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Abstract

We have studied the hot electron build-up by the second

harmonic electron cyclotron resonance heating in the thermal

barrier-region of tandem mirror GAMMA 10 by using a Fokker-Planck

code with self-consistent potential profile taken into account.

We have found two phases in the evolution of hot electron

population and the potential profile. In the first phase where

the RF diffusion is dominant quick increase of the hot electron

density and that of the mean energy are observed. No further

increase in the mean energy is observed thereafter. The

potential is the deepest during the first phase. The second

phase starts in the mean-free-time of the pitch angle scattering

of hot electrons on cold electrons and ions. In this phase the

hot electron population increases in the rate of the pitch angle

scattering. The potential dip shallows due to the accumulation

of pitch angle scattered passing ions. This observation

indicates the necessity of the ion pumping for maintaining the

negative potential at the thermal barrier.
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1. Introduction

Tandem mirror GAMMA 10 employs thermal barrier to insulate the

electrons in the end plugs from those in the central cell.

Generation of thermal barrier requires the creation of a high

population of mirror trapped hot electrons, heated by electron

cyclotron resonance heating (ECRH), The idea of thermal barrier is

introduced in favor that the plug potential can be formed even if the

plug density np is lower than the central density n c when there is a

potential depression between the plug and the central cell')'2). The

reduced requirement on plug density to establish the plug potential

significantly reduces the magnet and neutral beam technology

constraints and the power requirements for end plugging of tandem

mirrors.

Tandem mirror GAMMA 10 at Univ. Tsukuba employs ECRH to form the

thermal barrier and plug potential in each end cell^). Four 140kW

28GHZ gyrotrons are used in the thermal barrier and end plug regions

for electron heating. Resonant absorption of the extraordinary mode

wave is expected at the second harmonic resonance in thermal barrier

and at the fundamental resonance in the plug.

In this paper theoretical and numerical studies are made on the

creation of hot electron population when only second harmonic electron

cyclotron resonsnce heating is applied in the thermal barrier region.

In Sec.2 we analytically evaluate the time scale of hot electron build

up in the thermal barrier region. In Sec.3 we describe the numerical

scheme of the bounce averaged Fokker-Planck code which is capable of

calculating the self-consistent electrostatic potential. Section 4
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shows the results of the simulation study of hot electron formation by

means of the bounce averaged Fokker-Planck code. We clarify the

mechanism of hot electron build up and point out the necessity of cold

ion pumping. - Summary of this paper is made in Sec.5.

2. Evaluation of Characteristic Time Scale

To control the thermal barrier potential, it is necessary to

control hot electron population in the thermal barrier region.

Electron cyclotron resonance heating of hot electrons in tandem mirror

is an area of active experimental and theoretical investigations^'^!).

However the hot electron build up process has not been examined in the

self-consistent electrostatic potential profile.

In order to produce a substantial amount of hot electron density

within a limitation of beta value for MHD stability3>6)j the mean

energy of hot electrons needs to be limited. The microwave power

absorption by runaway electrons may be limited by means of detuning

from the resonance frequency due to relativistic mass shift. This

idea may be embodied by spatial localizing the microwave power in a

region where the resonance condition u = 2uce/7 is satisfied only for

low energy electrons say with few tens of keV. Here u is the wave

frequency, uce is electron cyclotron frequency, y = 1/(1 — u2/c2)'/'2 ,

and f is the electron velocity, and c is light speed. In experimemt,

a narrow pencil beam of microwave is injected in X-mode ( R-wave )
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possesing higher absorption efficiency.

Microwaves have sufficiently short wave length so that the

propagating character can be predicted by ray tracing techinique.

Furthermore microwaves are not as susceptible to nonlinear effects as

some other wave heating methods, so spatial locations of wave can be

predicted easily from linear theory^). To study the hot electron

build up in thermal barrier region theoretically and numerically, we

include the quasilinear electron heating effects^) in Fokker-Planck

equation.

endt v±dv±

£ + = Ex + iEv,

Here we use standard notation and E* is the electric field of the

right hand polarized microwave, fcj. is perpendicular mode number, Ji-\

is Bessel function, v± is the perpendicular velocity component, and

S() is Dirac delta function. The first term in the right hand side

of Eq.(1 ) is Fokker-Planck collision term. We assume fcu=0 and £u=0

for simplicity.

At first by using Eq.(1), we evaluate the characteristic time of

hot electron build up when only second harmonic reronance heating are

applied at the midplane.

Bounce averaging Eq. (1 ) along particle orbits assuming -y=l, we
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have

(2)

Jor

Jorb i ( '

Here u» and v± are the velocity components at the midplane of a

mirror cell," z is the coordinate along magnetic field line, and we

consider only ECRH term of Eq.(1). By integrating Eq.(2) multiplied

with (l/2)r«ei/i> we have a equation for hot electron build up at the

midplane as

(3)

N± = k±c/u.

For the thermal barrier region of GAMMA 10 we obtain

numerically as,



rb = 2.36xlCT
6-^- / {(-^r)2AS.} sec. (4)

Here a)co is the electron cyclotron frequency for B = 10 kgauss, I £
+ I

is measured by a unit of V/cm. For I E* I =100V/cm , N±=\ , i)/wco=l ,

we have Tb^-2.36fisec . Roughly speeking, Tb is the time in which

runaway electron population is driven by ECRH pover, i.e. RF diffusion

time.

The RF diffusion time Tb is so fast compared to electron collision

time, as is shown later in this paper, that the quasi-steady state

will be realized in which hot electron pitch angle scattering will

contribute to the further evolution of hot electron density in the

thermal barrier region.

Next we consider the effects of the hot electron pitch angle

scattering. In this quasi-steady state, the following equation will

hold as the first approximation,

(v1<D>4r
A) = 0, (5)

on UII =0 line at the midplane of the mirror cell. Here fn is the hot

electron distribution function at the midplane. One of the solution

of Eq.(5) is

fh(v) = 7r^-if26(e-7c/2), v =S i w ,

= 0, V > V,ca. (6)
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Where n^ is the hot electron density, vmai is the maximum velocity

of hot electrons, above which electrons are assumed not to be further

heated by ECRH due to the relativistic electron mass shift. We use

the spherical coordinate (u,e,$). In order to take the collisional

effects into account, we assume the electron distribution function as,

f(v,d) = -£tr,exp(- 4 ) + 5^-i;-2S(e-7r/2), (7)

Here nc, T e are cold electron density and temperature, respectively.

In this case linearized Fokker-Planck equation becomes

Here F=47te4lnA/wi , (i=cos6 and lnA is Coulomb logarithm.

Integrating Eq. (8) for (v,6) assuming d2A/dB2 - -/h/(Ae}
2, and A6 is

the half width of the resonance region in electron velocity space at

the midplane of mirror cell, we have
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Here

Ths = 4 T f i ^ ( A e ) % %

' e ' e

"in 2

= / 2Ki/dvj s.
Ju... Ji/2-A6

Here Ths is the escaping time of hot electrons out of the

resonance region in the velocity space by hot-hot electron pitch angle

scattering, TCS is that by hot-cold electron pitch angle scattering,

Thd is that by hot-hot electron drag, TC£J is that by hot-cold electron

drag, and A@ is measured in radian. Pitch angle scattering

represents the hot electron drain from the RF diffusion zone in

velocity space, contributing to activate the RF pump-up of the hot

electron density from the cold region. electron drag reduces the hot

electron density.

For the parameters of nc=10
I2/cc , nj,=5x 10"/cc, Tc = 100eV\
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Emtn=d0keV , £,in=2fceV , A6=12' , we have T^^-A.2msec, TW--31msec,

TCS-^1 .4msec, Tccp~l.Qmsec. The coulomb collision on ions contributes

to pitch angle scattering of hot electrons on the same order as TCS .

Therefore, the pitch angle scattering on cold electrons and ions is

the dominant process controlling the hot electron density build up in

the time scale of the order of 1 msec.

3. Fokker-Planck Code

To study plasma confinement in a mirror we use the Fokker-Planck

equation. The loss rate is included in terms of coulomb collisions

into the loss cone region in the velocity space. The loss cone is

defined as the region where particles are not confined by either the

axial magnetic field or the electrostatic potential. We assume the

mean free path of particles is so long that the particle does not

change its velocity so much during the bouncing period from one end of

a mirror to the other. Then we can integrate the Boltzmann equation

along a particle orbit in order to study the spatially varying

distribution in mirror systems ^ ) .

f dz do)

Here /(Wb.Qb) is the distribution function at the midplane of a

mirror cell, that is f(i)b,db)=f(v,d,z=Q). Gyromotion effects are
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also integrated out. Ve neglect radial dependence assuming radial

transport processes are slow compared to the axial one. (df/di)c,

is the local Fokker-Planck collision term, and the term of Dhf

represents EORH heating which is the same as second term in right hand

side of Eq.(1). To derive Eq.(10) the conservation of particle

energy and magnetic moment are called for during the one particle

bounce period along magnetic field.

We adopt the collision operator as follows,

ga(v) = fdv-fa(v')\v-v- I , (12)

ha(v)--^-JdvT^rT, (13)

_
1 a =

Tlti

Here VJ and VJ are the component of velocity, ma is mass, na is number

density, qQ is charge of a species, and subscript t stands for the

particles of t species. lnAot is coulomb logarithm. Equation (11)

can be written as

dft y dzft p dzft d2ft df, dft F , , n.

Here ft , Vb , and Ob are the quantities at the midplane of a mirror
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cell. Since the contributions of the axial distribution of

parameters are included only in the coefficients of Eq.(14), only

these coefficients are to be bounce-averaged numerically. There are

several methods to solve Eqs.(12) and (13) [10,11] . The

distribution function can be expanded in Legendre polynomials.

f(v,6) = £afc(i/)Pic(cose), (15)

) = I dcos6 fPk(cos6) / I dcosO

Therefore Eqs. (12), (13) becomes

(16)

ha(v,B) ~-

Here ga and h a are calculated numerically with the integration on v'

in Eqs. (16), (17). d2ga/d\? , dha/dv are also written in the same
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way as Eqs. (16), (17). Therefore Eq. (10) is written as a second

partial differential equation, which is solved numerically by ADI

method10-11 ).

We take the boundary condition at the midplane as

•§gf(v=O.B) = 0,

~f(.v=0,9=Ti/2) = 0, (18)

= o.

where we assume the symmetry about ©=7r/2, and calculate nonlinear

Fokker-Planck equation in the region O i u < ~ and OS0STT/2 .

In integrating the equation F= I i?/(i', t )dv off the midplane a

special care is in order. If we use the equation,

J d () m

where,

= cos0b/A/'/'(cos
2eb-

we have a singular point coming from the Jacobian d (v)/d (i*,). Here

6b and <pb are the magnetic field and the electrostatic potential at
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the midplane, respectively. Instead we employ the moving velocity

meshes along particle orbits. Numerically the distribution function

/(Ub,9b) is determined for the each velocity mesh point at the

midplane. The distribution function off the midplane connects with

that at the midplane by the Liouvilie's theorem,

f(v,Q,z) = f(vt,,9b)- (20)

New mesh points off the midplane are given by the orbit equations

representing the energy conservation and magnetic moment invariance

as,

IT = ufj + ^v>b - —^<p(z), (21 )

IT siin26 =

Then, by using the new moving velocity meshes off the midplane, we can

easily obtain the integration F by numerical calculation without any

singularity.

In calculating the density profile for the potential

determination, a new coordinate (v^.S^) is introduced which represents

the mirror loss cone boundary in addition to the (v^,9j) meshes on the

velocity space. Here subscripts i, j are mesh numbers in the v and 0

directions, respectively. The distribution function at the boundary

(v^,0^) is obtained by interpolation from the mesh points around it.

The density of the mirror-trapped particles is determined by numerical
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integration of the distribution function outside the loss cone.

Passing particle density and Yushimanov trapped particle density

are calculated from analytic expression as follows. Let us consider

the typical profile of the electrostatic potential in a single mirror

cell as shown in Fig.l(a;. In this system the ion and electron

distribution function at the mirror throat are assumed as.

f, = n.(^)^exp(^^0), (22)

1 ? 1
c, = gm.i/ + qiP, ce = TjtieXf + qe<p,

Here nm is the density at mirror throat, q;, qe are ion, electron

charge, respectively and we let B=Bo , <p=<po at the mirror throat, and

B-Bh , <p=<t>b at the midplane. Hereafter in this section we drop

subscripts i and e for simplicity. The passing particles exist in

the region £SfiB+q<p and cSfiSo+qW) in Fig.l(b) and the passing

particle density n p is obtained by integration of Eq.(22) over the

passing particle region as follows,

np = n,,exp(-6<p) (er/c ((-5p)1/2)

jj)l/2e- (1- jj)l/2exp(-

rip = nBexp(-&p){l-(l- -i) l /2exp(- ^ j - ) ) . &P>0. (23)
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Here,

= , R = BQ/B ,

erfc{x) =

Here we assume /?si . Though this code follows the passing particle

distribution, we use Eq.(23) to calculate the potential profile in

favor of the computer time and numerical accuracy.

This code does not follow the Yushimanov trapped particles because

only the dynamics of the particles passing through the midplane are

calculated as already stated below Eq.(10). Then we approximate the

distribution function of Yushimanov trapped particles as the same as

that of passing particles in Eq.(23). The density ny of Yushimanov

trapped particles is given by,

nu = TW(J?-l)/Rexp(

1

for the case that,

Rb
fib-

r&Pb
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and cxp > 0,

n»exp(-&p) [l-er/c((-6/)1/2))

(24)

for the case that,

-n-^-j-Spb ^ "5~TS<P' n—p(sW>-S?>)
j i b A " ^ *»b ^

and 6?> < 0,

ny = 0, /or other cases.

Here,

T

Here we assume /?S1 and Rb^l . Then we determine the potential

profile by solving charge neutrality equation n̂  (R,<p)=rie (R,<p) •
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This scheme resembles to that of Ref.(12). If the population of

mirror trapped ion is very small, we may have multi-valued solution of

potential in the neighborhood of mirror throat. However in this

electron heating problem we obtain the proper solution for the

potential from the charge neutrality equation'^)

4. Simulation Results

We show the results of the simulation of second harmonic electron

resonance heating in the thermal barrier region of GAMMA 10. Figure

2 shows the schematic diagram of GAMMA 10 magnetic field profile used

in the simulation. The thermal barrier is to be created in the

axi-symmetric plug/barrier region^). The microwave is localized

around the midplane. We assume that to the left of the magnetic

throat of the plug/barrier cell there fills a Maxwellian plasma with

density 10l2cnf3 and temperature 100 eV standing for the central cell

plasma. In the simulation we assume A/j_=l , fcn=0 at second harmonic

resonance.

We assume the profile of IZT I as

IE*(z)l = l£olmaj:(l-25(z-l/2)2, 0 ) . Here the system length of

mirror cell is normalized to be unity, and midplane is at z = 1/2 in

the simulation. In this electric field profile, the magnetic field

of the point IE*(z)l2 = I £5 I 2/2 is B(z) = 1.058b. The electrons

trapped magnetically in the region IZT(z)l2 S \EQ\2/2 are expected
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to be mainly heated. Those electrons are localized in the region

I 90* -9 1 SJ 12' in the electron velocity space. Here 0 is electron

pitch angle. This is the reason of A6=12' in Sec.2.

Figure 3(a) shows the bounce averaged Fokker-Planck diffusion

coefficient for the case of I £5 I =\00V/cm at the midplane. It is

seen that the resonant RF diffusion is localized along the un=0

line . Although this field strength should be externally determined,

hot electron formation and losses are calculated consistently with the

microwave power.

Figure 3(b) shows the amplitude of the diffusion coefficient along

un=O line. This coefficient is proportional to energy E

consistently with what is expected from Eq.(2). In the region

ES50fceV this coefficient becomes small due to the relativistic

electron mass shift.

First we show the hot electron build up before the collisional

process of hot electron is dominant. Here we assume nn=10I2cnf3 ,

Te=100eV, Ti = 100eV and (p=0 at the mirror throat as a boundary

condition. As a initial condition we assume there are Maxwell

distribution functions of hydrogen ions and electrons at the midplane

of which density and temperature are the same as that of mirror

throat. Then <p = 0 everywhere along z at t = 0.

Figure 4 shows the time variations of the electrostatic potential

(p, the total density n, the hot electron density nn, and the hot

electron mean energy T n at the midplane for the case of

I £o I =500V/cm. Here hot electrons are defined as the electrons with

energy larger than 2 keV at the midplane. Hot electrons build up at
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early time and quasi-steady state is realized. In this build up

phase the hot electron or ion collisional effects are neglected

compared with the RF diffusion. The electrostatic potential dip is

formed at the. midplane.

The velocity distribution of the electrons and ions at the

midplane at 3.0nsec are plotted in Fig.5. It is seen that the

electrons are heated by ECRH in the v± direction. The electron

distribution function is streched strongly around v\\=0 line so that

its amplitude is smaller than that on the both sides. On the other

hand ions are not heated at all but modified from Maxvellian due to

the acceleration by the electrostatic potential difference between

mirror throat and the midplane. The collisional effects do not play

any roll for the hot electron build up in this early phase.

Figure 6 is the electron distribution on v\\=0 line as a function

of electron energy E at 3.0|isec corresponding to that in Fig.5.

Electron distribution function is proportional to £"' in the high

energy region, from which Eq.(6) is justified. The distribution

function becomes small in the region larger than 50keV.

Next we study the hot electron build up in longer time scale. We

examine the results of I Efr I =100V/cm, because the RF diffusion phase

and the later phase of the slow build up of hot electrons are clearly

observed in one figure. Figure 7 shows the time evolutions of the

electrostatic potential, the total density, the hot electron density

and the hot electron mean energy at the midplane. In the early phase

before 150/Jsec, a quick build-up is observed in the hot electron

density and in its mean energy in the same way as seen in Fig.4.
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However after 150fisec, in contrast to the mean energy, the hot

electron density continues to increase with lower growth rate. The

latter process proceeds in the time scale of -̂  1msec associated with

the pitch angle scattering of hot electrons. The mechanism of the

slow build-up of hot electron population may be understood as the

balance of diffusional feed of particles driven by RF along the

characteristic line Vn=O and the collisional drain from the RF

diffusion zone. The RF diffusion tends to establish a velocity

distribution function as shown in Eq.(6) along u»=0 line in a few

tens of /isec. A net particle flow appears along uu=O line only when

particles are removed from the diffusion zone, which flow represents

the build-up rate of the hot electron density. Because the pitch

angle scattering does not change the particle energy, the mean energy

remains the same in this phase. Electrostatic potential becomes

negative in the first build up phase because electrons flow into the

mirror trapped region from the passing region by ECRH, while ions are

not affected by ECRH directly. In the second build up phase,

however, the electrostatic potential turns back in the positive

direction. This means that the collisional filling rate of the ions

is larger than that of hot electron density build up by ECRH. At

3msec the final steady state is realized in the simulation.

Figure 8 shows the axial profiles of the magnetic field,

potential, total density, and hot electron density in the steady

state. Hot electrons are localized around the midplane and there are

about 41% hot electrons at the midplane. Electrostatic potential

also has a sharp profile around the midplane. Remarkable feature is
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that electrostatic potential is negative at the midplane compared v\th

that at the mirror throat even though any ion pumping is not included

in the simulation. However this potential dip of -34eV is not

sufficient as the thermal barrier against the passing electrons coming

from the mirror throat with mean energy of lOOeV. Density has its

maximum value at the midplane which shows there are many ions trapped

in the potential well at the midplane.

Figure 9 is the contour plot of the electron distribution function

at the midplane in the steady state. The hot electrons are localized

around the u»=0 line, i.e. resonance line. We believe from this

contour that the hot electrons escape to the passing particle region

by the electron drag but not by the hot electron pitch angle

scattering, i.e. hot electrons scattered into off resonance region

lose its energy by the electron drag and then are scattered into the

passing particle region. This is supported by the analytical

estimation in Sec.2. That is, the hot electron drag time is shorter

than that of hot electron pitch angle scattering time to the passing

particle region because (AG)2M in TCS and Ths of Eq. (9) in this

case.

Figure 10 is the steady state electron distribution function at

the midplane on un=0 line as a function of electron energy E. This

distribution function is proportional to E~l in the high energy

region, representing the dominant effect of the RF diffusion which

maintains the steady state distribution of Eq.(6) along the resonance

line un=0 .
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5. Summary and Discussion

We have found that the hot electron density builds up in two

phases with different mechanisms. We have also examined the

potential evolution during the hot electron build up. The mechanism

of the hot electron build up is as follows. At first electrons in

the resonance region are accelerated by ECRH until they acquire the

maximum energy limited by resonance detuning due to the relativistic

electron mass shift. This first build up ends when the runaway

electrons reach its maximum energy limit. While these hot electrons

accumulate, the electrostatic potential at the midplane, becomes

negative. This is the result of charge neutrality condition which

requires faster accumulation of ions so as to balance the magnetically

trapped hot electron population.

In the second phase hot electron pitch angle scattering play an

important role of the hot electron density build up. The pitch angle

scattering drives the hot electrons out of the resonance region of

velocity space. The vacancies thus produced in the resonance region

are filled by the RF diffusion from the cold electrons in a time scale

of the first phase. Then hot electron density grows furthermore.

In this second phase ions are collisionally trapped in the potential

well so that the ion density also builds up. In the parameters used

in our simulations ion trapping rate is larger than that of the hot

electron build up time. Then the electrostatic potential dip decays

in the second phase.

The ratio of the hot electron density to the total electron

density at the midplane in the steady state is not so large in our
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simulation which is 41% as is already shown. This ratio does not

increase so much for I Eo I larger than lOOV/cm. However the density

ratio will be increased by including the fundamemtal electron

resonance heating, because the characteristic resonance line extends

in the 0=45' direction in electron velocity space in GAMMA 10. In

the steady state we found that the potential is negative at the

midplane even though any ion pumping is not included in the

simulatiom. However this potential dip is too small for the thermal

barrier. Therefore necessity appears for pumping of the ions trapped

in the thermal barrier potential.
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Figure Captions

Fig. l(a)

Schematic diagram of single mirror and electrostatic potential

profile. Here q is the charge of a particle.

Fig. l(b)

Particle velocity space diagram. c and /j=mul/2B are the

particle energy and the magnetic moment, respectively. 8, <p are

magnetic field and electrostatic potential, respectively.

Subscripts 0 and b represent the quantities at the mirror throat

and at the midplane, respectively.

Fig.2(a)

GAMMA 10 magnetic field profile along magnetic field line.

Fig.2(b)

Magnetic field profile used in the simulation. This profile is

the same as that of plug/barrier region of GAMMA 10.

Fig.3(a)

Three dimensional plot of the bounce averaged Fokker-Planck

diffusion coefficient Cuu . Here Cvu=l Aadz/vu / I dz/u« in
"orbit Jarbil

Eq.(14). The Fokker-Planck collision term is omitted in this

figure.

Fig.3(b)

Amplitude of cvv along un=0 line in Fig.3(a).

Fig. 4

Time evolution of (a) the electrostatic potential, (b) the total

density, (c) hot electron density, and (d) the hot electron mean

energy, respectively at the midplane for the case of
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I £o I =500V/cm.

Fig.5

The contour plot of (a) electron and (b) ion distribution

function at the midplane at t = 3.0 jjsec for the case of

I £5 I =500V/cm. Here nfeiJo/2 = lfceV and mn%0/2 = lfceV .

Fig. 6

The electron distribution function along un=0 line at the

raidplane at 3.0 /jsec for the case of I £5 I =500V/cm.

Fig. 7

Time evolution of (a) the electrostatic potential, (b) the total

density, (c) the hot electron density, (d) the hot electron mean

energy, respectively at the midplane for the case of

I £5 I =100V/cm.

Fig. 8

(a) the magnetic field, (b) the electrostatic potential, ic) the

total density, (d) the hot electron density profile along z in

the steady state, respectively for the case of i Eg I =100V/cm.

Fig.9

The contour plot of the electron distribution function at the

midplane in the steady state for the case of I £5 I =100V/cm.

Here ln(fe) is plotted.

Fig.10

The electron distribution function along u»=0 line at the

midplane in the steady state for the case of I £5 I =100V/cm.
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