FR 8601105

6th International Symposium on Polarization Phenomena in Nuclear Physics, Osaka, Japan, 26-30 August, 1985.

> Glauber Optical Limit Approximation for d - Nucleus Elastic Scattering at Intermediate Energies

> > Ye Yanlin and Nguyen Van Sen

Institut das Sciences Nucléaires 53 Avenue des MarLyrs, F 38026 Grenoble, France

The Glauber theory can provide a simple description of \tilde{g} - nucleus scattering cross section and spin observables at intermediate energies!). The optical limit of this approach is also able to reasonably predict nucleus-nucleus reaction cross sections 2,3 . In the present work, this approximation is extended to an analysis of the deuteron elastic scattering from nucleus. Calculations are compared to recent data at 700 MeV for 16 O, 40 Ca and 50 Ni targets $^{3)}$. There have been several studies 4) dealing with d-nucleus scattering, but the spin observables have not yet been considered.

The Glauber optical limit approximation ⁵⁾ provides an integral relationship between the phase shift function $\chi(b,s)$ and the d - nucleus scattering amplitudes F(q):

$$F(\vec{q}) = \frac{k}{2fl_{\perp}} \int d^{3}b \exp\left(i\vec{q}\cdot\vec{b}\right) \int d\vec{r}_{d} \phi^{*}(\vec{r}_{d}) \left[\exp(i\chi(\vec{b},\vec{s})) - 1\right] \phi(\vec{r}_{d}), \qquad (1)$$

where k is the momentum of the incident deuteron, \vec{q} the momentum transfer, \vec{b} the impact parameter between the deuteron and nucleus c.m. s the projection of the deuteron intrinsic coordinate r_{1} onto the impact parameter plane, and $\phi(\vec{r}_{1})$ the deuteron wave function. Assuming Gaussian forms for the N-N scattering amplitudes \vec{b} the phase-shift function can be expressed as follows :

$$((\vec{b},\vec{s}) = x_p(\vec{b}_p) + x_n(\vec{b}_n) + x_{pn}(\vec{b},\vec{s})$$
(2)

where the single particle terms $\chi_1(\vec{b}_1)$ is similar to those for p - nucleus scattering $^{(5)}$ while the cross term $\chi_{cn}(\vec{b},\vec{s})$ is composed of four parts :

$$x_{pn} = \mathbf{a}_{c} + \mathbf{a}_{p} \cdot \mathbf{\hat{j}}_{p} \cdot \mathbf{\hat{j}}_{p} + \mathbf{a}_{n} \cdot \mathbf{\hat{\tau}}_{n} + \mathbf{a}_{pn} (\mathbf{\hat{\tau}}_{p} \cdot \mathbf{\hat{j}}_{p}) (\mathbf{\hat{\tau}}_{n} \cdot \mathbf{\hat{j}}_{n}), \qquad (3)$$

where $\hat{1}_{i} = \hat{1}_{i}/1_{i}$

The last term in Eq.3 is expected to be small, so that in a preliminary approach it is neglected. The phase-shift function in Eq. 1 is then in the form

$$(\vec{\mathfrak{b}},\vec{\mathfrak{s}}) = \mathbf{d}_{c} + \mathbf{d}_{p} \cdot \vec{\mathfrak{p}}_{p} \cdot \mathbf{l}_{p} + \mathbf{d}_{n} \cdot \vec{\mathfrak{r}}_{n} \cdot \vec{\mathfrak{l}}_{n}$$
 (4)

Introducting Eq. 4 in , Eq. 1 and carrying out the folding calculations 71 over Gaussian deuteron wave function 61 one obtains

$$F(\vec{q}) = \frac{ik}{2\pi} \int d^4 b \, e \, cp(i\vec{q},\vec{b}) \, \left[\Gamma_c(\vec{b}) + i \, \Gamma_g(\vec{b}) \, \overset{\Lambda}{L} \cdot \vec{s}_d \right], \qquad (5)$$

where \vec{s}_{i} is the spin of (leuteron, $\lceil (\vec{b})$ and $\lceil (\vec{b})$ the central and spin-orbit parts of the profile function defined by

$$\begin{split} & \left[c_{c}(\vec{b}) = \int d\vec{x}_{d} | \hat{x}(\vec{x}_{d})|^{2} \left[1 - \exp(id_{c}) \cos(d_{p}) \cos(d_{n}) \right] \\ & \left[c_{s}(\vec{b}) = -\int d\vec{x}_{d} | \hat{x}(\vec{x}_{d})|^{2} \exp(id_{c}) \cos(d_{p}) \sin(d_{n}) \left[2b + s \cos(b, s) \right] b_{p}^{-1}. \end{split}$$

The integration of Eq. (5) over the azimuthal angle leads to :

$$F(q) = G(q) + H(q) S_{v},$$
 (7)

where S, is a 3 x 3 matrix according to the Madison conventions and

$$G(q) = \frac{1}{k} \int bdb J_0(qb) \Gamma_c(b),$$

$$H(q) = -ik \int bdb J_1(qb) \Gamma_g(b) \qquad (8)$$

are the central and spin-orbit amplitudes, respectively. All observables can then be constructed through G(q) and H(q). Eq. 7 is similar to that obtained for proton scattering.

In Fig. 1 the calculations of crosssection, and vector A, and tensor A, analyzing powers for the'd - 4^{0} Ca elastic scatering at 700 MeV are compared to experimental data ³). The N-N amplitude pareseters ⁶) λ and λ are deduced from Arndt phase-shifts ⁹. The nuclear matter density is assumed to have a Fermi distribution. The Coulomb potential is included as in ref.⁵). And the best-fit is obtained with the density and N - N range parameters :

r = 0.91 fm, a = 0.512 fm, $\beta = 0.34$ fm and $\beta = 1.1$ fm², fairly compatible with previous results ⁶). The cross section and A_{μ} are well reproduced while $A_{\mu\nu}$ is only partially described. Such a discrepancy for the tensor analyzing power is understandable since the cross term $a_{\mu\nu}$ is not taken into account in the calculations displayed.

The present results make it worth performing a complete treatment of the phaseshift function (Eq.2). In fact such a treatment leads to an additionnal tensor term $(\vec{L}, \vec{S}_d)^2$ in the total scattering amplitude (5), which may appreciably intervene in the tensor analyzing powers. Relevant calculations are in progress.

Fig. 1. Glauber theory calculations compared to experimental data for $d \neq {}^{40}Ca$ elastic scattering at 700 MeV.

References

- L. Ray : The Interaction between Medium Energy Nucleons in Nuclei-1982, AIP Conf. Ser. No 97, ed. H.O. Neyer (AIP, New York, 1983) p.121
- 2) DeVries R. and Peng J.C. : Phys. Rev. C22 (1980) 1055.
- 3) Nguyen Van Sen et al., Phys. Lett. Bxx (1985)xxx ; and comm. to this Conference.
- 4) G.K. Varma and V. Franco : Phys. Rev. C15 (1977) 813.
- R.J. Glauber : in High Energy Phys. and Nucl. Structure, ed. S. Devons (Plenum, New York, 1970) p. 207.
- 6) G. Fäldt and A. Ingemarsson : J. Phys. G : Nucl. Phys. 9 (1983) 261.
- 7) S. Watanabe : Nucl. Phys. 8 (1958) 484.
- 8) S.J. Wallace ; in Advances in Nucl. Phys. Vol. 12, ed. J.W. Negele et al. (Plenum, New York, 1981) p.115.