. Иссоовая зависимость ширин была взята в виде

$$\int = \int_0^\infty \frac{q^5/\partial z}{(q^5/\partial z)_0} =$$

гдө

У --импульс распадной частицы в системе поноя КІКІ, а значок О означает, что соответствующая величина берется при резонансном значении массы К^O_TK^O_T --системи /6/.

Суперпозиция двух этих амплитуд записивается в Биде

$$D_0 = \frac{M}{V_{9\pi}} \left\{ \begin{bmatrix} Ref_{8w} + Ref_{8w} \cos \phi - Imf_{8w} \sin \phi \end{bmatrix} + i \begin{bmatrix} Imf_{8w} + Ref_{8w} \sin \phi + Imf_{8w} \cos \phi \end{bmatrix} \right\}.$$

Влесь -относительная фоза этих двух выплитуд. Она быле повнята равной **Trad**, как это получается при описании рокдения *f*-мезона в терминах ОРЕ и как это наблюдается в экспериментех /6,17,18/.

Полгонка к По этой результирующей амплитуды в интервеле масс 1,11-1,57 ГаВ, при которой верьированись только относительные вклады резонансов, дала 🏸 15,4 при 17 степенях свободы, что говорит о формальном согласии этой гипотезы с экспериментальными данными. Но, как видно из рис.7, где пунктирная кривая показывает результат этой подгонки, экспериментальные точки в области максимума лежат делеко от фитированной криво", Была сделана попытка добавить к суперпозвции 🖌 – и 🖉 выплитуд амплитуду А2 -мезона. Параметры А2 -мезона были взяты снова из данных РДС . Фаза рождения А2 -мезона была фиксирована величиной 1,8416 рад по следующим соображенням. В реботах /15,17 - 21/, где изучалась реакция п р 🛩 * K и , для фезы рождения A2 ~кезона были получены величины в диапазоне -(I.0 - I.4) рад. При нереходе к реакцик п⁻р -> К⁰_T К⁰_T в соответствии с /22,23/ к фазам рождения состояний с изотопическим спином I = 1 должно быть добавлено 🛣 . Поэтому мы в качестве фазы роздения А2 -мезона взяли величину -1.3 + 3.1416 = 1.8416 ред. Подгонка к До супернозиции трех амплитул, при которой варьировались их относительные зклады, не изменила ход кривой. Вклад А2 -мезона оказался исчезаоще малым (AA, /Af-10"). Были протерены также варианты описания

До-волны с А2-мезоном, не интерферирующим с *К* и *К* и вериент со свободной фазой. Они позволяют несколько приблизить фитированную кривую и экспериментальным точкам, но только при большом вкладе А2, что не ссгласуется с другими экспериментами /6,9,17,18,19/. Предположение о большом вкладе А2 -мезона не согласуется и с неолодавшейся в наших экспериментах зерисимостых спектрог от ограничений по переданному импульсу. На рис.8 показено повещение момента $< Y_4^{\circ} >$ для еще меньших переденных к

 K_{I}^{OKO} -системе 4 -импульсов, чем использованные при амплитудном енализе, и для области больших переданных импульсов. Как видно из рисунка, при меньших переданных импульсах сохраняется присутствие эмплитуды, имеющей максимум при более высоком значении изссы, чем \mathscr{A} -мезон, а при больших переданных импульсах она практически отсутствует. Для A_2 -мезона следует охидать скорее обратных соотношений. Таким образом, включение A_2 -мезона в любом варианте для описания \mathcal{D}_0 -волны должно быть отвергнуто.

В последующих попытках улучшить описание До-волны мы исключили A₂ -мезси совсем, а вместо него допустили существование нового резонанса, для которого подбирались масса, ширина и откосительный вклад. Так как число экспериментальных точек в диапазоне часс КК -системы I.II-I.577В равно I9, а число гараметров, которые нухие найти при подгонке к ими, достаточко велико, то ки не включили фазу рождения резонанса в число свободных параметров, в просто проделали подгонку при нескольких заданных се аначениях.

Как видно из таблици 2 и из рис.7, на котором сплошной линие: ненессна фитированная кривая, эта гипотеза при нулсвой фасе редения резонанся наллучшим обратом описивает экспериментяльние денние. С целью преверки устойчивости параметров резонанся им продельни подгонку этой гипотезы и экспериментальным донным для области меньших переданных импульсов и непосредстлеяно и моменту $\langle \nabla_{q}^{o} \rangle$. Биля имполяена тожая подгонка к экспериментальным боз их вреданных импульсов и непосредстлеяно и моменту $\langle \nabla_{q}^{o} \rangle$. Биля имполяена тожая подгонка к экспериментальным боз их вредании из эрфоктивность снектрофетра. Результали всех этих неловой также представлены в табище 2. Средение неличии, полутонных для переметров резонания в различных вариантах описания экспераментальных денных, покезевост кх хородее согласие друг с другом в пределах ошибокОтносительные ошибки в амплитуде *S*-волны несколько больше, чем для *D*₀-волны. В связи с этим мы не приводим здесь результатов описания *S*-волны суммой резонансов с Брейт-Вигнеровскими амплитудами. Качественно зависимость амплитуды *S*-волны и относительной базы *S*-и *D*₀-волн от массы К⁰₁К¹₁ -системы согласуется с результатами работ /9,10/. Полученные нами результаты подтверждают привеленные в /10/ указания на сущесть вание двух 0⁺⁺ -резонансов в области масс I,2 - I,5 ГаВ. Однако, значения максимумов в нашем материале ческолько смещены. Первый резоненс имеет максимум при I,26 ГаВ вместо I,24 ГаВ при ширине около 50 МаВ, а второй, менее надехно определенный, - I,42 ГаВ вместо I,47 ГаВ с несколько большей шириюй.

9. Обсуждение и выводы

Возможность присутствия новых 0⁺⁺ - и 2⁺⁺ - состояний в области масс I,0 - 2,0 ГэВ обсуждалась неоднократно в текущей литературе как с теоретической /I,23,24/, так и с экспериментальной точек эрения /I0,25,26/. Мы не будем эдесь рассматриветь детали теоретических расчетов спектров глюонных и смешенных состояний. Для нас сейчас вожно только то,что общее количество возможных 0⁺⁺- и 2⁺⁺ -состояний оказывается достаточно большим и не исчерпивается состояниями типа кварк-актикварк, известными в настоящее время.

С точки эренин поисков возможных дополнительных состояний 2^{**} экспериментальная ситуация представляется нам не совсем ясной. В ранних работах по исследованию $K_{I}^{0}K_{I}^{0}$ -системы /4-8/ для описания \mathcal{D}_{o} -волны не использовалось других резонансов, кроме f и f'. Но и спектр \mathcal{D}_{o} -волны в них был пред-

ставлен в 50 МэВ- или более крупном разбиении, так что достатсчно узкий резонанс с относительно небольшим вкладом мог просто не проявиться при таком представлении экспериментельных данных. До-волна в работе /9/ дана в 25 МэВ-резбиении и сормально достаточно хорошо описывается \mathcal{A} -, A_2 - и \mathcal{A} -чезонами. К сокалению, авторы этой работы не приводят относительной фазы рождения A_2 -wesons, полученной ими, поэтому оствется наясной необходимость включения A_2 -мезона, хотя бы и в той малой доле, которая у них получилась, в описание До-волны.

В полученном нами при 40 ГоВ/с материале D_{σ} волна в интервале от I до I,6 ГаВ удовлетворительно описывается суперпозицяей $\beta - \mu$ β -мезонов: $\frac{\gamma^2}{NDF} = I5,4/17$. Однако, отклонения акспериментальных точек от фитированной кривой не похожи на случайный разброс и могут рассматриваться как некоторое указание на существование в области I,33 ГаВ дополнительного сревнительно узкого резонанса. Фитированные параметры этого гипотетического 2⁺⁺ резованса равны: $M\chi = I329\pm7$ МаВ, $\Gamma_{\chi} = 47\pm28$ ЦзВ, относительная сиплитуда $A_{\chi}/A_{\chi} = 0,074\pm0,028$, относительная фаза рождения $\Phi_{\chi} - \Psi_{\Lambda} = 0$, относительный эклад в сечение (без учето интерференция) $\sigma_{\chi}/\sigma_{\chi}^{-} = 0,06$.

Что касается подтверждаемых нами двух резонансных состолний в S-волне, то наиболее естественно интерпретироветь их как партнеры f-и f-мезонов по спин-србитальному мультиплету - ³P₀ -состояние обычных и странных кварков. Только солее детальный анализ, затрудненный при малом £3 - расщеплении, иохет выявить примесь главския 0⁺⁺ в этих резонансах. Авторы приносят свою олагодарность Г.А.Мамучашвали и группе эксплуатации 6-м-спектрометра, службам цучков и ускорителя МФВЭ за содействие в проведении сеансов работы 6мспектрометра, просмотровое быро ИТЭФ и сотрудников установки ИСШ за качественную обработку фотоматериала сеансов, Т.Б.Белаш за помощь в оформлении данной работы.

Табляца 2

Ar+/lis	۸ _X /۸۲	М _Х ,Гэв	Г _Х ,Гэв	7²/ !:DF	Эксп. денные
0,124±0,014				15,4/17	\mathcal{D}_{0}^{2} , $ t < 0.2 \ \Gamma_{BB}^{2}$, §
0,134±0,018	0,074±0,028	I,329±0,007	0,047±0,028	6,8/14	\mathcal{D}_0^2 . $ t < 0.2 \ \Gamma_{BB}^2$. §§
0,154±0,030	0,086±0,026	I,327±0,008	0,050±0,027	6,5/14	Y4. 12 < 0,2 IBB ²
0,155±0,026	0,063 ± 0,036	I,324±0,009	0,040±0,042	6,8/14	Do. [t]∠0.1 Гэв ²
0,154±0,021	0,064±0,022	I,324±0,008	0,043±0,046	9,3/14	Y4. t <0,I TaB ²
0,113±0,027	0,053±0,074	I,325±0,0I3	0,024±0,038	9,3/14	Do. 1t1<0.2 Гов ² . §§§
0,128±0,030	0,066±0,046	1,325±0,008	0,032±0,038	8,9/14	Y4. 1ti≤0,2 FaB2, \$\$\$

§ Сечения $\beta - \mu$ β -мезонов равны соответственно 68[±]7 нб и 12[±]1,3 нб. §§ Сечения $\beta - \beta$ - и X -мезонов равны соответственно 49[±]5 нб, 10[±]1,3 нб и 3[±]1 нб. §§§ Экопериментальные двиные взяты без учета эффективности.

H

Рис.I. Схема расположения оборудования 6 -метрового опектрометра.

、.'

Рис.2. Геометрическая аффективность спектрометра.

Рис.3. Распределение по эффективной массе #⁴#⁻-комбинации для пар треков, образующих вилиу.

19

ċ

Рис.4. Распределение по квадрату недостающей массы MM² для событий с друмя идентирицированными и событий с друмя идентирицированными и с

Рис.5. Риспределение по эффективной массе двух K_{I}^{0} -мезонов из реакции п⁻р $\rightarrow K_{I}^{0}K_{I}^{0}$ и без огранычений на переданный $K_{I}^{0}K_{I}^{0}$ -системе импульс и с огранычением HI < 0.2 ГэВ².

SI

Рис.6. Поьедение моментов сформческих гармоник, использованных в амплитудном анализе, в зависимости от массы К⁰₁К⁰₁ системы.

Рис.7. Результаты амплитудного анализа. Объясненне кривым на рисунке с До-волной дано в тексте.

Рис. 8. Поведение момента <>> в области больших и малых переданных к К^O_IK^O_I -системе импульсов.

литература

1. Rosner J.L. - Phys. Rev., 1981, D24, p.1347. 2. Donissiae J.F. - Phys.Lett., 1981, B99, 416. 3. Novisov V.A. et al. - Nucl. Phys., 1981, B191, р.301. 4. Вейныл 6 2 н. А.И. - жг. ЭЧАН, 1982, ЦЗ, с.542. 4. Wetzel W. et al. - Nucl. Phys., 1976, B115, 1976. 5. Cason N.M. et al. - Phys.Rev.Lett., 1976, 36, p.1485. с. Ројусћгопаков V.A. et al. - Phys. Rev., 1979, <u>D19</u>, 1317. 7. LOVERTE P.F. et al. Preprint CERN/EP-79-162, 1979. 3. Gottessan 3.R. et al. - Phys.Rev., 1980, D22. p.150'. Etkin A. et al. - Phys.Rev., 1982, D., p.1786. 10. 5 t k i n A. et al. - Phys.Rev., 1982, D25, p.2446. 11. Болонкин Б.Р. идр. Препринт ИТЭФ, 1973, № 88. чр. Боресков К.Р. и др. - ЛУ, 1972, 15, с.361. 13. Журивн Е.В. в др. Превринт (S2S), 1971, ЛЮ-6142. 14. Beusch W. et al. - Phys. Lett., 1907, B25, p. 357. 15. Irvirg A.C., Michael C. - Nucl. Phys., 1974, B82, p.232. 16. Particle Data Group. - Phys.Lett., 1982, B111. 17. Görlich L. et al. - Nucl. Phys., 1980, B174, p.16. 18. Costa G. et al. - Nucl. Phys., 1980. 8175, p.402. 19. Pawlicki A.J. et al. - Phys.Rev., 1977, D15, p.3196. 20. Wicklund A.B. et al. - Phys. Rev. Lett., 1980, 45, p. 1469. 21. Cohen D. et al. - Phys.Rev., 1980, <u>D22</u>, p.2595. 22. Lipkin H.J. - Phys. Rev., 1968, 176, p.1709. 23. Biswas N.N. et al. - Phys.Rev., 1972, D5, p.1564. 24. Donoghue J.F. - Phys.Rev., 1982, D25, p.1875. 25. Chabaud V. et al. - Nucl. Fiys., 1983, B222, p.1. 26. Atkinson M. et al. Preprint CERN/EP-83-179, 1983. О.Н.Балошин и лр. Амплитудный енелиз КУКС-системы из реекции Л при импульсе налетающего У -мезоне 40 ГэЗ/с. Редактор И.Н.Ломакина Коррентор 0.Ю.Ольковникова Работа поступила в СНГИ 7.08.84 TI7043 Формат 60х90 1/16 Тираж 235 экз. Подписано к печати 4.09.84 Офсетн.печ. Заказ 136. Усл.-печ.л.1,5. Уч.-изд.л.1,1. Индекс 3624 Цена 13 коп.

Отпечатано в ИТЭФ, 117259, Москва, Б.Черемушкинская, 25

16 **κ ο π**

.

٠

** * ****

.

М.,ПРЕПРИНТ ИТЭФ, 1984, № 136, с.1-25