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Introduction 

During the past fifteen years gauge field theories have been spectacularly 
successful in providing the theoretical framework for describing elementary 
particles and their interactions. The Standard model based on SU3 ® SU2 ® 
U t gauge dynamics appears to explain, or accommodate, essentially all of the 
known data pertaining to the strong, weak, and electromagnetic interactions. 
In addition, the gravitational interactions seem to also be based on the gauge 

principles of general coordinate invariance and local Lorentz invariance. 
Anomalies have played a crucial role in the development and the application 
of gauge theories in particle physics. 

Anomalies seem, at first, to be only a minor discrepancy in the analysis 
of the Ward-Takahashi identities for certain currents in spinor field theories. 
However anomalies have deeper significance in gauge field theories as they 
reflect the impossibility of maintaining the local gauge symmetry when 
certain matter fields are quantized. Hence, understanding the structure of 
anomalies is essential to the development of gauge theories. They have 
also proved to be important to analyzing to implications these theories from 
the low energy theorems of current algebra to the rules for chiral boundstate 
structure in composite models. 

In this talk, I wil l review certain aspects of the structure of gauge 
anomalies in the context of quantum field theory. Gravitational anomalies 
are similar to gauge anomalies as they reflect the breaking of the local 
gravitational symmetries by the quantum properites of the matter fields, and 
their structure is simply related to the gauge case. I wil l also discuss the 
crucial role of anomalies in the recent development of consistent superstring 
theories and the use of the anomaly stucture to determine the effective low 
energy implications of the superstring. 

Gauge Anomalies 

The impact of anomalies on gauge field theories follows from the general 
analysis of the nonabelian anomalies. These anomalies were determined by a 
detailed calculation of the relevant spinor loop diagrams1. I wi l l review the 
procedure used in the original calculation and relate it to the wide variety of 
alternate procedures subsequently developed. 
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The Ward-Takahashi identities for arbitrary nonabelian currents were 
examined for general vector, axial vector, scalar, and pseudoscaiar external 
fields2. The external field couplings "were defined by the interaction 
lagrangian, 

L = yWL-GaPM+VpV^MMx) (i) 

where the boson fields, P+=£+iff5TT and V+^V+^sA, are arbitrary matrices 
in the space of internal symmetries. A symmetric point-split method was 
used to compute the gauge dependence of the effective action in the presence 
of these external fields. The anomaly is determined from this anomalous 
gauge dependence. , 

We can define the renormalized effective action, 5 R . as 

eSR(Z,TT,V,A) = < e i /dx Z , (X ) > Q e-R(Z,TT,V,A) (2) 

where R(E,TF,V,A) are a set of local counter terms used to renormalize the 
effective action. Under a general gauge transformation, the external fields 
transform according to 

S A V +(x) = aJ*A+(x) • iA+(x)V+)Kx) - V + i 1 (x)iA + (x) i 

(3) 
S A

P + W = i A -(x)P + (x)-P + (x)iA + (x) 

where A+ = A v ± ffsAA. The direct computation of the gauge dependence 
of the effective action yields the anomaly, 

8ASR(Z,TT,VfA) = DR(A+;Z,TT,V,A). (4) 

The precise form of the anomaly, DR, depends on the choice of the local 
counter terms, R, used to renormalize the effective action. A choice of R 
which preserves the global chiral structure yields the anomaly, 
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DR = (l/6)(4tf)~ 2ijdx iE J 1 D 0 r tr[{2iA + (x)dl 1 v +

o (x)d 0 V +

r (x) 
(5) 

-dMA + (x)V + ^(x)V +

c 1 (x)V +

T (x)}^ 5 ] 

Note that the anomaly depends only on the vector and axial vector fields and 
that the left-handed fields, V_, and right-handed fields,V+ I are decoupled. 

A different choice of R which preserves vector current conservation can 
be found. Now only the axial vector gauge transformation is anomalous, 

SA(V) SR = ° 

SA(A) SR = DR = - f c r f r ' i j d x Epoar tr, lA A (x) 
(6) 

{ (1 /4)F v * 1 I , (x)F v

< , r (x) * ( l /12 )F A i I , , (x )F A

< , T (x ) • 

(2 /3 ) iA i 1 (x )A l , (x )F v

a T (x ) * (2 /3 ) iF v i 1 D (x )A a (x )A T r (x ) * 

(2 /3 ) iA i 1 (x )F v

D < , (x )A r (x ) - (8/3)A* 1 (x)A l , (x)A a (x)A r (x)}] 

where the trace tr*j is now only over the internal symmetry degrees of 
freedom and the field strengths are given by 

F v i 1 0 ( x ) = di 1V 0(x)-d DVi i(x)- i [Vi 1(x) fV 0(x)]- i [Ai 1(x).A 0(x)] 
(7) 

F A ^ D (x ) = dJ 1A l l(x)-d l 'Al 1(x)-i[Vi 1(x).A l ,(x)1-i[Al |(x) >V l >(x)1. 

This result follows from the direct calculation of one fermion loop Feynman 
diagrams to all orders in the external fields. 

The particular regularization procedure used to compute the diagrams is 
not relevant to the determination of the structure of the anomaly. Many 
other methods have been suggested in the literature, from the original 
Pauli-Viliars method used by Steinberger3 in 1949 to modem functional 
integral methods4. Any valid method must give an unambiguous definition to 
the effective action so that the gauge dependence can be properly determined. 

f 
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Generally, any particular definition wil l produce many anomalous terms as in 
the case of the unrenormalized point-split method. However, the various 
renormalized effective actions can only differ by terms which are local 
products of the external fields, and every properly defined procedure can 
yield the same results with the appropriate renormalization counterterms. 
Also, there is no uniquely preferred definition or method of calculation of the 
spinor loops as different symmetries may be required for different theories, 
and the anomalies may not permit the simultaneous imposition of these 
different symmetries. For example, the conservation of the SU2|_® U 1 Y 

symmetry of the Standard model conflicts with conservation of the vector 
baryon number symmetry5 for the same set of fermion loops. 

For gauge field theories, the anomaly equations derived above have three 
independent implications. i 

a) The dynamical currents must be fully gauge invariant and free of 
anomalies. This condition places a constraint on the fermion 
representations for certain gauge theories. It is necessary to require 
that t r ( X a { X b , X c ) ) = 0 where {X a } are the dynamical coupling 
matrices of the gauge fields to the spinors written as lefthanded fields. 
If these conditions are satisfied, then all other dynamical anomalies wil l 
vanish due to the consistency conditions6. 

b) Flavor currents have charges which commute with the gauged, 
dynamical currents. However, the flavor currents may have dynamical 
anomalies. By an appropriate choice of counter terms, it is always 
possible to define the flavor currents to be gauge invariant with respect 
to the dynamical symmetries7. The anomalous divergence of this 
covariant symmetry current is given by 

**JSJ|(x) = ( 3 2 i 2 ) " ' E j u x j r t r ^ X g T ^ C x y r ^ C x ) } (8) 

where X s is the coupling matrix of the symmetry current and the trace 

is over the internal degrees of freedom of the spinors. This divergence 
is proportional to a topological index. For nonabelian gauge theories 
which have fluctuations in the topological charge (instantons, etc), the 
anomaly may imply that certain symmetry charges are not conserved as 
implied by the solution to the U(l) problem in QCD8. If there exist 
background field configurations with nontrivial topological structure, the 
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anomalies will determine the spectrum of light fermions through the 
index theorems9. 
c) Flavor currents may be free of dynamical anomalies but still have 

flavor anomalies, if these anomalies are unrenormalized (Adler-Bardeen 
theorem10), then they impose certain constraints on the possible infrared 
structure of the theory. The anomalies of the effective low energy 
theory must match the anomalies of the fundamental theory. These 
constraints are known as the 't Hooft conditions" when applied to 
composite models. That the anomaly implies certain infrared 
constraints can be seen by examining the AW triangle amplitude, 

<0| J 5 X ( lc)J J 1 (p)J D (q)|0> = k X

E jnJoc0j>V A(k,p,q) * (9) 

If we use the form of the axial anomaly which preserves vector current 
conservation, then this amplitude must be proportional to p and to q. 
The divergence amplitude is then kinematically of order (momentum)3 

(really of order (momentum)4). However the anomaly matrix element is 
only of order (momentum)2, 

* X <° I J5\W*VP)*V<1) I 0> = K(2TT2)- * S j i ^ p V - (10) 

Hence the invariant functions of the three current amplitude, such as 
A(k,p,q). must be infrared singular. This infrared singularity can be 
produced by massless fermions, as in the fundamental theory, or by the 
Goldstone poles generated by Wess-Zumino terms'2 of an effective 
action, or by a combination of these mechanisms. 
All of the above implications have been extensively exploited for their 
phenomenological consequences. However, their significance is only 
important if the structure of the anomaly goes beyond the perturbative 
calculation of the spinor loop. 

Although anomaly was established by direct calculation, the form of the 
anomaly can be determined indirectly by observing that the anomaly must 
satisfy a set of consistancy conditions. Since the anomaly is the gauge 
variation of an effective action its gauge transformation properties are 
constrained. The commutator of two gauge transformations is again a 
gauge transformation, 
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8 A 8 Q " 8 Q 8 A " 8i[Q,A] 0 0 

The constraint on the anomaly follows by applying this relation to the 
effective action 

< 8A 8Q " 8Q 8A> 5R = 8A DR<Q> " 8 Q D R ( A > 
(12) 

= 8i[Q.Al sR = DR(i[Q.Al). 

This constraint is called the Wess-Zumino consistancy condition12. Up to 
the freedom embodied by the addition of local counterterms to the effective 
action, the anomaly found by explicit calculation is the unique particular 
solution to the consistancy conditions with only the overall scale 
undetermined. However, the overall scale can be determined by an index 
theorem for the Dirac operator3. In higher dimensions, there may be 
additional independent solutions which are again determined by index 
theorems. The consistency conditions imply a structure to the anomaly 
which is independent of perturbation theory. 

The consistency conditions are essentially a integrability condition for 
the existence of an effective action. A natural language for studying the 
anomaly, particularly in higher dimensions, is that of differential geometry 
and the use of differential forms13. The abelian anomaly is directly a 
saturated form involving the field strength forms, and the nonabelian anomaly 
is related to invariant polynomials of the field strength form in two 
dimensions higher than the space-time dimension. While the methods of 
differential geometry can be used to determine the structure of the anomaly, 
the overall strength must again be directly computed or, for the spinor loop, 
determined from index theorems. 

Index theorems9 can be derived for the Dirac operator with nontrivial 
background gauge fields. The index theorem relates the number of zero 
modes of the Dirac operator to a topological property of the background gauge 
field. These theorems are consistent with the anomaly equations even 
though the anomaly equations were derived for perturbative external fields 
with no nontrivial stucture. However, it is not clear that the index theory 
can be used beyond lowest order as the quantum structure of the gauge field 
may be essential, and the anomaly may be affected by renormalization. 
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The importance of the anomaly cancellation conditions or the 't Hooft 
consistency conditions depends on the fact that the anomaly conditions are 
not affected by renormalization. The choice of fermion representations to 
cancel anomalies should not be affected by a correction which is a power 
series in the coupling constant. The absence of higher order radiative 
corrections to the anomaly is known as the Adler-Bardeen Theorem10. 

The original calculation showed the absence of these higher order 
corrections in QED and in a model with PCAC. The axial vector current 
divergence equation was shown to have the form, 

d X j 5 x M = J5<*> + (« 0/47t)F) l o(x)F < J^(x) 6 j l D a r 
(13) 

where «o is the bare electromagnetic coupling constant which is 
renormalized only by the external line wavefunction renormalization of the 
photon. The result is also estabished in second order by an explicit 
calculation of the radiative corrections to the triangle diagram. 

RADIATIVE CORRECTIONS 

The sum of these diagrams is shown to vanish. The result implies an exact 
low energy theorem for the two photon matrix element of the naive 
divergence of the axial current, 

<0| J 5 ( 0 ) | V,(p) * 2 (q)> - - («/ i t ) F ^Cp ) * F 2 j H ) ( q ) (14) 

as p,q •* 0. 
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A general argument for the cancellation of higher order corrections to the 
anomaly can be made by constructing a regularization procedure where the 
boson lines are given a gauge invariant regularization. One possibility is to 

General Higher Order .Diagram 

use dimensional regularization for the boson fields but keep the fermions in 
four dimensions, and another is to remain completely in four dimensions but 
use higher derivative, gauge invariant terms in the action to provide the 
regularization. In both cases, only the small spinor loops remain divergent 
and are possible sources for the anomalous behavior. These anomalies have 
already been completely classified by the spinor loop calculation. Because 
the boson lines are regulated, the fermion loop diagrams with the radiative 
corrections can be viewed as fermion loops with more external lines. 
However, fermion loops with many external lines are free of anomalies. 
Hence there can be no additional source for the breaking of the gauge 
Ward-Takahashi identities in the regulated theory. The theory must sti l l be 
renormalized and sufficient care must be taken to preserve the Ward 
identities in the renormalization process14. 

Another proof of the nonrenormaiization theorem which avoids the expicit 
use of any regularization procedure was advocated by A. Zee. This approach 
makes use of renormalization group techniques through the application of the 
Callan-Symanzik equation to the anomaly to prove the nonrenormaiization 
theorems'5. 

Perhaps the most controversial application of the nonrenormaiization 
theorems concerns supersymmetry. The supersymmetry transformation 
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properties of the anomaly and the related scale and supercurrent anomalies 
are involved. The regularization methods discussed above can not be directly 
applied as they seem to break supersymmetry (although a version of the 
higher derivative method can work). The naive application of the theorem 
seems to imply the the two loop beta function is exact with no higher order 
correction, a statement which clearly is renormalization prescription 
dependent. 

The application of the nonrenormalization theorem to the anomaly 
cancellation condition and to the 't Hooft conditions are obvious. In the 
f irst case we arrange for the anomalies to cancel in lowest order, and the 
nonrenormalization theorem implies that no further anomalies arise in higher 
order, zero stays zero. In the second case the anomaly of the flavor 
currents occurs only in the lowest order, and there are no dynamical 
corrections. The mixed case where, the fPavor currents have dynamical 
anomalies, as in the U(l) problem, is more subtle as one must be careful to 
properly define all terms in the divergence equations'6. 

In addition to the anomalies which can be studied using the infinitesimal 
diagram analysis, there are also discrete versions of the anomaly'7. Here 
there exist finite gauge transformations which do not leave the effective 
action (or fermion determinant) invariant even though there are no 
infinitesimal anomalies. An example is an SU2 gauge theory with an odd 
number of Weyl doublets. These anomalies may be studied using index theory 
and spectral flow in one dimension higher than the space-time dimension. 

Gravitational Anomalies 

Gravitational interactions are also subject to anomalies. The local 
gauge symmetries are supplemented by the local symmetries of general 
coordinate invariance and local Lorentz invariance. The study of the loop 
diagrams for matter fields yields gravitational!y induced chiral anomalies. 

In the presence of background gauge fields, the singlet axial current has 
anomalous divergence which is proportional to a topological density, 

8MJ 5 ] 1 (x) = J 5 (x ) * (1 /16*2 ) E j l l ) a r tr{F ̂ ( x f r ^ x ) ) . (15) 

For nontrival gauge field configurations (instantons, etc), the anomaly is 
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related to the index of the Dirac operator and predicts the chiral structure of 
the zero modes in the limit of exact chiral symmetry. 

We may consider the analogous situation for background gravitational 
fields. Explicit calculation18 of the triangle and related diagrams yield an 
anomalous divergence for the singlet axial vector current, 

DMJ 5 j l(x) = J 5(x) * N( 1 /768*2) z n x } a r R J ^ ^ W R ^ j j C x ) (16) 

where R ^ 0 0 ^ is the curvature tensor. The anomalous divergence is again 
related to a topological index for the background manifold. Although the 
anomaly is a total divergence, it can not be canceled if the axial vector 
current is required to be general coordinate covariant. As in the gauge case, 
the existence of the anomaly reflects the 5confIict between axial gauge 
invariance and general coordinate invariance. This anomaly must be 
canceled for realistic gauge models. The Standard model does satisfy this 
cancelation condition as the U(l) hypercharge current is traceless for each 
generation. Since the anomaly has infrared significance for the three point 
function, it cannot be viewed as a purely short distance problem, and its 
cancelation is required for the infrared consistency of the theory. 

Chiral fields can also induce purely gravitational anomalies. Gravity has 
a nonabelian structure similar to gauge fields. The anomaly stucture of the 
gravitational interactions can be analyzed by direct calculations19 or by use 
of the methods of differential geometry and the consistency conditions20. 

The connection between the gauge and gravitational anomalies can be 
established through the examination of the transformation properties under 
general coordinate invariance. We have 

a^ = Wx). 

8^A(x) = WdpAix) - for a scalar field, (17) 

- for the metric tensor 
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with similar transformation properties for other tensors. The connection 
transforms inhomogenously like the gauge potential, 

s * r V ( x ) = «x W ( x ) * Vx'rXW>o * v*1" V x ) 

(18) 

and the curvature tensor transforms like the field strength, 

R) ID<J = 8 j i r no ~ 8 o r jio * r j i o r ox " r var jiX' 

* 8 O « X R

M O X T " " J H A ^ -

The nonabelian structure of the general coordinate transformation can be seen 
by considering the commutator of two transformations, 
S£ S£. - S£. S^ = S[£ £.j where [£.£'] = £* X 3 X £ - ^ \ V . The 
gravitational transformations are just those of a local gauge symmetry, but 
where the group and field representations are specified. 

For the effective action to be general coordinate invariant, the energy 
momentum tensor should be covariantly conserved. However, the existence 
of anomalies will imply that the conservation of the energy momentum tensor 
cannot be maintained in the presence of certain chiral fields. The structure 
of the purely gravitational anomalies implies that they exist only in 4n+2 
dimensions, ie 2, 6, 10, etc. The analysis of these anomalies is complicated 
by that fact that neither power counting or covariance can be used to limit 
the order of diagrams subject to anomalies. 

The result of direct calculation or the use of differential geometry gives 
an expression for the gravitational anomaly which has exactly the same 
structure as the gauge anomaly with even the same functional dependence. 
If the nonabelian gauge anomaly is given as the gauge variation of the 
effective action and expressed in terms of differential forms as 

8 A W = H A = / A-G(A.F) (20) 
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then the gravitational anomaly is given by 

Ŝ W = H^ = - J d^V G^Cr.R) (21) 

where G(x,y) is the same function in both cases and the forms are related 
through the correspondence given in Eq.18 and Eq. 19. The pure gravitational 
anomaly can only exist in 2,6,10, etc because the corresponding gauge 
theories have anomalies only in these dimensions. Using the methods of 
differential forms, the nonabelian anomaly can be expressed in terms of 
invariant polynomials in two dimensions higher, ie 4,8,12, etc. Since the 
curvature matrix is antisymmetric, the invariant polynomials for the purely 
gravitational anomalies are nonvanishing only in these dimensions. 

i 
The explicit calculations of Alvarez-Gaume and Witten19 reveal the 

general form of the gravitational anomalies which come from loops involving 
chiral spin 1/2 and spin 3/2 fermion fields and self-dual tensor boson fields. 
This anomaly structure determines the criteria for gravitational anomaly 
cancellation. Witten21 has also shown that there are also the global 
versions of the gravitational anomaly which must also be considered when 
constructing consistent theories involving gravity. 

Superstrings 

The "elementary" particles we see today made be composite structures 
involving still more "elementary" particles as has been the case in the past. 
However this time, the more fundamental level of understanding may require 
a different kind of substructure, the superstring. The superstring is a 
fundamental one dimensional object which replaces zero dimensional point 
particle as the ultimate form of matter. In fact, superstring theory appears 
to be the only fundamental quantum theory which consistently unifies gravity 
with other interactions. Anomalies have played an important role in the 
development of these superstring theories and play an equally important role 
in their analysis. 

Superstring theories live naturally in ten dimensions. At energies below 
the Planck scale, the ten dimensional superstring theory becomes a normal 
ten dimensional supergravity model. These supergravity models were 
analyzed for gauge and gravitational anomalies19. The type IIA supergravity 
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model which corresponds to a nonoriented, closed superstring theory is 
nonchiral and has no anomalies; it also does not seem to produce an 
acceptable low energy phenomenology., The type I IB supergravity model 
which corresponds to an oriented, closed superstring theory is chiral and has 
anomalies for each loop that cancel in the sum; this theory also does not 
seem to have the necessary gauge and chiral structure to reproduce 
phenomenology. The other possibility is the type 1 supergravity model which 
corresponds to a nonoriented, closed and open, gauged superstring theory. 
Although it appears to have a sufficiently rich gauge structure, it also 
appears to have both gauge and gravitational anomalies for any gauge group. 

Schwarz and Green22 have discovered a new mechanism for the 
cancellation of the anomalies found from, the loop calculations of the 
supergravity model. They argue for the existence of new, anomalous 
interactions for the antisymmetric tensor field, a partner to the gravition 
field, and that these interactions are actually already a part of the 
superstring theory. These interactions are analogous to the Wess-Zumino 
terms of chiral models12 and contribute to the anomaly in tree approximation 
precisely cancelling the loop anomalies. This cancellation appears artifical 
in the supergravity models but is natural in the superstring theories as both 
the loop contributions (a,b) and the anomalous tree contributions (c) are part 
of the low energy limit of the same string diagram (a = c). The cancellation 
of the remaining anomaly between the planar diagrams (a) and the twisted 
diagrams (b) works only for the gauge group S0 3 2 . Apparently the anomaly 
structure permits only one possible unified theory of gravity with a 
sufficiently rich gauge and chiral structure. Actually the supergravity 

Superstring diagrams 

models allow one other solution based on the gauge group, E8 ® E8. An 
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entirely new superstring theory, the heterotic string 2 3, was discovered which 
corresponds to this case. It is remarkable that the anomaly structure has 
dictated the existence of only two possible superstring theories. Of these 
two theories, the heterotic string seems to be the most promising from the 
phenomenological point of view. 

To make connection with the low energy world we see around us, we must 
understand how the ten dimensional string theory reduces to a four 
dimensional effective field theory. As mentioned before, the naive low 
energy limit produces a supergravity theory in ten flat spacetime dimensions. 
However, if six dimensions are associated with a compact manifold, then the 
low energy limit produces a normal effective field theory of the other four 
dimensions. Since the string theory involves gravity, the determination of 
the compact and noncompact dimensions will be a complex dynamical 
problem. 

Since the compact radii are expected to be of Planck size, a the typical 
energy scale for particle masses should be of order the Planck mass. The 
exceptions will be the "zero modes" or zero energy solutions to the field 
equations on the compact six dimensional manifold. These zero modes are to 
be identified with the low energy particle content of the theory and are 
determined by the topological structure of the manifold through the index 
theorems related to the anomalies. 

The search for acceptable six dimensional manifolds has focused on 
manifolds which preserve an N=l supersymmetry as required by solutions to 
the gauge heirarchy problem. The requirement of N=l supersymmetry was 
shown to imply that the compact space should have SU3 holonomy24. The 
gauge symmetry, E8 * E8, of the heterotic string is reduced to Es ® E8 on 
these spaces. The gauge dynamics associated with the E6 gauge symmetry 
can be identified as the grand unification symmetry while the gauge dynamics 
of the E8 group refer to a hidden sector or shadow world theory which may 
produce the desired low energy breaking of supersymmetry. The spectrum of 
light fermions is determined by the topology of the space and the number of 
generations, 27's of E6, is related to the Euler characteristic of the manifold. 
The nontrivial structure of the manifold will also affect the symmetry 
breaking patterns of the E6 gauge group through the existence of zero action 
gauge configurations on the extra space25. Of course, an intense effort is 
being made by many people to study the possible compactification manifolds 
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and their impact on finding solutions to the superstring theory which predict 
the known low energy physics. 

Summary 

Anomalies began as a minor discrepency in spinor loop calculations. I 
have reviewed the systematic study of these anomalies through the use of 
Feynman diagram calculations. I have discussed how the results made be 
interpreted through the use of consistency conditions, differential geometry, 
and index theorems. The application of these results to physics such as the 
anomaly cancellation conditions and current algebra depend on the existence 
of nonrenormalization theorems which establish the results beyond 
perturbation theory. The anomaly structure of the gauge interactions has 
been generalized to include the gravitational interactions which can also be 
viewed through its local gauge properties, i Both gauge and gravitational 
anomalies have had a significant impact on the development and the analysis 
of the new superstring theories which may provide the framework for the 
ultimate unified theory of all matter. 
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