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ABSTRACT

A brutal application of the percolation theory to some physical

problems can lead to erroneous interpretation of the experimental results.

Among these problems, the influence of the growth process on the percolation

lavs is studied. The behaviour of n^(t), the number of clusters of size

s, at time t, is analyzed and linked to a macroscopic property of the

system for a comparison to experimental laws.
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I. INTRODUCTION

During these last years, a lot of studies have made use of the notion

introduced by the percolation theory, to explain the behaviour of the

physical properties of Inhomogeneous medium [1-6].

On a conceptual point of view, some mediums show off serious

difficulties due, on the one hand,to the brutal application of the percolation

results, and on the other,,to the comprehension of the disorder notion

present in these mediums. Among these problems we note the nucleation

systems, and particularly the condensed nucleation systems. Theoretical

studies allow to give, for example, the mean number of crystallites for a

given sample [7-19].

Direct [19,20] and indirect experimental studies [21-28] have been

established to explain the morphologies and the kinetics of crystallization

for these systems. In the same way, numerical simulations were done to study

the growth of the dendrites and spherulites [29,30].

The aim of the paper is to show that the percolation theory results

can help us to give a phenomenologioal description of the structural aspects

of these systems. Such a work implies the comprehension of the physical

limits of the nucleation and percolation problems. Unfortunately, we have

not find, for example^ statistical results ascribed to experimental data, which

give us the number of crystallites in the sense of the percolation. Nevertheless,

a comparison will he possible in evaluating the transformed volume fraction

x(t).

II. THEORETICAL RESULTS

Hucleation systems and percolation

Nucleation reflects the apparition of embryos (germs or nucleus)

having a given structure, different from that of the sea of sites (or atoms)

in which they wet. The condensed nucleation systems present two phases; the

evolution of the amorphous state (critical phase) towards the crystalline

state (final phase) is an irreversible transformation.

The formation of clusters - s,(e.g., crystallites with s sites) is

governed by two fundamental processes.
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i) the germination process which consists of the nnr.nritior. of

microcrystals aleatory distributed. These germs and the massive crystalline

state are supposed to present the same physical properties.

ii) the growth process characterizing the interaction between the

peripheries atoms of the crystallite and those of the amorphous sea. Although

this process takes place in the same way as germination, it is not a

genuine stochastic phenomenon.

In elementary percolation theory, the medium is considered like

mathematical systems of infinite dimensionality with ^on-interacting sites.

So, if the germination which consists in a stochastic generation of sites

exists in the percolation theory, hy contrast, the "regular" growth Tihciiomencn

has no sense. In other terms, the influence of the growth process would

condition the convergence of the physical limits of these two models.

Theoretical models

It is interesting to see principal theoretical results elaborated to

understand the structural properties of the nucleation systems.

We find first the classical theory of Becker-Doring [1.1 ] which

considers the formation of droplets from a supcrsatured vapour. The mean

numher of clusters - s (or droplets with s molecules) is given by

* 5 a <?c (- if-

where <jQ is the initial number of monomers; Ay
 l s t h e difference of the

chemical potential between the two phases; B is a normalized surface

tension, and d is the dimensionality.

The use of the Fischer model vas then suggested [12]

(2)

where qQ and b are constants, 6 and a are critical exponents, T and

T the temperature of the sample and the critical temperature.

It has also been shown [13] that

(3)

-3 -

p-p

with z = - , where p and p are, respectively,the probability for a

s i t e to be occupied or empty, and the c r i t i c a l probabil i ty, and "n C ES ,Au.s)

is a Scaling function.

Then we found the scaling theory [15-18] which gives

with

(h b)

tl and q are constant parameters. The relat ion (li a) is given for n •+ «.

For small values of s, and for p < p the contribution is given by [lit]

(5)

with q_ , q and q? constant.

So, as it can be seen, the mean number of clusters - s is generally

written as

= 1c
A t

(6)

This form of variat ion contains a pre-exponential term qQs , a t rans i t ion

term q e
' 2 , and a non-transition term q ^ which expresses the

analytical behaviour of the background.

III. EXPERIMENTAL MODELS

Several studies are reported giving some features of these systems.

Direct observations [19,30] allow us to evaluate the nucleation and

germination rates.

Indirect measures of conductivities and photoconductivities have

been attempted to understwnd the morphologies and the kinetics of crystal-

lization of given systems, and thereby the determination of the crystallized

{cr t.:";<rsformed) volume fraction x(t).
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Among these models, we distinguish Germain t t a l , [21-25] who

considers the variation of conductivity given by Landauer [26]

A -

and

(7 a)

(T

vhere <J , o and a are, respectively,the conductivities for the amorphous
S. C X

state, the crystalline state and the mixture at time t .

The experimental data of conductivities combined with the last

relations lead to an Avrami relation form for the fraction x^{t), as

Or) . A* I- £ Kh. t j (B)

where K are coefficients depending on temperatures, r being weakly

temperature dependent, and so considered as constant.

In the El Mously model [27,28], the variation of conductivity obeys a

.1
(9 a)

law, which leads to

and

A- *-.
(9 b)

C <r«-
fa. ( rc~ «V) (9 o)

The experimental data show an Avrami relation of the form

OCpjCtj ; A - **\> ( - XAfL-*1 J ( l 0 )

where K ^ and m depend on the temperature and characterize a certain
1,2 1 ,£

transition defined by the couples (K^, a. ).
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We ascertain that, although these models lead to a same form of

variation for the transformed volume fraction x(t), the physical limits

are very different. These divergences are related to the choice of the

variations of conductivities

We add that several simple forms for the conductivity [26] lead also to an

Avrami relation for x(t). However, all these variations do not-present a

transition as appears in percolation theory.

Whatever the model considered is, the determination of x(t), which

is a macroscopic property, cannot give us any information on the structura3

properties as the mean number of crystallites of identical volume, at time t.

This will be possible for small values of x(t), e.g. in the case

of weak overlapping between the crystallites and where we have

where *e(t) is the extended volume fraction.

In Germain's model, the determination of the stuctural behaviour is

erroneous due to the substitution of the real volume fraction x(t) by the

extended one (see Table 1 of Eef. 25).

IV. PROPOSED MODEL

The question is now: is it possible to shov a possible conjunction

between experimental results and theoretical outcomes deduced from percolation

theory. The fundamental difference between the nucleation problems (as they

have been introduced) and those of the percolation being the growth process,

it is interesting to see first the structural behaviour, when the growth is

neglected. In fact, when T is close to the glass transition T , the

growth process can be neglected.

Let us define a rrodcr-inance rate between the germination and the

growth process as:
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(13)

where x / t ) sni x ( t ) are ;respectivelyy the transformed volume ra t ios , due

to germination and growth processes respectively and uniquely.

Let D(i) l>e the renorma.li7.ed predominance ra te , so that 0 ^ D(T) S

for T. > T » ! where TV is the nCJir'ng temperature.

molecules or

Case when P(T) -»- 1

The germination process predominates. Let us consider a system of

infinite size and volume V . We divide this medium on identical cells with

a volume vQ for each one. Each cell contains, ?t If •••'; 't,

at oms as [25]

Aft, s

r , 0 and Ag1 arc, respectively, a geometrical constant, the GlW's energy

(per unit of area) and the free energy of crystallization.

This relation (lh) gives us the critical number of :iî r.!"!'"• 1 entities

a cell must contain to give a germ.

Let H ,̂ be the total number of cellr, within the system

When a cell becomes a germ, we look at i t as an active centre. Thus, the

germination process consists to choose, at random, re'.1! and to convert them

into active centres.

The probability p to have an active centre is

number of active centres
p total number of cells

This is the definition of the transformed volume fraction

(15)

is the number of active centres.

The mean number of clusters of size s, is

, v - t r- A

(16)

x is the critical concentration at which the transition occurs. Hence in

the strong disorder limit, the percolation results fit perfectly to the

structural behaviour of the condensed nucleation systems.

Arrion̂ ; t1 ese results, we note the singlular behaviour of some properties

near the percolation threshold x , like the conductivity [31,3?]

(IT)

where [ ] . specifies the singular part,sing = r

Influence of the growth phi":r.omenon

The ticklish and decisive problem is the influence of the growth on

the properties of these systems. When the temperature increases (T > T ),

the growth phenomenon becomes important, and we have to find out. how we can

take it into account.

Once an active centre is born, the growth takes place. In a s:Ir.p.lr-

model, this appears like the transformation of the peripheric cells of the

germination centres into active cells. So, we must distinguish between the

centres actnvea by the germination process to those actived by the growth

process. Although, these centres present the same physical features, their

orijur :- .-••;•« different. When the positions of the actived germs are aleatory

distributed, tho.̂ e of the actived growth centres depend on those of the

germination. Such a correlation in the spatial distribution of the activated

centres suggest to consider the growth as a pseudo-aleatory process.

It has been shown [3 I thut for pseudo aleatory generation processes,

the apparition of the infinite percolation canal is retarded. We assume that

this is true for the condensed nucleation systems, and we can use the results

of the percolation theory with the following assumptions:



(i) when T increases, the critical concentration x increases

also, and then the transition is delayed^

(ii) the forms of the variation laws for n (x) are not affected.

However the growth influence must change internal parameters like q, t, ̂

and uj

(Hi) the background term predominates when T draws near T . Thus,

for T •+ T , the transition term predominates, while for T •+ T , it is the

non-transition term which becomes preponderant.

On making an allowance for the last hypothesis, the mean numbers of

clusters - s may be expressed as

(18)

where the different coefficient and exponent are temperature dependent.

Temporal variation

Whatever the temperature is, the stochastic process of germination

will introduce overlapping "between clusters. Their geometrical forms become

very irregular and a rigorous study must take account of the variations of

the mean radius [17].

For simplification and to obtain a temporal variation of the properties,

we suppose on an average, that a crystallite born at time t' will have a

volume v(t,t') at time t, as

the crystallized volume ratio is written as

Ap Ct -t'J (19)

where s' is the number of active centres, contained in the cluster - s' a
P

and p being(respectively the geometrical constant and the fractal dimension-

ality. It is clear that all a and p must depend on the temperature.

Inserting relation (19) into (l£), it follows

, <?. Lt-tf J
where Q^, Q̂. and Q are constants, (20)

attj, j«Cfc.t;*J cuU-t/ (21)

J
For a given temperature, we distinguish three stages

(i) First stage, when x < x
c

(22 a)

(ii) Second stage, when x ̂  x

(22 b)

(ill) Third stage, for x > x
c

with A ; B = Q., C , T = T° - p;

(22 c)

VQ. F r o m ther.e

relations and for T close to T , the transition term is preponderant, we

can write

(i) First stage; x = jAt~T exp{-B(x-x )A

(ii) Second stage; x

(iii) Third stage; x

At' dt'

At1 T exp{-B(x-a

and when T is close to T , we have

j/fc

(23 a)

(23 h)

(23 c)

(£3 d)

We remark that for T •+ T f, x^ + 1 and the three regimes mingle to an only

one stage.

Comparison with experimental data

The experimental results that we can use, are grounded on measures of

conductivities and the x(t) determination. Such a comparison, although

still weak, leadc to the first confrontation of this model with experiment.
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Note that for appropriated parameters, the relations (22) laads to

Avrp.mi's variation type for x ( t ) ,

A direct calculation, for T •+ T gives
E

with

"

(2l4)

and

-M 1 6-

For relatively large values of t, and x ̂  x , the summation of

equation (2^) is very small in front of the unity. If we neglect the

variation of the power functicn in front of the exponential function, we

obtain

* A . uty tHz
(25)

Now, we g e t a t i m e a v e r a g e f o r B(x - x )

and e q u a t i o n (25) g i v e s

For T •+ T the calculation gives

-11-

(27)

and

K /

CE9)

with

the came Gonsiderat.ions as before lead to

A-
LJ (29)

The relations (27) and (29) are of Avrami type, and have; respectively ,the

same form than those given by El Mously and Germain. We specify that here

we have not considered the heterogeneous nucleation.

I t appears that for T •+• T and T •+ T , the two la t te r models give

asymptotic l imits. However the last models do not take in account any

transition in the variation of the conductivity.
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