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ABSTRACT

A brutsl application of the pereclation theory toc some physical
problems can lead to erroneous interpretation of the experimental results.
Among these problems, the influence of the growth process on the percolation
laws is studied. The behaviour of nr(t), the number of clusters of size
s, at time t, is analyzed and linkeddto a macroscopic property of the

system for a compariscn to experimental laws,
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REFERENCE

. INTRODUCTION

During these last years, a lot ol studies have made use of the notion

introduced by the percolation theory, to explain the behaviour of the

physical properties of inhomogeneous medium [1-6].

On & conceptual point of view, some mediums show off serious
difficulties dug on the one handjto the brutel applicetion of the percolsticn
results, and on the other}.to the comprehension of the disorder notion
rresent in these mediums. Among these problems we note the nucleation
systems, and particularly the condensed nucleetion systems. Theoretical
studies allow to give, for example, the mean number of crystallites for a

given sample [7-19%].

Direct [19.20] and indirect experimental studies [21-28) have been
established to explain the morphologies and the kinetics of crystallization
for these systems. In the seme way, numerical simulstions were done to study

the growth of the dendrites and spherulites [29,30].

The aim of the paper is to show that the percolation theory results
can help us to give a phenomenclogical deseription of the structural aspects
of these systems. Such a work implies the comprehension of the physical
limits of the nucleation and percolation problems, Unfortunately, we have
not find, for examplejstatistic&l results ascribed to experimental deta, which
give us the number of crystallites in the sense of the percclation. Nevertheless
a comparison will be possible in evaluating the transformed volume fraction
x(t}.

IT. THEORETICAL RESULTS

Nucleation systems and percolation

Nucleation reflects the apparition of embryos (germs or nucleus)
having =a given structure, different from thet of the sea of sites [or atoms)
in which they wet. The condensed nucleation systems present two pheses; the
evolution of the amorphous state (eritical phase) towards the erystalline

state (final phase) is an irreversible transformation.

The formation of clusters - s,{e.g., crystallites with s sites) is

governed by two fundamental processes.
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1} the germination process which consists of the apvaritior of
micreerystals aleatory distributed., These germs and Lhke mazasive crystalline

state are supposed to present the same physical properties.

ii) the growth process characterizing the interaction between the
peripheric atoms of the crystallite and those af the amorphous sed.  Although
this process takes place in the same way as germination, it is not a

genuine stochastic phenomenon.

In elementary percolation theory, the medium is considered 1ike
mathematical systems of infinite dimenzionality with ron-interacting sites.

Zo, if the germination which consists in & stochastic generation of sites

exists in the percolation theory, by contrast, the "regular” growlh vhonomencn

has no sense. In other terms, the influence of the growth process would

condition the convergence of the physieal limits of these two models,

Theoretical models

It is interesting te see principal theorstical results elaborated Lo

understand the structural properties of the nueleation systems.

We find first the classical theory ol Becker-Doring [11] whick
considers the formation of dropletsz from a supersatured vapour. The mean
number of clusters - s (or droplets with s molecules) is given by
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where a4 is the initial number of monomers; Ay 18 the difference ol tie
chemical potential between the two phases; B is a normalized surface

tension, and d 1is the dimensionality.

The uze of the Fischer model was then suggested [12]
4
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where 9 and b are constants, § and o are critical exponents, T and

TC the temperature of the sample and the critical temperature.

It has alsc been shown [13] that
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with & = £, where p and p are, respectively,the probability for &
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site to be ofeupieq or empty, and the criticel probebility, and T (es™ ,Au.s)

is a scaling function,

Then we found the scaling theory [15-18] which gives
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with
A-Ald p<Pe
’l;;t = Jﬂb (L b)
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g, and q. are constant parsameters. The relation (I a) is given for =a —+ =,
0 1

by [14]
Yor small values of s, and for p < pC the contributlon is given by [

s
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with Qo q mnd , constant.

1
9n, as it can be seen, the mean number of clusters - s 15 generally
, as it

written as
-t A Ry M
mag) % 5 epf-q,E 5 " g8
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This form of varistion contains a pre-exponential term 165 » g transition
! i ™ s the
term qlgﬂsnlag, and a non-transition te qes which expresses

analytical behavicur of the background.

TII. EXPERTMENTAL MODELS

several studies are reported glving some features of these systems.
Direct observations [19,20] mllow us to evalucte the nucleation and

geruination rates.

Tndirect measures of conductivities and photoconductivities have
been asttempted to understond the merphologies and the kinetics of crystel-
lizatlon of given systems, and thereby the determination of the crystallized

{or tosrsformed) volume fractlon x(t).

-

- -



Among theze models, we distinguish Germain et al. [e1-2%]) whe

considers the variatlion of conductivity given by Lendauer [26]

A VR N (7 &)

and C(e-0) (wr20y)
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where o , @ and 9, are, respectively the conductivities for the amorphous
a’ ¢

state, the erystalline state and the mixture at time 1.

The experimental data of conductivities combined with the last

relations lead to an Avrami relation form for the fraction xG(t), as

y tr &
‘P ~ £ K. (8)
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vwhere K  are coefficlents depending on temperatures, r belng weakly
r

temperature dependent, and so considered as constant.

In the E1 Mously model [27,28], the variatlon of conductivity obeys a

gigif - DK} (G a)
doc

law, which leads %o
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The experimental dats show an Avrami relation of the form
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where Kl 2 and m o, depend on the temperature and characterize & certain
3 3

transition defined by the couples (Ki, mi).

We ascertain that, slthough these models lesd to a same form of
varistion for the transformed volume frectien x{t), the physical limits

are very different. These divergences are related to the chelce of the

variastions of conductivities

Pyl (Ta+ 26¢)

-
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We add that several simple forms for the conductivity [26] lead also to an
Avrami relation for x(t). However, mll these varistions &do not“ﬁ?esent a

transiticon as appears in percolustfon theory.

Whetever the model considered is, the determinaticn of x{t), which
iz a mecroscopic property, cannot give us any informetion on the structural

properties as the mean number of crystallites of identical volume, at time +t.

This w11l be possible for small values of x{t), e.g. in the case
of weak overlepping hetween the crystallites and where we have

alt) = ag L) (12)

where Xe(t) i5 the extended volumc fraction.

In Germain's model, the determination of the stuctursl behavieur is
erroneous due to the substitution ¢f the reel velume fraction x(t) by the
extended one {see Table 1 of Ref. 25).

Iv. PROPOSED MODEL

The questlon 1s now: 1s 1t possible 4o show a possible conjunctien
between experimental results and theoretical outcomes deduced from percolation
theory. The fundamental difference between the nucleation problems (as they
have been Introduced) and those of the percolstion being the growth process,
1t {s interesting to see first the structursl behaviour, when the growth 1is
neglected, In fact, when T 1is close to the glass traneitien Tg, the

growth process can be neglected,

Let us define n rredorinance rate between the germination and the

growth process as:
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where xF(f) and xc(t) are,respectively, the transformed volume ratios, due

to germination and growth procegses respectively and uniquely.

Let DIT) be the rencormelized predominance rete, so that O € D{T) ¢ 1

for T,.2T » 7T where T

7 e ; is the meti’ng temperature.

Case when D(T) 1

The germination process predominates. Let us conslder a system of
infinite size and volume Y, We divide this medium on identical cells with
a volume Vg fot  each one. bDach cell contalns, et lest, mc molecules or

stoms as [25]

2
M = LN
- ()

(14)

r, o &and Ag' are respectively a geometrical constant, the Gibb's energy
(per unit of ares) and the free energy of crystallization.

This relation {1h) gives us the eritical number of ‘deriis:l entitien

& cell must contain to give a germ.
Let Nw, be the total number of cells within the system
Yo

N =~
o %

When a cel]l becomes a germ, we look at 1t as an active centre. Thus, the

germination process consists to choose, at random, cells and to convert them

inte active centres.

The probablility p to have an active centre is

. humber of active centres .
total number of cells

This 1s the definition of the transformed volume fraction

oy Mo
Veo
. T~

N 15 the number of active centres.

The mean number of clusters of slze s, 1s

- A
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(16)
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xC iz the critical concentration at which the transition occurs. Hence in
the strong disorder limit, the percolstion results fit perfectly to the

structural behaviour of the condensed nucleation system:o.

Amori;; ©1ese results, we note the singlular behaviour of zome properties

near the percolation threshold %, like the conductivity {31,37)
b
o]
[ (=) oo (- zr_) (17)
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where [ ]

aing specifies the singulsar part,

Influence of the growth phenomenon

The ticklish and decisive problem is the influence of the growth on
the properties of these systems. When the temperature increasses (T > Tg),
the growth phenomenon becomes importent, and we have to find out how we can

trke 1t into account.

Once an active centre is born, the growth takes place. In a sirpls-
model, this appears like the transformation of the peripheric cells of the
germincztion centres Into active cells. So, we must distinguish between the
centres actived by the germination process to those actived by the growth
process.  Although, these centres present the same physical features, their
origir- ove different. When the positions of the actived germs are aleatory
distributed, thoze of the actived growth centres depend on those of the
germination. Such a cerrelatlien in the spatial distribution of the activated

centres suggest to conslder the growth as & pseudo-aleatory process.

Tt has been shown [3] thwet for pseudo sleatory generstion processes,
the apparition of the infinite percclation canal is retarded. We assume that
thls is true for the condensed nucleation systems, and we can use the results

of the percolation theory with the fellowing assumptions:

~B-
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{1) when T increases, the critical cuncentration x, increases the crystallized veolume ratic 1s written as

alsc, &nd then the transition is delayed;

! I3
{11) the forms of the variation laws for ns(x‘) are not affected. ’L[’t) 2 g M(,t-t/ ’X—) ﬂf (t‘t)f dt/ {21)

However the growth influence must change internal parameters like q, T, Ny
and u: ! For o given temperature, we distinguish three stages
!

(111) the background term predominates when T draws near Tf. Thus , (1} First stage, when =x < x,
for T+ T , the transition term predominstes, while for T + Ti" it is the
g

o 4, — -
non-transition term which becomes prependerant. m(t) a j H t u‘o {-B('x-ﬂb) t Q“ - C t,}jdé’ (22 a)

On meking &n allowance for the last hypothesis, the mean numbers of

clusters — s may be expressed as

-t A Tz /- Z |
Mmyx) = 9o § axp [ ~qq (ax-xc) 5'[.4 ~ 9, 5’} (18) xlg =J’Ht i “p ‘["' ct” Hd'b/ (22 b)

where the different coefficient and exponent are temperature dependent.

{ii} Second stage, when x x,

(1ii) Third stage, for x » X,

Temporel varistlon

T = —
‘I[.'-‘) :jﬂ-t hr{‘g (d-ﬁg_JA tf rtlg _ Q,t,‘j# j db, (22 o)

Whatever the temperature ls, the stochastic process of germination

will introduce overlapping between clusters. Their geometrical forms become

very lrregular and a rigorous study must take account of the vaerletions of with A = QO; B = Qi’ = QE’ T = 10 -ps ;1’2 = “:?,2 and 3 = Ky- From these
the mesan redius [17]. relations and for T cloge to Tg, the transition term 1s preponderant, we
For simplification and to obtain 2 temporal variation of the properties, can write . _ _
we suppose on an average, that a crystallite born at time t' will have & {i) First stage; x = [At-T exp{-B(x-xC)A tml}dt' (23 a)
volume v(t,t') at time &, as (1i) Second stage; x = IAt‘—Tdt' (23 b)
' / P £i1) Thira stege; x = (46" expfonlex )it Platt "
met) = §oe - as (t —tJ (15) (1i1) Third stage; x expl-B(x-x )21 “lat (23 ¢)
and when T 1s close to Tf, we have
where s' 18 the number of active centres, contained in the cluster - s', E.D P E Iy
and p being respectively the geometrical constant and the fractal dimension- x: j &L‘ L,{_P o{“ c t ﬁjdb’ (23 a)
ality. It is clear that all ap and p ‘must depend on the temperature.
Tngerting relation {19} inte (18), it follows We remark that for T »+ Tos X, * 1 and the three regimes mingle to an only
-
-T A rd o one stage.
a ) - l:—t’) ° ) ,) Le 7
M(. [:._t/'l - Q‘ ( U"P - Q.q ('I"'x" ( t-t - CPZ Cb"t J Compariscen with experimentsl date
{z0) The experimental results that we can use, are grounded on measures of

where 9 91 and '?.‘2 are constants,

TERR) et pr, end gy

eonductivities and the x(t)} determination. Such a compardsen, although

still weak, leadc to the first confrontation of this model with experiment,
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Note that for eppropriated paremeters, the relatioms (22) leads to

Avrami's variatien type for x{t).

A direct calculation, for T - Tg gives

L)

rxtt) x JI__ ﬁ_‘%__ enp {_‘ %4-t-’?"£3 ‘d{,fr)

with
-k
o R (—E-—AE.{,’_ +4)t 42
Aj“:): 1+ Z ™ =R ) (24)
R‘-“I &=t 'B,, . 724,2
&and
M:—T -Tf'.f. +4 } B, = 6. (o("xc.)ﬁ

For relatively large values of t, and x # X, the summation of
equation {24) is very smell in front of the unity. If we neglect the
variation of the power functicn in front of the exponential funetion, we

obtain

. E
aclt) = J-wP{-g(a—fx.-_) g e B "

. A
Now, we get a time aversge Tor B{x - xc) a3

b4 a{,., a2 e

A
Z Blx-mx) > = )

bl cgpr oy Xe
a2
cctt) £ A~ P {- lu,,_t j (27)

For T - Tf the caleulation gives

xlt) = M- _6_,_{"1,(‘0{‘ ctﬁj.z(_t)
7

and equation (25) gives

~11-~

and

with

the same considervations as before lead to

xlt) = A= v‘k{—tt}jj (29)

The relatlons (27) and (29) are of Avrami type, and have, respectively the
same Torm than theose given by El1 Mously and Jermaln. We specify that here
we have not considersed the heterogeneous nucleation.

It appears that for T 4’Tg and T + Tf, the twe latter models glve
azymptotic limits. However the last models do neot ftake 1n account any

transition in the varistion of the conductivity.
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