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Abstract 

The topologically massive gauge theory of Oeser, Jackiw and 
Templeton is understood from Souriau's Principle of General Covariance. 
The non-gaugo invariant mass term corresponds to a non-trivial class in 
the first cohomology group of configuration space, generated by the 
Chern-Simons secondary characteristic class. Quantization requires this 
class to be integral. 
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1. 

Souriau's Principle of General Covariance [1) provides us with an 
insight Into the geometric structure of field theories. For simplicity, 
we formulate it for a non-Abelian gauge theory. Remember, that a 
Yang-Mills (YM) field A is a connection form on a principal 6 - bundle P 
over a connected Riemannian manifold M, where G, the gauge group, is a 
compact and connected Lie group. A gauge transformation is a 
fibre-preserving automorphism of P which leaves an arbitrarily chosen 
basepoint fixed. The gauge transformations form an infinite-dimensional 
"Lie" group denoted by Q. Its Lie algebra consists of G - invariant 
vertical vector fields which vanish at the basepoint [2]. 

5 acts freely on A, the linear space of connections (P,G). The 
requirements of gauge invariance is expressed by saying that the true 
configuration space C - Souriau's "hyperespace" - consists of YM fields 
modulo gauge transformations, C - A/Ç. A is a principal Ç - bundle over C. 
The Principle of General Covariance says now that the theory should be 
described by a closed 1-forn on C. 

To get a better understanding, consider the local picture: Choose 
a gauge - a family of sections s w : V,,—>P, where the V^'s form an open 
covering of H - and consider the YM potentials A*=s*A. A gauge 
transformation Xc Ç provides us with a new gauge s„(x) = Tf(s„(x)). In 
V^n Vp this is also obtained as s p(x) = s^xjy (x). The action of y 
on A is given then locally as (j'A )"= s*(/A) = (V'S<<)*A = s*A = A^ = Ady^A 
+'î'"1 dj* . Assume we have a Lagrangian L. The classical action, 

V A ) • J«V> m 

M 
is then a real valued function on A, and its exterior derivative o S -
the physicists' first variation - yields the equations of motion 

8s« = 0 (2) 

The action function (1) is however highly ambiguous: adding a surface 
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term df(A) to L the action changes by 

ldf(A) ff(A). (3) 

The usual finite-action requirements imply however that the fields be 
constant (or vanish) on the boundary of H. Consequently, the action is 
changed merely by a constant and the equations of motion remain thus 
invariant. 

Next, we have the freedom in choosing the gauge. The physical 
requirenent is now that this have tho same effect as adding a surface 
term to L. Thus, a gauge transformation should change the action by a 
constant at most, leading to identical field equations. In other words, 
the first variation 5 S should be independent of the choice of gauge. 
An infinitesimal gauge transformation X ( an clement of the Lie algebra 
of Ç) acts on A according to X A = L XA = FUj-) + D(A(X)). Having a 
gauge-invariant theory means thus that 

Ss AtX' A) = 0 VAt/l. ' (4) 

Now we are home: (4) is just the condition for the exact 1-formSS on A 
to project to a closed 1-forin u~ on C: <Çs = lt*fi", where IX is the 
projection 7t : A—»C. 

The standard choice for the Lagrangian is i-0 = Jtr(Fj»*F), which is 
strictly gauge-invariant. So the action (1) projects to a function on C 
and the 1-form 6" is thus exact. More generally, a Lagrangian is 
strictly gauge-invariant if the associated 6"is exact. The problem we 
address ourselves is to know of the geometric framework outlined above 
allows for a more subtle behaviour: is it possible to get a physically 
admissible theory with non-gauge invariant action? This would manifest 
itself in having closed, but not exact 1-forms on / C. In other words, 
we are interested in knowing whether the cohomology group HUC; R) is 
trivial or not. For additional information on cohomology theory see, 
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for example, [3,4 ]. Assume hence we are given a closed 1-form (T on C. 
Its pullbackVff to A is exact there, because A is contractible. Hence 

V*er = SS for a function S on A. Choose arbitrarily a configuration c eC 

and denote by S c the restriction of S to the fibre Ac = f " (c). 

Identifying Ac with the structure group ç, S c can also be viewed as a 

function on ç. A vector field on A which is tangent to the fibre Ac has 

the form Aft, Aé/) c, associated to an infinitesimal gauge transformation. 

Hence Ss^LX^) = ****)&) = 6 ~ ' Î Î * X A ) = 0 : S c is a closed function on ç 
and hence we get a cohàroology class [S c] • H°(5, R ) . This class is 

furthermore seen to be independent of the choice of S and the 

configuration c (as long as 5"S =6"). He conclude that 

H'lC, R)Cr H°(e, R ) . (5) 

Observe that a closed function on ç is locally constant, i.e. constant 
on the path components on ç. In fact, H°[ç, R) a H°(5, 7) <£R, and H°(S,Z) 
is isomorphic to 5T„(£). Therefore, to get a non-trivial situation, G 

must have more than one path-component. 

In what follows, we describe a situation where this indeed 

happens. We consider a 3-dimensional gauge theory over the compactified 

3-space M = S 3 . All Chern classes vanish and in fact any G-bundle P 

over S 3 is trivial. Choosing a global section, we write Par S 3 x G. A 

gauge transformation is given now by a function / : S J—»G. f and f 
lie in the same path component of $ if and only if they define the same 

class in TC 3(G), proving that 

3T 0($)Crjr 3(G). <6) 

.But, for any compact and connected Lie group G (except S0(4)) ̂ ( G ) is 

known to be Z. This is Abellan. so H'K;, R)Cr H°(£, RJ<ï-*3(G) ® R * I R . 

We conclude that we have an infinite number of inequivalent, 

gauge-non-invariant, but still physically admissible models. 
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Now we proceed to identify these models. More precisely, we show 

that H°(5, R) is generated by the Chern-Simons secondary class [41. 

It follows from the general theory that, for an arbitrary 

connection A on a G-bundle P over S , the (first) Chern-Simons class is 

given by the 3-form, 

J2 = i tr(A AF - i A/»A AA) (7) 

whose pull-back to S by a local section s^ is 

Û K • W ^ C " 5A;AV).d\ (8) 

£L is closed, dfl = 0 and defines thus a class in H 3(P, R ) , which is 

actually independent of the choice of A [41. This allows us to define a 

function on 5, the group of gauge transformations. Indeed, having fixed 

a global section of P, a J"* Ç is identified with a new section of P 

which we still denote by y, j'(x) = (x.^(x)J. So y*SL is a 3-form on 
S , and we can define 

«,«*•(*; pp. $ A ; A; A; y* 
(9) 

where the subscript refers to )f viewed as a section of P. If f0 and J'J 

belong now to the same path component of Ç, then we have a smooth path 
tf(t) in Ç such that Y'»)~ Ï, , * < * ) . . y t • Stokes1 theorem tells us 

however that 

«(yi«)-«(yw;. fd(yt\fl)- [ yt 'olJl - O 

I 
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because il is closed. This proves that lo(-j) is constant on the path 
components of Ç. Thus <Tw = 0, and o defines a class in H°(5, IR). 
Evaluating (9) gives 

to i f ) = 471^, I f ] * ' h e 2" (10) 

We conclude that (9) generates H°(£, R ) , as stated above. 
These results admit striking physical applications. As a matter 

of fact, the topologically massive gauge theory of Deser, Jackiw and 
Tempieton [5] uses the Lagrangian 

i o 

which differs from the standard LQ just by a multiple of the 
Chern-Simons term. They show then that the excitations are now massive, 
their mass is in fact m. 

Me end this paper by some remarks on quantization. Let us return 
to the general theory and consider, just like in finite-dimensional 
quantum mechanics 16], the "Feynmann factor" 

/"(A) = exp [iS(A)J (12) 

whose importance is seen, for example, from Feynman's path integral 
approach to quantization. Remember however, that Feynman's approach 
involves Integration in configuration space. To have a well-behaved 
quantum system, (12) has project hence to a function F M on C. But if 
A and A' project to the same configuration c, then A' =9*-A for some yeQ. 
On the other hand, S(j».A) « r+S(A), where r is the real number labelling 
the class of S c in H°(£, K)ir R. So (12) projects to a function on C 
if and only if — is an integer. Using the isomorphism (5) this means 
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that 

-JUff] « H'lCIIc^C»), (13) 
2ïl 

the 1-form Of must define an integral (rather than merely real) 

cohomology class. Alternatively, observe that it" cr is exact, %* 5 = dS> 

and hence 

S(A) - SM.) + J 3 1 1* 6" • S£A.) •» IP-

Alt) 7T(A<6>) 

where Ao is an arbitrary basepoint in A and Alt) a path in A which joins 

Ao to A. But rr(Mt)) is already a path in C, so (12) requires that 

exp [i&6"]= 1 (14) 

for any loop in C, which is again (13). Conversely, if the integrality 
condition (13) holds, the Feynman factor (12) projects to a function on C 

we still denote by the same symbol F. The integer 

n » [ 6"/2jt] is then recovered as the winding number 

M = - i — (15) 
Air* «J "i 

For the Deser-Jackiw-Templeton Langrangian (11) this gives, using (10), 

i £ < d ( r ) » 5 n J * . * . aTi x integer, 

/ 

where n labels the class of y in J T 0 ( $ ) ~ Z. Mass is hence quantized, 

m/g 2 » (l/4if) x integer, (16) 

cf. [5J. The theory can also be extended to gravity (1,5]. 
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Remark: After this paper was completed, there appeared an article by 

Alvarez [7J containing similar ideas. 
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