aquifer contained an average of $2.2 \times 20^{-6} \,\mu$ Ci/mL of ²³⁸Pu and $0.28 \times 10^{-6} \,\mu$ Ci/mL of ^{239,240}Pu at Well MCO–6. Results of the analyses of cores indicate no significant concentrations of ²³⁸Pu in silts and clay of the alluvium aquifer or underlying tuff (Table XXIII). A comparison of the ^{239,240}Pu

ENVIRONMENTAL PROTECTION

the second s

TABLE XXIII. Average Plu Canyon	tonium Concentration in So	oil Cores from Mortanda				
	<u>x+2s</u>					
Location	²³⁸ Pu (pCi/g)	²³⁹ Pu (pCi/g)				
Core Hole 1	0.001±0.005	0.004 ± 0.009				
Core Hole 2	0.0000 ± 0.003	0.011 ± 0.025				
Core Hole 3	-0.001 ± 0.003	0.006 ± 0.015				
Core Hole 4 (Control)	-0.001 ± 0.002	0.000 ± 0.006				
Core Hole 5 (Control)	-0.001 ± 0.002	-0.002 ± 0.003				

concentrations are low, being much lower than those found in solution in the aquifer or attached to sediments in the stream channel.

Summary

In summary, a study of the distribution of moisture, tritium, and plutonium in the Mortandad Canyon aquifer indicates some infiltration of water into the underlying tuff. This infiltration was accompanied by similar movement of tritium. The concentrations of plutonium on the sediments in the aquifer were low when compared with the high concentrations in solution in an ionic complex that does not readily exchange or is adsorbed by clay minerals in the alluvium.

References

- W. D. Purtyman, W. R. Hansen, and R. J. Peters, "Radiochemical Quality of Water in the Shallow Aquifer in Mortandad Canyon 1967–1978," Los Alamos National Laboratory report LA-9675–MS (March 1983).
- W. D. Purtyman, J. R. Buchholz, and T. E. Hakonson, "Chemical Quality of Effluents and Their Influence on Water Quality in a Shallow Aquifer," *Journal of Environmental Quality* 6(1) (1977).

TRANSPORT OF RADIONUCLIDES FROM THE LAMPF LAGOONS

Authors: R. W. Ferenbaugh and W. D. Purtymun Group: Environmental Surveillance, HSE–8 Funding Organization: Los Alamos National Laboratory

Monitoring of the discharge water from the Los Alamos Meson Physics Facility lagoons continued during 1983. Sampling frequency has been reduced to twice a year, in June and December. The list of radionuclides being monitored has been expanded so that it now includes ⁷Be, ⁵⁷Co, ¹³⁴Cs, ³H, ⁵⁴Mn, ²²Na, and ⁸³Rb. The sampling locations are shown in Fig. 21 and the data obtained to date are shown in Table XXIV. Movement of radionuclides around the lagoons has been described in a previous report.¹

Reference

1. Environmental Surveillance Group, "Environmental Surveillance at Los Alamos During 1982," Los Alamos National Laboratory report LA-9762-ENV (April 1983).

TABLE XXIV. Most Recent Available Data from Samples Taken Below Los Alamos Meson Physics (TA-53) Lagoons

Analysis	Units	1983 Sampling Date	Sampling Location*							
			1	2	3	4	5	6	7	8
					Sedimen	ι				
⁷ Be	pCi/g	June	1500 ± 150	3100 ± 310	14 000 ± 1400	660 ± 70	1700 ± 170	560 ± 60	11 ± 1.2	-0.10 ± 0.25
7Be	pCi/g	December	1900 ± 190	2700 ± 270	4300 ± 430	1700 ± 170	180 ± 18	40 ± 4	7.5 ± 0.8	0.59 ± 0.06
⁵⁷ Co	pCi/g	June	97 ± 10	460 ± 46	450 ± 46	13 ± 1.3	110 ± 11	96 ± 10	3.7 ± 0.4	0.03 ± 0.02
⁵⁷ Co	pCi/g	December	300 ± 30	550 ± 55	680 ± 68	250 ± 25	120 ± 12	30 ± 3.0	7.9 ± 0.8	0.14 ± 0.01
134Cs	pCi/g	June	330 ± 32	470 ± 48	1220 ± 120	150 ± 15	550 ± 55	180 ± 18	8.0 ± 0.8	0.03 ± 0.03
134Cs	pCi/g	December	340 ± 34	580 ± 58	1100 ± 110	180 ± 18	270 ± 27	67 ± 6.7	5.5 ± 0.6	0.18 ± 0.02
3н	10-4 µCi/mL	June	4.3 ± 0.4	4.2 ± 0.4	4.3 ± 0.4	4.2 ± 0.4	2.4 ± 0.2	0.88 ± 0.09	0.18 ± 0.02	0.028 ± 0.004
зн	10-4 µCi/mL	December	11 ± 1.1	10 ± 1.0	11 ± 1.1	9.7 ± 1.0	1.5 ± 0.2	0.035 ± 0.004	0.03 ± 0.004	0.042 ± 0.005
⁵⁴ Mn	pCi/g	June	110 ± 11	240 ± 24	730 ± 73	150 ± 15	340 ± 34	86 ± 8.7	3.3 ± 0.3	0.061 ± 0.028
⁵⁴ Mn	pCi/g	December	190 ± 19	350 ± 35	320 ± 32	82 ± 8.2	91 ± 9.1	32 ± 3.2	6.2 ± 0.6	0.19 ± 0.02
²² Na	pCi/g	June	5.4 ± 0.5	15 ± 1.6	5.5 ± 0.6	3.5 ± 0.4	6.7 ± 0.7	2.7 ± 0.3	0.92 ± 0.10	-0.22 ± 0.03
²² Na	pCi/g	December	4.4 ± 0.4	15 ± 1.5	4.8 ± 0.5	8.1 ± 0.8	7.4 ± 0.7	1.0 ± 0.1	1.1 ± 0.1	0.095 ± 0.010
⁸³ Rb	pCi/g	June	200 ± 20	360 ± 36	230 ± 23	160 ± 16	350 ± 35	80 ± 8.0	2.0 ± 0.2	0.082 ± 0.040
⁸³ Rb	pCi/g	December	43 ± 4.3	100 ± 10	52 ± 5.2	57 ± 5.7	55 ± 5.5	14 ± 1.4	6.3 ± 0.6	0.31 ± 0.0
					Water					
⁷ Bc	10⁻⁺µCi/mL		160 ± 16	1600 ± 160	460 ± 46	Dry	Dry	Dry	Dry	-0.043 ± 0.004
⁷ Be	i0⁻*µCi/mL	December	510 ± 51	520 ± 52	440 ± 44	420 ± 42	Dry	Dry	Dry	Dry
⁵⁷ Co	10⁻*µCi/mL	June	24 ± 2.4	130 ± 13	59 ± 6	Dry	Dry	Dry	Dry	-0.012 ± 0.001
⁵⁷ Co	10⁻°µCi/mL	December	15 ± 1.5	15 ± 1.6	14 ± 1.4	11 ± 1.1	Dry	Dry	Dry	Dry
¹³⁴ Cs	10⁻°µCi/mL	June	13 ± 1	100 ± 10	120 ± 12	Dry	Dry	Dry	Dry	-0.008 ± 0.001
134Cs	10⁻°µCi/mL	December	6.7 ± 0.7	9.5 ± 1.0	5.0 ± 0.5	3.1 ± 0.3	Dry	Dry	Dry	Dry
ЗН	l0⁻⁴μCi/mL	June	4.3 ± 0.4	4.3 ± 0.4	4.3 ± 0.4	Dry	Dry	Dry	Dry	0.026 ± 0.004
зн	10⁻¹µCi/mL	December	11 ± 1.1	11 ± 1.1	11 ± 1.1	11 ± 1.1	Dry	Dry	Dry	Dry
⁵⁴ Mn	10⁻*µCi/mL	June	24 ± 2.4	150 ± 15	60 ± 6	Dry	Dry	Dry	Dry	0.045 ± 0.005
⁵⁴ Mn	10 ⁻ " µCi/mL	December	2.7 ± 0.3	3.7 ± 0.4	2.6 ± 0.3	2.2 ± 0.2	Dry	Dry	Dry	Dry
22Na	10 ⁻ µCi/mL	June	7.7 ± 0.8	8.3 ± 0.8	8.9 ± 0.9	Dry	Dry	Dry	Dry	0.001 ± 0.000
22Na	10 ⁻ °µCi/mL	December	6.5 ± 0.7	5.5 ± 0.6	5.9 ± 0.6	5.6 ± 0.6	Dry	Dry	Dry	Dry
⁸³ Rb	10 ⁻ "µCi/mL		9.9 ± 1.0	50 ± 5	10 ± 1	Dry	Dry	Dry	Dry	0.010 ± 0.001
⁸³ Rb	10 ⁻⁺ µCi/mL	December	2.0 ± 0.2	1.8 ± 0.2	1.8 ± 0.2	1.5 ± 0.2	Dry	Dry	Dry	Dry

See Fig. 21 for map of sampling locations. One sample per location.

"The \pm value is the uncertainty (10%) of the analytical result.