COMMISSARIAT A L'ENERGIE ATOMIQUE

CENTRE D'ETUDES NUCLEAIRES DE SACLAY Service de Documentation F91191 GIF SUR YVETTE CEDEX

CEA-CONF - _ 8281

MI

CHEMICAL EQUILIBRIA IN ACTINOIDE CARBONATE SYSTEMS

I. GRENTHE, P. ROBOUCH, P. VITORCF

CEA CEN Fontenay-aux-Roses, 92 (France). IRDI, DERDCA/DRDD/SESD

Communication présentée à :

Actinides 85 tenference Aix-en-Provence (France) 2-6 Sep 1985

CHEMICAL EQUILIBRIA IN ACTINOIDE CARBONATE SYSTEMS I. GRENTHE P. ROUBOUCH P. VITORGE CEA CEN-FAR DRDD/SESD/SCPCS LABORATOIRE DE CHIMIE

SUHMARY

By using spectrophotometric and potentiometric methods it is shown that, in media of high ionic strength (NaClO₄ 3M) and total concentrations of hexavalent actinoids higher than 10^{-3} M, trimers are formed. The equilibrium constants for the reactions $3\text{MO}_2(\text{CO}_3)_3^{4-} \rightleftharpoons (\text{MO}_2)_3(\text{CO}_3)_6^{6-} + 3 \text{CO}_3^{2-}$ are log K (U) =-11,3 \(^+\)0,1; log K (Np) =-10,1 \(^+\)0,1; log K (Pu) =-7,4 \(^+\)0,2. It is demonstrated that one of the cations of the trimer can be exchanged with another actinoid cation: the equilibrium constants for the reactions $2\text{UO}_2(\text{CO}_3)_3^{4-} + \text{MO}_2(\text{CO}_3)_3^{4-} \rightleftharpoons (\text{UO}_2)_2 \text{MO}_2(\text{CO}_3)_6^{6-} + 3\text{CO}_3^{3-}$ are log K =-11,3 \(^+\)0,1; -10,0 \(^+\)0,2; -8,8 respectively for M: U, Np, Pu.

Then, polynuclear complexes can be efficient solution "carriers" for other hexavalent actinides in a waste disposal. Some properties of the solid phases $MO_2CO_3(s)$ are discussed.

Experimental studies of chemical equilibria of americium (III, IV) are reviewed: in carbonate media Am(III) species are Am ${\rm CO_3}^+$, Am ${\rm (CO_3)}^-_2$ Am ${\rm (CO_3)}^3_3$, ${\rm (Am_2\ CO_3)}_8$ and ${\rm (NaAm\,(CO_3)}_2)_8$; for Am(IV), log ${\rm B_5}^-$ 40

In NaClO₄ (3M) medium solubility measurements of Np(V) show that $\log \beta_1 = 5,09$, $\log \beta_2 = 8,15$, $\log \beta_3 = 10,46$, $\log Ks(Na Np O_2 CO_3) = 10,56$ and $\log Ks(Na_3 NpO_2(CO_3)_2) = 12,44$; ionic strength corrections are proposed.

CHEMICAL EQUILIBRIA IN ACTINOIDE CARBONATE SYSTEMS

I. GRENTHE P. ROBOUCH P. VITORGE

CEA CEN-FAR DRDD/SESD/SCPCS LABORATOIRE DE CHIMIE

WHY ACTINOIDE CARBONATES ?

FUNDAMENTAL PROBLEMS

HOW IS THE CARBONATE LIGAND BONDED ? (FIGURE 1)

THE MODE OF BONDING MAY BE INFERRED FROM THE COMPOSITION OF THE COMPLEX.

CAN OH COMPETE AS A LIGARD WITH THE FAIRLY STRONG BASE \cos^2 ? THIS QUESTION IS ANSWERED BY A DETERMINATION OF THE STOICHIOMETRIC COMPOSITION OF THE COMPLEXES.

WILL THE IONIC RADIUS AND/OR THE 5 F ELECTRON CONFIGURATION INFLUENCE THE CHEMICAL PROPERTIES OF COMPLEXES IN SOLUTION ?

TECHNOLOGICAL AND ENVIRONMENTAL PROBLEMS

WHAT IS THE CHEMICAL BASIS FOR HYDROMETALLURGICAL URANIUM PRODUCTION

WHICH IS THE CHEMICAL BASIS FOR THE USE OF CARBONATE IN NUCLEAR REPROCESSING ?

HOW IS THE MOBILITY OF ACTINOIDS IN GROUNDWATER INFLUENCED BY PH AND PCO3?

PROBLEMS STUDIED

ACTINOIDE(VI) - CARBONATE SYSTEMS

THE LIMITING COMPLEXES ARE MO₂(CO₃)⁴⁻ WITH BIDENTATE COORDINATION AND HEXAGONAL BIPYRAMIDE COORDINATION AROUND M (FIGURE 2)

THE PRECURSOR IS DISCUSSED MO $_2(\text{CO}_3)_2^{2-}$ OR $(\text{MO}_2)_3(\text{CO}_3)_6^{6-}$? IN U(VI) BOTH SPECIES HAVE BEEN INDENTIFIED. THE TRINUCLEAR COMPLEX IS FORMED AT HIGHER IONIC STRENGTH AND TOTAL CONCENTRATION OF URANIUM; ITS GEOMETRY HAS BEEN DETERMINED BY 13 C NMR AND XRAY DIFFRACTION /1/ (FIGURE 3)

FIGURE 2
STRUCTURE /1/ OF
$$UO_2(CO_3)_3^{4}$$

FIGURE 3

STRUCTURE /1/ OF $(UO_2)_3(CO_3)_6^{6}$

FIGURE 4
STRUCTURE /2/ OF (UO₂)₃(OH)⁺₅

FIGURE 5

POSSIBLE STRUCTURE OF $(UO_2)_3(OH)_3CO_3^+$ $= (UO_2)_3(OH)_2(HCO_3)^+$

METHOD USED

SPECTROPHOTOMETRY: THERE ARE PRONOUNCED CHANGES IN ABSORPTION SPECTRA AND COLOUR WHEN [M(VI)] T AND [CO3] ARE CHANGED.AT

FIGURE 6

100% CO2

100% CO2

PU(VI) SPECTRA IN CARBONATE MEDIF

 $T = 22 \pm 1^{\circ}C$ $I = 3 M (NACLO_4)$

CO2 + N2 GAS BUBBLING

FIGURE 7

NP(VI) SPECTRA IN CARBONATE MEDIA [NP(VI)] $_{T}$ = 18,65 MM $I = 3 M (NACLO_4) T = 22 \pm 1 ^{\circ}C$ PCO₂ = 1 ATM

CONSTANT [M(VI)] THE MOLAR ABSORPTIVITY IS DEPENDENT ONLY ON PCO2/[H+]2 ~ CO3-INDICATING THAT THE ONLY LIGAND IS CO2 (PCO, IS CONTROLLED BY BUBBLING CO2-N2 GAS MIXTURE IN THE SOLUTIONS). WHEN [CO2-] IS CONSTANT AN INCREASE OF [M(VI)] INDUCES OF MO2(CO3)4-, THIS THE DIMINUTION OF THE MOLAR ABSORPTIVITY INDICATES THAT [MO2(CO3)4-] DECREASES WHILE POLYNUCLEAR SPECIES ARE FORMED.

RESULT LOG K(M) FOR REACTION (1)

М	SPECTROPHOTOMETRY	E.M.F MEASUREMENTS
U NP	- 11,3 ± 0,1 - 10,1 ± 0,1	
PU	- 7,4 ± 0,2	- 7,6

HEIEROATOMIC ACTINOIDE (VI) CARBONATE COMPLEXES

IN CARBONATE SOLUTIONS WHERE THE RATIO (U(VI)/M(VI)) > 5 ONE OBSERVES THAT

THE SPECTRA OF THE MO₂ PART IS PRACTICALLY THE SAME AS IN A PURE M(VI)-CARBONATE SOLUTION. THE MOLAR ABSORPTIVITY OF THE NP(VI) PRECURSOR IS 1/3 OF THAT OF $(NPO_2)_3(CO_3)_8^{-}$

THE SPECTRA FOR A GIVEN TOTAL CONCENTRATION OF M(VI) ARE DISPLACED TOWARD HIGHER VALUES OF LOG PCO₂/[H⁺]² WHEN U(VI) IS PRESENT

THESE FACTS INDICATE THE FORMATION OF (UO2)2MO2(CO3)6-

LOG K(M) FOR THE REACTION

$$2 \ UO_2(CO_3)_3^{4-} + MO_2(CO_3)_3^{4-} = (UO_2)_2 MO_2(CO_3)_6^{6-} + 3CO_3^{2-}$$

U - 11,3 NP - 10,0 Pu - 8,8

THE U(VI) ACTS AS A SOLUTION CARRIER FOR Np(VI) AND PU(VI), A FACT WHICH MIGHT BE OF IMPORTANCE FOR THE TRANSPORT OF ACTINOIDE (VI) ION BY GROUNDWATER E.G AT A SITE FOR RADIOACTIVE WASTE DISPOSAL.

SOLID (MO2CO3) PHASES

THE COORDINATION OF U(VI) BY ${\rm CO_3^2}^-$ IS SIMILAR IN THE SOLUBLE COMPLEXES ${\rm UO_2(CO_3)_3^4}^ {\rm (UO_2)_3(CO_3)_6^6}^-$ AND THE ${\rm (UO_2CO_3)_8}$ SOLID/3/

THEN WE HAVE VERIFIED THAT $(PuO_2CO_3)_s$ AND $(NPO_2CO_3)_s$ CAN BE OBTAINED BY PRECIPITATION OF M(VI) EITHER FROM ACIDIC MEDIUM BY HCO $\frac{1}{3}$ ADDITION OR FROM BICARBONATE MEDIUM BY H $^+$ ADDITION.

RESULT: $(MO_2CO_3)_s$ FOR M = U, NP AND PU ARE ISOSTRUCTURAL

EXTRA LINES IN THE XRAY DIFFRACTION PATTERN APPEAR SEVERAL DAYS AFTER THE PRECIPITATION OF NPO2CO3 AND PUO2CO3

(MO2CO3) SOLIDE PHASE ; LATTICE PARAMETERS (A)

M	A	В	С	REF.
U	4,85 (1)	9,205(8)	4,296(6)	/3/
NP	4,80 (2)	9,37 (6)	4,20 (3)	THIS WORK
Pu	4,803(7)	9,31 (2)	4,23 (1)	THIS WORK

NP(V)-CARBONATE SYSTEMS

SOLUBILITY MEASUREMENTS OF NP(V) IN CARBONATE MEDIA WITH NACLO₄ 3M CAN BE INTERPRETED WITH NPO2CO3, NPO2(CO3) $\frac{3}{2}$ AND NPO2(CO3) $\frac{3}{5}$ SOLUBLE SPECIES, NANPO2CO3 AND NA3NPO2(CO3) $\frac{3}{2}$ SOLID PHASES. THE LIMITING COMPLEX .NPO2(CO3) $\frac{3}{5}$, IS FORMED ONLY AT HIGH IONIC STRENGTH (FIGURES 8-9)

FIGURE 8

SOLUBILITY OF NP(V) IN CARBONATE MEDIA

FIGURE 9

NP(V) CARBONATE COMPLEXES IN NACLO₄ MFDIA

LOGG (M)=LOGG (0)+4 $Z_1^2 = \frac{0.5107 \text{ M}}{741.5 \text{ M}} = \epsilon_1 \text{M}$

M=[NACLO₄] (MOLE.KG-1)

1	LOGG _I	ΔZ_{I}^{2}	-£ ₁
1	4.62	-4	0.42
2	6.93	0	0.35
3	5.80	12	0.47

- THIS WORK
- O MAYA L. INORG. CHEM. 22 (1983) 2093-5
- INOUE Y., TOCHIYAMA O. BULL. CHEM. SOC. JPN. 58 (1985) 588-91
- @ BIDOGLIO G., TANET G., CHATT A. SLEMITTED TO RADIOCHIM. ACTA

AM-CARBONATE SYSTEMS

SOLUBILITY MEASUREMENTS OF AM(III) IN CARBONATE MEDIA CAN BE INTERPRETED BY AMCO $_3^+$, AM(CO $_3^-$) $_2^-$, AM(CO $_3^-$) $_3^-$ SINCE THE SOLID PHASES HAVE BEEN IDENTIFIED BY XRAY DIFFRACTION, TO BE (AM $_2^-$ (CO $_3^-$) $_3^-$) $_3^-$ AND (NAAM(CO $_3^-$) $_2^-$) $_3^-$

FROM PUBLISHED E.M.F MEASUREMENTS /4/ WE PROPOSE LOG β_5 (AM(IV)) = 40

- /1/ ABERG M., FERRI D., GLASER J., GRENTHE I. INORG. CHEM . 22 (1983) 3981-5
- /2/ ABERG M. ACTA CHEM. SCAND. A 32 (1978) 101-7
- /3/ CHRIST C., CLARK J., EVANS H., SCIENCE 121 (1955) 472-3
- /4/ BOURGES J., GUILLAUME B., KOEHLY G., HOBART D., PETERSON J.