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PRINCIPLE OF THE RANDOM WALK METHOD 

FOR RADIATIVE TRANSFER EQUATIONS AND APPLICATION 

Part 2 : Application to Fleck's Monte-Carlo method 

J. GIORLA 

INTRODUCTION 

The Fleck's Monte-Carlo method is used to solve timt-dependent 
non linear transport problems in optically thin or optically thick media 
(Fleck-Curaming |_lj ). One part of the absorption-emission process is replaced 
by a scattering process via the introduction of the so-called Fleck collision 
term. The variance of the temperature does not increase when the time step 
becomes large and the method is unconditionally stable in the grey case 
(Mercier |_l] ). However, when there is a region of high opacity the number 
of scattering events increases which becomes time consuming. In this paper 
we shall use the Random Walk procedure to accelerate the tracking of the 
particles which have a large number of collision events. This method is 
based on the approximation of Fleck's transport equation by a diffusion 
equation using the multiple scale technique described in part I. 

The chapter is organized as follows. 

In Sec. I we derive the transfer equation satisfied by a Monte-
Carlo particle and the corresponding diffusion equation, the explicit solution 
of which is known in a sphere. We calculate the probability of escaping from 
the sphere and the probability of remaining inside at the end of the time step 
in Sec. 2. We study some criteria for the validity of this approximation in 
Sec. 3, using Monte-Carlo calculations in the sphere. Numerical results are 
given in Sec. 4. 



- 2 -

II.1 - DIFFUSION APPROXIMATION OF THE TRANSPORT EQUATION SATISFIED BY 
A MONTE-CARLO PARTICLE 

- As we want to accelerate the tracking of a particle, it is 
necessary to describe the tracking itself. On the time step |_t , t.J particles 
are emitted from the radiation emission source S (S includes volume emission, 
boundary emission and initial radiation energy) and are tracked from collision 
to collision until the end of the time step. Formally particles proceed 
from source to termination through a series of points R •*• R.-* ... R, in 
phase space (Y5= {R = (t,x,fi,v)},each point R. corresponding to collision 
census or escape events (the absorption is treated by exponential attenuation). 

We denote by K(R' -*• R) the transfer kernel from R' to R so that 
the specific energy I satisfies the integral transport equation 

I(R) = f K(R' ->• R) I(R') dR' + S(R). 
f 

This formal equation is the integral form of the Fleck's transport 
equation used in part I. 

- We are interested here in only one Monte-Carlo photon already 
emitted. For the sake of simplicity we suppose the particle to be emitted 
at time t = 0, at point x with an energy (or weight) e • 1. The initial 
direction ft is supposed to be uniformly distributed on the unit sphere 
S and the frequency v is sampled from a given probability f(v) on j0,+«£ . 

- As the diffusion approximation needs a constant temperature 
in the whole domain, we must track the particle in a part D included in 
the cell containing x . The transport problem corresponding to this photon 

o 
is then : 

. Fleck's transport equation without emission in D, 

. initial intensity given by the distribution of R , 

. absorption condition on the boundary. 

We can now write the equation corresponding to this particle 
with the notations defined in part I : 
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1 IT + fi rx- + V + V*1 'If*.*' "*v) I ( n '* v , > w *>' 
( i i . i ) \ , 

l(0,x,fi,v) - c 6(x - x o) -^ f (v) 

1 = 0 if (x,ft) 6 3D 

The emission and tracking of the photons are equivalent to the 
sampling of a random walk c = {rt •* R.+..R.} from a probability p computed 
from the source S(R ) and the kernel K (R. . -»• R.) (cf. Spanier-Gelbard T\\ ), 

o j-l j ' ' 
The relation between this probability p on the space of random walks ^and 
the intensity I solution of (II.1) is given by the following : 

For every fonction F on » , we can construct a random variable 
f on £ such that : 

E |"f] =J F(R) I(R) dR 
Y 

where E Qf] is the expected value of f with respect to p. 

For our purpose there are three very important random variables. 
These are defined at a time corresponding to an event of the tracking, 
i.e. at a time t- of the random walk (R -*• R, ... R.... R, } (it is always J o 1 j K 
possible to stop the photon at t. for computing chese estimators and t) 
continue the tracking since this is a Markov process). 

Radiation energy (or weight) at time t, J 

e(t ) - 1 o 
e(t-j> " zitj-\} e x P { " W ^ C ( tj" tj-1 > } 

e(t.) = 0 if x. 0 D 

Absorption energy on [0, t.J 

abs J . J 
- n [1 - exp { - 0 a(v i_,) c(ti-t._1)} ] 

if Xj 6 D 
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Number of particles at time t. 

e (t.) =1 if x. 6 D 
o J J 
e (t.) = 0 if x. t D 

° J J 

These three random variables have the following expected values 

Radiation energy on D at time t 

/

oo 

dx f dv f £1 D O S 

KR) 

2 

Absorption energy in D x r^ . t j 

t 

E [ > a b s ( t > ] " E a b s ( t ) = 1 ds J d x j dvj dfi a a (v ) I ( s ,x ,n ,v ) 
0 D O S 2 

Average number of particles in D at time t 

E Qe (t)] = E°(t) - i dx dv dQ. I°(R) 

where I is the solution of the transport problem (II. 1) without the 

absorption term : 

Let us now write the diffusion approximation of equations (II.i) 

using the multiple scales technique of part I. We introduce the function 

ù (t,x) solution of the diffusion equation : 

Au » 0 x 6 D 
/1 as 
( c at 

i 
3a 

(II.2) 
1 ù - o 

RW 

x € 3D 

Q (0,x) - 6(x-xQ) 
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-1 n • f b(V) dV 
w h e r e °RW = L ( l -£) k (V) + k (v) 

0 a s 

D = (x ; distance between x and D is less than L 0 } 

L i s the extrapolat ion coeff ic ient introduced in part I . 

We not ice that , with the notat ions of part I 

/

oo 

k" 1 (v) b(v) dv 

5(v)=b(v)|_l ^ ( ^ J J - ^ ) J , 

oo JQ 

ô_ - j 1 k (v) B(v) dv - o [1 + -r^j- (1 - r ^ ) ] 
r 0 K M 

_ - a c t 
Thus we have u ( t , x ) = u ( t ,x ) e p and « I . » = -L «5 

in 4TT X 0 

The specific energy I supposed to be isotrope, is then approximated 

by : 

(II.3) 
c "V e ~ 

I (t,s,fl,v) = — I, e b (V) u(t,x) , t ft 0 . 

(We have used the approximation given in (1.26)) 

Interpretation 

- We can see from this last equation that, when the approximation 

is feasible, the weight of the photon is 

e(t) » I exp { - ô et } 
* P 

and the frequency is distributed according to b"(v) which is, to first order, 

the normalized Planck spectrum b (v). The position x at time t is distributed 

accordir<3 to 0 (t,x). 
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- Because we have removed the initial layer, we must make this 

approximation only when time t is large enough. A consequence is a discon­

tinuity for t = 0 in the expression of I : the weight of the photon (e = 1 

at t « 0) becomes 1^ when t \ 0 , t f 0. We can say that this jump comes 

from the modification of the frequency spectrum (f(v) at t = 0 becomes 

B(v) at t # 0). The difference (I - I ) is added to the absorption energy 

into D as shown in part I (figures 1,2). 

II.2 - EXPLICIT SOLUTION OF THE DIFFUSION EOUATION 
* 

3 
We now assume D to be a sphere of 1R with center x . As the 

r o 

temperature must be constant in the domain (see part I) 0 will be the largest 

sphere with center x included into the cell. We denote by R the radius of 

D, R = R + L a„~l the radius of D and r = ||x-x II the spherical variable. 
' o o o RW " o" v 

The solution ù of the diffusion equation (II.2) in D is 

00 J 

u(t,r) = ——x 2-, - sin ( 3 — ) A 
2R n=l r R 0 o 

where A = exp { - — — — x ) • 
3 aRW R * 

o 

We introduce the two functions : 

r R - 2 
F(t,R) « / u(t,r) 4ïïr dr 

0 

2 Y A n (-X cos X + sin ^) , 
TT n-1 * 

where X * — , and 
R 
o 

00 2 
P(t) - F (t.R ) - 2 £ <- ,> n + i A" . 

n-1 

P(t) is the average number of particles being into D at time t 
F(t R) 

and the function R •* -p/>\" i» t ne spafcial distribution function of 

particles into the sphere at t. 
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Thereafter we shall use P(t) instead of F(t,R ). The difference 

between these two quantities is small and P(t) has the advantage of depending 

only on one parameter. We can then write the radiative energy and the 

absorption energy using only P(t) : 

-Ô ct 
Er(t) = Î e P(t) 

-Ôpcs 
E a b s ( t ) " (1 ~ V + V/ ̂ P e P ( S ) d s 

Let us recall that the first term (I - IL) comes from the jump 

at t = 0 of the radiation energy, c. e. of the integration of the initial 

layer. 

II.3 - CRITERIA FOR RANDOM WALK 

We have determined empirically the domains of validity of the 

diffusion approximation of Fleck's transport equation in a sphere. To do 

this, we compared the solution of (II.1) calculated using Fleck's Monte-

Carlo method with the exact solution given in Sec. 2. A priori, these condi­

tions are : 

- The coefficient £ must be small enough to satisfy the assumption 

that oQ/o is small and to allow the asymptotic expansions in £ ; 
o a 

- We must observe the tracking at a time large enough and on a 

large area, in particular the radius R of the sphere D must be large compared 
-1 ° 

t O 0 R W • 

The extrapolation coefficient L has been determined by comparing 

the numerical solution of (II.1) with the family u T depending on the para-

meter L . When the macroscopic absorption cross section k does not depend 

upon the frequency and when there is no Thomson scattering (k * 0), the 

coefficient L was calculated by Chandrasekkar \\~] and the numerical tests 

gave us the same value L - .71. 
o 
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We have studied with particular care the case of analytical 

opacities without Thomson scattering : 

k a ( v ) =£onstant ( I _ Œ p { . ^ } } § 

k s = 0 

We have considered three possible distributions of the initial 

frequency : 

f (v) - b(v) |" then lx = 1 ] 

k (v) b(v) k 

f ( v ) =.JL_ ,_ I j < = 1 +_i_ ( 1 - _ J L ) = 1 _ 1 6 . 3 9 J- ] 

f(v) = « ^ U " 1 ^ <k^T) " ^> J ' 

We have seen that the frequency is distributed according to 

£(v) = b(v) when the diffusion approximation is suitable. Thus the first 

distribution f (v) corresponds to a particle we track just after its 

random walk. The second distribution is exactly the frequency spectrum 

of a particle emitted in the cell during the time step. It is also 

the distribution of a photon just after a Fleck collision. When the 

frequency of a particle is not distributed according to these two func­

tions (that is, for example, when the particle comes from another cell) 

we used the Dirac 5 (v-v ) where v is the frequency of the photon. 

The numerical tests have shown that the extrapolation coefficient 

is around 2 and that the diffusion approximation is suitable when using 

the criteria (figures 3, 4, 5) : 

I <_ .01 

Ro i 5 aRW _ 1 

and R > 5 0."1(v ) if f (v) - 6(v-v ) . 
o — s o o 
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The last criterion ensures that the photon with initial 

frequency v has a first Fleck collision near the center of the sphere. 

The particles of high frequency, emitted for example from a hot black 

body, go through the cell without Fleck collisions and they do not 

satisfy this critérium. 

The tests have proven that the frequency spectrum tends to 

b (v) very quickly and that the term I in the expression of the energy 

is essential. 

11.4 - ACCELERATION OF FLECK'S MONTE-CARLO METHOD BY RANDOM WALK AND 

NUMERICAL RESULTS 

The Random Walk procedure is grafted on the Monte-Carlo method 

without distinction between optically thin or optically thick medium. At 

the beginning of the tracking of each photon (going from a event R. . 

to another R.) we calculate the greatest sphere with center x. , included 
J J-l 

in the cell and we test the Random Walk criteria. If these are satisfied 

we sample the escape time T from D according to the distribution 1-P(T). 

The absolute escape time is then 9 = t. , + X. 
J-l 

- If 6 is less than the end of the time step, the particle's 

position x. is sampled uniformly on the boundary 3D, the frequency V. 

according to b(v), the direction Œ. is distributed according to Lambert's 

law outside of the sphere and the new weight is 

- If 6 is not in the time interval, we stop the photon at the end 

of it. The radius r is sampled with the repartition ' ,'. in |_0,R ] and 

the position x. is uniformly distributed on the sphere of radius r. Then 
J 2 

V. is sanpled according to b(v), Q. is uniformly distributed on S and 

the weight e. is calculated as previously (Notice that the procedure is 

the same as in Fleck-Canfield |_l] ; however our diffusion approximation 

is not the same except for coefficient a D„ ; moreover the sample of 
RW 

frequency and escape time, and the calculus of the absorption energy are 

not identical/) 
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- We now present a numerical example with the Random Walk 

procedure. It is a problem described in Fleck-Cumings [_1 _J : A slab 

of thickness 4 cm, with an opt ica l ly thick medium between 2 and 2.4 cm 

is heated by a black body source. The s p a t i a l s tep s ize i s ûx = .4 cm 

and the cross-sect ions are : 

k s = o , 

k = —r- (1 - exp {- — }) if v and T are given in Kev. 
a v 3 T 

In the s ix th c e l l , the macroscopic cross-sect ion k i s mult ipl ied 

by a factor 1000 (Note that i t is not the opacity used in Fleck-Cummings £l]] ) 

The boundary conditions are : 

- Black body emission with T = 1 Kev in x • 0 cm 

- Purely absorbing medium for x > 4 cm 

- I n i t i a l temperature T = .001 Kev. 

The medium i s supposed to be a perfect gas . The specific energy 

£ is given by the equation of s t a t e : 

e = 6.9913 10 T in CGS un i t s , m 

We have compared three computations : 

- Fleck 's Monte-Carlo method, 
-1 

Random Walk with L " 2 and the critérium R > 5a„„ , 
o o — RW 

Random Walk with L =* 0 and the critérium R > 20 o„„ • 
o o — RW 

At time t * 1 nanos (At - 0.02 nanos) we have 

Test 

Number of 
par t i c les 

Number of Fleck 's 
scat ter ing 

Number of Random 
Walk procedures 

Monte-Carlo Random Walk 

R o i 5aRW 
R o £ 2O0R W 

3 h 04 mn 6 mn 22 mn 

13 233 13 381 13 355 

i 

379 10 6 11 10 6 44 106 

0 89 000 59 000 
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Remarks : 

1) The Random Walk procedure with L = 0 and the critérium R > 5 a_„ 
* o o — RW 

gave us wrong results : the extrapolation length is essential. 

-4 
2) Fleck's coefficient £ is very small in the opaque medium ( £ = 5 10 ) . 

Hence it follows that Ô - O and I = 1. 

We can see, from figure 7, that the temperature in the opaque 

zone is the same for the three computations. 

CONCLUSION 

The diffusion approximation of Fleck's transfer equation given 

by the multiple scales technique is well satisfied by the numerical tests 

hence we can use it to construct the Random Walk procedure. 

The running time of Fleck's Monte Carlo method can thus be 

reduced by a factor of 30. 
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FIGURE 1 - RADIATIVE ENERGY IN R~ 
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If we assume the domain to be R , the expression of the radiative energy 
simply becomes : è' (t) — X * e*p f-3p C l ? . 

We compare the Monte-Carlo solution of problem (II.1) with j(v) s _ -——• . 
t*lv)*& *t('Wr] (Va«AT\« k*„) and f9lO'?, ° K 
and the diffusion approximation. 

We have : Jyx.lfM y Vf ^ ^ , Uî I0'f ^ Tp s ^ . CiS lo'\ 

We can see that the transport solution is exactly superposed with the diffusion 
solution T „„- r y j . I 1 

for t V 3" 10"' J« 
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FIGURE 2 - FREQUENCY SPECTRUM 
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-12 -9 
We plot the frequency spectrum, at times t • 0, t = 10 sec. and t * 10 sec. 
The parameters are exactly the same as in figure 1 : D • R , / = 10 

The frequency spectrum is approximately b(v) at a very short time. 
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FIGURE 3 - ESTIMATION OF THE EXTRAPOLATION LENGTH 
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Comparison between Monte-Carlo and diffusion solutions for various 
values of the extrapolation length L_ in a sphere of radius ^ 0=»5g~" 

and P= 10" . 



16 -

FIGURE 4 - DOMAIN OF VALIDITY 
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Comparison between the Monte-Carlo number of particles in the sphere and 
-' the diffusion approximation computed with L-. =• 2 ^"ou, • The radius of 

the sphere equals £„ r * <T «u/ 
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FIGURE 5 - DOMAIN OF VALIDITY 
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With the same data as for figure 4, we plot the rad ia t ive 

energy ^{Û r J y C X p f- <?£ c i ? Pfl-J 

and the absorption energy 



- 18 -

FIGURE 6 - DOMAIN OF VALIDITY 

Comparison between the radiative energy and the absorbed energy computed 
by the Monte-Carlo Method and the diffusion approximation for different 
values of 'T* (R - 5 a"1) o Ru> 
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FIGURE 7 - NUMERICAL RESULTS 
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The temperatures obtained with the three computations 
(Fleck's Monte-Carlo, Random Walk with R_ x^ 20 <?' 

Random Walk with R , ^ < £ " ) are the same. 
"'-4* 

and 
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FIGURE 8 - BENCHMARK I - Temperatures in the different cells 

0 .2E-09 .6E-09 

cell 6 

cell 10 

.10E-03 .UE-08 .18E-08 .22E-08 .26E-08 .30E-08 

TIME (sec.) 

Data are identical to figure 7 except for the macroscopic 
cross section : here we use a multigroup description at the 
frequency spectrim with 50 groups. 'A 
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FIGURE 9 - BENCHMARK I I - Temperature d i s t r i b u t i o n 

POSITION (CM.) 
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FIGURE 10 - BENCHMARK II - Temperature in the opaque zone 
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Differences between Benchmark I and II are : 

The incomming flux is linearly increasing between 0 and 

10~ sec. and afterwards constant 

- There are 40 uniform spatial zones 



FIGURE 11 - BENCHMARK II 
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