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ABSTRACT 

The structure of a magnetic field is determined by a one-degree of 
freedom, time-dependent Hamiltonian. This Hamiltonian is evaluated for 
a given field in a perturbed action-angle form. The location and the 
sl2e of magnetic Islands In the given field are determined from 
Hamiltonian perturbation theory and from an ordinary Poincare plot of 
the field line trajectories. 
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I) Introduction 

As early as 1951, Spitaer1 appreciated that plasma confinement in a 
torus depends critically on whether the magnetic field lines lie in 
surfaces, so-called magnetic surfaces, for many transits of the torus. 
Kerst2 used an analogy between field lines and particle trajectories to 
sho"* that a small perturbation could cause magnetic field lines to stray 
-ar from simple toroidal surfaces. Rosenbluth et al. 3 estimated the rate 
at which field lines leave a torus if they do not lie in surfaces. Grad4 

has discussed some of the subtleties of toroidal equilibria that are 
associated with the existence of magnetic surfaces. Even in a given 
vacuum magnetic field, the determination of the quality of magnetic 
surfaces is nonirivlal. The standard method uses puncture, or Poincare, 
picts which require long and numerous field line integrations. Also, the 
Poincare plot method of determining surface quality is difficult to 
automate and to quantify. 

This paper implements a Hamiltonian procedure for evaluating the 
magnetic surface quality of a given magnetic field. A magnetic field is 
equivalent to a one-degree of freedom, time-dependent Hamiltonian 
system.3 That is, the three ordinary spatial coordinates can be 
considered to be functions of the canonical momentum, coordinate and 
time of a Hamiltonian with the trajectories of the Hamiltonian being the 
trajectories of the magnetic field lines. If the magnetic field has a 
nonzero toroidal component in the spatial region of interest, then the 
transformation equations between the canonical coordinates and ordinary 
spatial coordinates are well-behaved, invertible functions. Such 
transformations preserve structural, or topological, properties; so the 
Hamiltonian function contains tul! information on the existence of 
magnetic surfaces, islands, and stochastic regions. 

Magnetic fields that are of interest for confining toroidal plasmas 
must have magnetic surfaces in much of the plasma volume. A magnetic 
field which has perfect surfaces throughout the volume of interest is 
said to be integrable; so the magnetic fields associated with toroidal 
confinement must have a neighboring Integrable field. This means that 
the canonical coordinates of the field lire HamiiioMan can always be 
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chosen so that the Hamiltcnian is a function of the canonical momentum 
alone plus a small perturbation. Such Hamiltonians are said to be in 
near-action-angle form, and standard Hamiltonian perturbation theory 
gives methods for locating and assessing the importance of islands and 
stochastic regions. Consequently, the determination of the field line 
Hamiltonian not only reduces the study of the structure of the field lines 
from a vector to a scalar problem, but it also gives a concise and 
complete statement of the quality of the magnetic surfaces provided 
near-action-angle canonical coordinates are used. If one has a priori 
knowledge of the shape of the magnetic surfaces or other information on 
the field line trajectories, this information can be easily incorporated in 
the choice of canonical coordinates to make the field line Kamiltonlan 
close to the action-angle form. The method that we will use to find the 
field line Hamiltonian makes it close to the action-angle form by using 
information from a single field line trajectory. 

II) Theoretical Basis 

The methods that will be used to examine thd structure of a given 
magnetic field are a generalization of magnetic coordinate techniques. 
Therefore, the properties of magnetic coordinates will be reviewed. Sec. 
Ola), before the more general canonical representation is discussed, Sec. 
(lib). In addition to magnetic and canonical coordinates, there are three 
technical points which must be dealt with. First, we must know the 
conditions that are required for a set of transformation equations to be 
analytic in order to obtain smooth transformation equations from a few 
field line integrations, Sec. (lie), second, we must know the relations 
between the near-magnetic coordinate form for the Hamiltonian and the 
properties of magnetic islands. Thest relations are needed if the 
Hamiltonian method is to be compared with the ordinary Poincare plot 
method for studying magnetic fieSd structure, Sec. Old). Third, we must 
develop the second order perturbation theory that is naeded to transform 
canonically the Hamiltonian into the appropriate near-magnetic 
coordinate form, Sec. (He). 
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Ha) Magnetic Coordinates 

If the field lines of a magnetic field B(x) lie in nested toroidal 
surfaces, then the magnetic field 1s integrabie and can be described by 
the well-known magnetic coordinate representation, 

Bte) = v * x ve + v<j> x v x w . (0 

The physical interpretation of +,8/?, and % is given in Fig. 1. The 
primary feature of magnetic coordinates is that they trivialize the 
problem of evaluating the trajectory of a field line. A field line 
trajectory obeys the relations 

<i> = <f-o and 9 = % + i<<W (2) 

with i = dX/df, the rotational transform, and with 9o and 60 constants. 
The trajectory relations follow from the obvious equations B-Vf = 0 and 
B-V(8 - i<P) = 0. To actually trace the field lines in ordinary space, tne 
transformation equations x(9,9,9), which give the spatial location of 
each 9,9,f point, are required in addition to %{f). Conversely, the dual 
relations of partial differentiation theory can be used to show that any 
two functions XW and x(9,8,9) uniquely specify a magnetic field B(x). 
The dual relations are 

V$ = I(32L x & ) and & = J(V9 X V-j>) (3) 
J 39 39 3+ 

with even permutations of the 9»$»9 labels also giving valid relations. 
The Jacobian J is defined by 

J = ox. ( ox_ x ox) = (v+X V6)-Vf. (4) 
39 39 39 
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The dual relations together with Eq. (1) imply 

B = - L ( 3x + x$x j (5) 
J 3<J> 36 

and demonstrate that x("f,9,>f) and XW uniquely specify B. 

The magnetic coordinate functions xt+.S.'P) and jf(+), which provide 
a particularly useful representation of the magnetic field, can be 
evaluated computationally6'7 for any given iniagrable field B(x). To 
carry out this evaluation, a field line trajectory H(«P) is determined by 
integrating the differential equation 

& = &<»>_ (6) 
d<p B-V<J> 

with a definite choice of toroidal angle $(x). One can show that the 
toroidal angle of magnetic coordinates can be chosen arbitrarily, but the 
most convenient choice is often the azimuthal angle, which is the angle 
of cylindrical coordinates R,9,Z, Fig. 2. Knowing x(9) along field lines, 
one can obtain x(f,&,$) and i(+) using the periodicity of the poloidal and 
toroidal directions, namely 

x^.8,9) = I xnmty) expl 1 (nf - me)]. (7) 

Equation (2) and Eq.(?) imply that the functional form of a field line x(<j>) 
must be 

x(f) = S xmty) expl i (n - im)f] (8) 

with 6 0 assumed zero, which is always possible. A Fourier 
decomposition of a known trajectory xW gives the x ^ and i on a 

magnetic surface. The toroidal magnetic flux 7-$$ associated with that 
surface can bs determined by an area integral. 
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lib) Canonical Coordinates 

A general magnetic field is constrained only by one condition, 
V-B=0 globally, and cannot be written in magnetic coordinate form. 
Nevertheless, If B-Vf is nonzero, an otherwise general divergence-free 
field can be written in the canonical representation5 

B =• V<f» X V© * V<J> X V)((<p,6,f). (9) 

The magnetic coordinate representation is a special case of the 
canonical representation in which the poloidal flux function X is a 
function of ^ alone. 

The poloidal flux function %ty,d,9) is also the field line 
Hamiltonian. This can be demonstrated by using d^ /d 'MVfHx /d^ and 
Eqs.(6) and (S) to show that 

# . s - 2 j L and dfi = 3X. <i 0 ) 
df 98 d-p 3"J» 

As in magnetic coordinates, the flux function X and the transformation 
equations xty.e.W uniquely specify the magnetic field. The important 
feature of canonical coordinates is that the structure of the magnetic 
field is determined by XWA'P) alone. This follows from the fact that 
well-behaved transformations do not alter topological features of the 
field such as magnetic islands or stochastic regions. In practice one 
rarely needs to know the spatial location of a field line trajectory with 
as great an accuracy as one needs to know its topological structure suun 
as the existence of nested magnetic surfaces. This means that only the 
magnetic Hamlltonian neeJ be evaluated with high numerical accuracy. 
The magnetic Hamiltonian can be conveniently represented in Fourier 
series form, 

X = XoW • S X n m W exp[ i W " me)l. ( ID 
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The canonical coordinates of a given field B(x) are not unique; there 
is the freedom of canonical transformations,8 which are a major part of 
the Hamiltoman theory of classical mechanics. The most useful 
canonical coordinates, near-magnetic coordinates, are as close as 
possible to magnetic coordinates in the sense that only resonant Xnm 
Fourier coefficients occur in the series. A Fourier coefficient is 
resonant If i=Qfo/<ity satisfies n=im for a value of + in the region of 
interest. The resonant Fourier terms In near-magnetic coordinates 
represent magnetic islands or stochastic field line regions. These 
features are topological and therefore appear regardless of which 
coordinate system is used to describe the field. 

The arbitrariness of the canonical coordinates eases the problem of 
evaluation. Let x(p,9,"f) be a set of transformation equations, which are 
arbitrary except that the Jacobian is finite, that e and f are a polddal 
and a toroidal angle, respectively, and that p, the radial coordinate, is 
zero along the axis of the poloidal angle. Equations for evaluating the 
canonical coordinates of a given field B(x) are derived by dotting Eq.(9) 
with V"f and V9 while considering $ and X to be functions of p,Q,$. 
That is, d^/dp=J pB-vp and 3X/3p=JpB-V9 with J p the p,e,<J> Jacobian. 

The dual relations of partial differentiation theory, which relate V6 and 
V<P to derivatives of the transformation equations x{p,8,$), Eq.(5), allow 
one to obtain the differential equations5 

U = i f a< _ B-udxmmdx/dp)} m ( l 2 ) 

a* B.iox/3p)x(3x/ae)i' a* B.[(ax/ap)x(3x/ae)i 

The right-hand sides of these equations are known functions of p,8,*p. 
To integrate them, one picks a value of 9 and of <p and uses the boundary 
conditions, which are implied by regularity, that p is zero and ) ( i s a 
constant at f equal to zero [see Eq.(i4); also note that a purely f 
dependent, additive term to X *s irrelevant].. After evaluating X for a 
number of 9,9 values, one can use a fast Fourier transform to obtain X in 
Fourier-decomposed form, Eq.(ll). For an analytic field the Fourier 
coefficients converge exponentially; so the number of 8,<J> values required 
to obtain an accurate Hamiltonian is small. In principle one should 
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integrate B over the area enclosed by the curve +=0 to obtain the 
poloid&l flux ZrtfaiO), but this constant, which is additive to jf, is 
important only in time-dependent problems and will be ignored. 

The magnetic fields that we wish to study are nearly integrable. 
This means that for a number of toroidal transits the trajectory of a 
field line will remain close to one surface in a set of nested toroidal 
surfaces. Nearly integrable fields can be studied by using a few short 
trajectory integrations to set up a smooth approximation to magnetic 
coordinate transformation equations (see Eq.(8) and the related 
discussion). If these transformation equations are denoted by x(p,e,f), 
then the procedure outlined 1n the discussion cf Eq.(l2) gives the 
magnetic Hamiltonlan %ty,Qtf) and the canonical transformation 
equations xty,Q,y). If the field were integrable, and if the magnetic 
coordinate evaluation were carried out with perfect accuracy, then X 
would be a function of <p alone. For nearly integrable fields, X will not 
be a function of + alone, but the angle-dependent part of X will be small 
compared to XoW- Consequently, one can use a simple perturbation 
analysis, although frequently of second order, to search for magnetic 
islands. 

He) Analyticity Conditions 

The analyticity conditions for polar coordinates, such as the p and 9 
coordinates, can be determined by defining pseudo-Cartesian coordinates 
$ = r cos(e) and i \ = r sin(e). The reason for defining $ and r\ is that 
analyticity gives conditions near the origin of the polar coordinates. 
Both £ and n go to zero at the origin, but the e coordinate does not. The 
reason for using the symbol r, instead of f-, for the radial coodlnate is 
that r wil l be assumed proportional to distance near the origin. The 
radial coordinate p is often taken to be a flux coordinate, which is 
proportional to the distance from the origin squared. Any analytic 
function f has a Taylor expansion in $ and T{ near the origin. That is, for 
£ and i \ sufficiently small, f can be written as 

f - 2 f j k $J n k = E f j k r i + k cos(9)J sin(8)k . (13) 
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The function cos(e-)Jsin(6) can be written as a Fourier series in cas(m©) 
and s1n(me). This series contains values of m only in the range 0<m<j+k 
and only even or odd values of m depending on whether j+k is even or 
odd. (Throughout this paper we use the convention that the poloidal mode 
number m is positive,) An analytic function of position f can therefore 
bs put in the form 

f(r,e) = z r m [a m (r 2 ) cos(me) + b m ( r 2 ) sin(me)] ( M ) 

with the a m and b m analytic functions of r2. Equation (14) will be used 
to obtain smooth transformation equations. The analyticity conditions 
for one set of polar coordinates expressed in terms of another are subtle 
since neither the polar angle 9 nor the radial coordinate r is an analytic 
function of position. For this reason i t is best to use spatial 
coordinates that are not polar around the axis of the poloidal angle, such 
as the R,f,2 coordinates of Fig.(2). 

Ild) Comparison of a Poincare Plot with a Hamiltonian 

It is important to have a method for comparing magnetic islands as 
seen in a conventional Poincare plot with their representation using the 
magnetic Hamiltonian. The number of toroidal circuits N0 required for a 
field line to encircle the island O-point on the Poincare' plot gives such a 
comparison. This number is almost constant for field lines inside the 
island except for a logarithmic singularity at the island separatrix . The 
number N0 can be evaluated for the magnetic Hamiltonian 

% = XoW " X cos(nf - me), (15) 

which has a magnetic Island about the surface % on which t=n/m with 
\=H%/^. If we assume that i'=di/d+ and % are positive, then the 
O-point of the island is at 9=^0 a n d e = e o w i t n %=^)m. Expanding the 
Hamiltonian about + c,6 0 and ignoring an additive constant, 

* * n W - to) • •!• r (* - %)2 * 1 X m2 (G - 0 0 ) 2 . (16) 
m 2 2 
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Using Hamilton's equations, E q / 1 ^ one can easily show that the 
trajectories are 

"f - <J>0 + -J-, exp(i >p/N0) and © = e 0 + i N0 i ' t i exp(i f /N 0 ) (17) 

with fi a constant and 

N0 = 3 . (18) 

m ( i J X ) 1 / 2 

Each time "f advances by 2TtN0 the Poincare plot of a field line shows the 
line encircling the 0-po1nt. 

He) Canonical Perturbation Theory 

The Fourier decomposition of the magnetic Hamiltonian, Eq. ( I t ) , 
frequently contains large, nonresonant, Fourier terms. Perturbation 
theory can be used to find a canonical transformation that removes these 
nonresonant terms, but thsre is a correction to the resonant Fourier 
terms, which create islands, that is second order in the nonresonant 
terms, consequently, an accurate study of the islands frequently 
necessitates the use of second order perturbation theory. Any 
Hamiltonian can be written as i=%oW+%Wt9,'$)+ity,Q,y) with X 
containing only nonresonant Fourier terms and % containing only resonant 
Fourier terms. Let X be a function of a parameter e as well as •J'Af, 
then one can canonically transform away the nonresonant Fourier terms 
by integrating the equations8 

3X0(*,eV9e = Ss/e-f + i3s/36 + % - £<? (19) 

HWfrWte = I&sl - c (20) 

3X(^,f,e)/8e = tf,sl+ <* (21) 

with s and tf functions of ^,6,f,e, which are chosen so that X remains 
nonresonant and X remains resonant, i=3XoW» and I • , • 1 is the Poisson 
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bracket. That is, 

fX.s] = ox/a^Os/ae) - (dx/3e)Os/^). (22) 

At 8=0 one lets Xo. X. and X squal the given functions; at e=l the exact 
Hamiltonian has no resonant terms anri X=Xo+X- Although the exact 
removal of the nonresonant Fourier ierms using Eqs. (19) to (22) can be 
very useful, here we consider only a second order analysis. We assume 
'.he X terms are sufficiently large that second order terms due to X are 
of the same magnitude as X- By a second order term we mean the 
solutions to the differential equations (19 • 21) ara Taylor expanded in s 
to order e2 and the second order Taijlor expansion is assumed valid at 
6=1. One can then show that at e=l 

XoW = XooW + #o.s 0J a/2 (23) 

XWAf ) = Xo + IXo-SoV ( 2 4 ) 

with the subscript "a" implying an average over e,̂ > and "r" implying that 
only resonant Fourier terms are retained. The final subscript "o" in Xoo> 
XOJ a r , d Xo implies that the initial, c=0, expression is used. The 
function s„, which is a so-called infinitesimal generating function, is 
given by 

3s0/9<J> + i 0as 0 /36 • Xo = 0. (25) 

A single nonresonant Fourier term cannot produce a resonant Fourier 
term, but such a term can modify the transform i and therefore move the 
location of the resonance. That is, if xVXiWcos(nf-me), then 

[Xo»Sola = lm/(n-i0m)IX)'X] * ImX|/{n-i 0m)] 2 i 072. (26) 

The first term in this expression is the so-called stellarator expansion 
term for the poloida1. flux function.10 The more important, case is one in 
which there are two, or more, nonresonant Fourier terms. The general 
case can be treated by summing up the second order interaction of each 
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nonresonant term with itself, Eq. (26), and its beats v ' t h every other 
nonresonant term, with each pair of terms counted once. Consider X of 
the form X=XiWcosfc1f-m16)+X2('f')cos(n2'j>-m28), t n e n 

[f,s0)r = 3iCosI(ni+n2)«p - (nvmatel + a2cos[(n|-n2)«p - (m^mjje)]. (27) 

The a,, or upshift, term is normally more Important than the downshift, 
or a2, term. We, therefore, only give the expression for a,, 

3 j - - m.iJl!2£i.&lol [ 3 + 3 ]. (28) 
2 (nr iomi) 2 (n 2 - i 0 m 2 ) 2 

At the resonance i0=(n|+n2)/(m1+m2), the terms Ovi^m,) 2 and 
(n 2 - i 0 m 2 ) 2 *re equal. 

Ill) Numerical Implementation 

To give a simple illustration of the Hamiltonian method, we will 
study the vacuum magnetic field of a cylinder. This field can be 
expressed analytically while retaining all the features of interest of the 
toroidal equivalent. The general vacuum field in a cylinder with 
coordinates r,«,z that has no internal currents is 

B = B0 z + VIE (R/n) b n m Im(nr/R) cos(n>j> - m«)i (29) 

plus a similar sine series. The I m are the modified Bessel functions, 
2rtR is the periodicity distance along the axis of the cylinder, and 9=z/R 
is equivalent to the toroidal angle, Fig. 3. The position vector in 
cylindrical coordinates, 

x = r r(oc) + z z (30) 

with dr/d«=«, can be used to obtain the field line equations [ see Eq.(6)J, 

dr/df = R B r /B z an.̂  W d ^ = R B K/(r Bz). (31) 
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The field which wil l be studied has only two Fourier components, 
b12/B0=1.68 and b|8/Bo=900. The constant fie'd B0 is taken to have unit 
strength and the periodicity distance R is taken to have unit length. The 
field wil l De investigated 1n the region r<0.4; so the modified Bessel 
functions are small, I 2 <2x l0 - 2 and I 6<9xl0~ 8 . ' Despite the large value 
for b 1 8 , the field is essentially that of an m=2 stellarator. The 
rotational transform varies from i%0.225 at the axis and would 
increase to i=0.5 at the separatrix, Fig. 4. A small magnetic island 
chain is driven around the ;=0.25 surface due to the beating of the m-2 
and m=6 Fourier terms, Fig. 5. 

The magnetic field which has been defined can be studied in two 
wfjs: by the traditional Poincare plot (for example on the 9=0,2rt,,.. 
surfaces) and by the Hamiltonian method. The Poincare method consists 
of a straight forward integration of cq.(2l) for the field lines using a 
4 t h order Runge-Kutta scheme at equal 9 intervals. This 1s the method 
of construction of Fig. 5. The Poincare' plot of the outermost field line, 
which hrs u transform of i=0.2524, appears to be forming a smooth 
magnetic surface; so the method outlined in the discussion of Eq.(8) can 
be utilized to evaluate magnetic coordinates for this surface. To 
simplify the imposition of the analyticity constraints, the field line 
trajectory is recorded in Cartesian coordinates x = r COS(K) and y = r 
s1n(«) (see F1g. 3). In other words, the field line integration determines 
x("J>) and y(9) which are Fourier decomposed to obtain the Fourier 
coefficients of 

x(9,<p) = 2 x [ i m cos(n*f> - me) and g(e,<p) = Z\fnm sin(nf - mQ). (32) 

Due to the form of the field, only cosine terms are needed to describe 
the x coordinate and sine terms to describe the y coordinate. Most 
stellarator fields of practical interest have the analogous property for 
the rnajur radius R ano the vei ncai muruinate ?, Fig. 2. The Fourier 
decomposition was carried out using field line data from 256 equivalent 
toroidal circuits using a fast Fourier transform and a Gaussian window 
function.6'7 At the same time, we calculate the toroidal flux 2T\$ from 
JB.da, Fig. 1. Only two Fourier coefficients were used to represent each 
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of the two coordinates, x and y. These are given in Table 1. 
Table 1 Fourier components of the position coordinates of the 

magnetic field line 

n m xnm Unm 

0 -1 0.23838 0.23838 
1 1 0.14206 0.14206 

The surface reconstructed from these Fourier coefficients is outlined by 
crosses in Fig. 6. The dotted curve, by comparison, shows the Poincare 
plot of the outermost field line of Fig. 5. The initial transformation 
equations x(p,9,"J>) are set by the Fourier components of Table I. The 
Fourier components of x(p,9,<f>) are 

WP> = *nm P m / 2 a n d W P ) = y n m P m / 2 ' <33> 

with p, the radial coordinate, having the value unity at the reference 
surface. 

The magnetic Hamlltonian XW»M>) Is obtained by Integrating the 
differential equations of Eq.(!2). These differential equations are 
integrated as ordinary differential equations in f on a grid of 64 equally 
spaced values of 9 and 16 equally spaced values of <f. The value of 
%W,Q,'P) is recorded at 10 evenly spaced / + values for each value of 9 
and "f- A fast Fourier transform then gives the Fourier series for X on 
each f surface. The behavior of the most important Fourier components, 
XizW» XieW .and X2sW are given in Fig. 7. The exponential 
convergence of the Fourier series for X is illustrated in Fig. 6. which 
gives the amplitudes of the n=2 Fourier terms at ^=I.78xlO" 3 for 

various values of m. The symmetry of the magnetic field implies that 
only multiples of m=4 can appear. 

There are two curves in Fig. 4 for the rotational transform \{f). The 



15 

dashed curve is derived from a field line integration with the toroidal 
flux 2TCJJ determined by integrating B-da over the cross section of the 
apparent magnetic surface. The full curve is titaafoty, the derivative of 
the n=o, m=0 Fourier component of the Hamiitonian. This must be 
corrected for the contribution of the nonresor.ant terms, of which X12 is 
the most dominant, to obtain the rotational transform of the field. This 
correction can be made using Eqs. (23) and (26) and we have therefore 
^dXoi/d'J'+Ai. If we ignore the second term in At due to the shear 
di/d*M.56, then Eqs. (23) and (26) imply 

Av = - H i - [42X.t* jf,2 * (#i*}2|/2 . ( 3 4 ) 

n - i m d</»* &$ 

Computed values for dX^/d^ and fifa/tity2 at the resonant surface, 
"f=L?8xlO~2, give Ai=-0.0018. The displacement in f for the full curve 
from the dotted curve is therefore A<f'=Ai/(dX/d,J')=-0.0011 , which is in 
full agreement with measurements from Fig. 4. 

To study the is'and structure at 1=2/8, which is «M.78x10' 2, the 
amplitudes of the potentially resonant Fourier terms in the Hamiitonian 
are required. The important Fourier terms in the Hamiitonian are given 
in Table I I . 

Table II Fourier components of the Hamiitonian. 

n m Xnm 

0 0 4.244x10"3 

0 4 1.240x10s 

2 4 8.777x10"G 

1 2 -4.246x10"4 

J 6 3.563x10~B 

2 8 5.400x1 0~* 

The resonant n=2, m=B term is driven not only by the direct Xzs term in 
the Hamiltonfan, but also by the coupling of X12 and Xi6 .and x« a n d %24 
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terms. With the use of Eq. (28) and associated equations, we find 
a 1 = i.089xl0" 7 for the coupling of X ) 2 and X1S> and 3j = -o . i o i x i c f 7 

for the coupling of X^ 3 n o - %3A Therefore the total resonant term 

X2 8=X2 8

+1.089x10"1-0.261xl0"''=1.369x1 C" 7. This value together with 
di/d<f=1.56 implies that i t would take 276 circuits of the torus for a 
field line to encircle the island magnetic axis, Eq. (18). If the island is 
vide enough, the number of toroidal circuits can be obtained by counting 
the number of dots on an ordinary Poincare plot required to encircie the 
island axis. As the island width decreases, the Poincare' plot method 

becomes increasingly impractical, but in our case it is stil l feasible. 
The number of toroidal transits that were required to encircle the island 
magnetic axis was 280 on the Poincare plot. This corresponds to a 
Hamiltonian perturbation X 2 8 of 1.33x10~7, which is in excellent 
agreement with the calculated X 2 8= 1.369x 10" r. 

One can, of course, check the formula for the number of toroidal 
circuits required to encircle an island axis by an explicit integration i f 
the Hamilton)an. We take 

t - Xo4 &«cos<2<p - 89) with dXo/d* = 1/4 + {f-%W, (35) 

i'=1.56, and ^ o = - 0 1 7 8 - T n e • dependence of X 2 8 is approximated by 
,j,m/2 n e a r t n e r e s o n a n t surface. The number of points on the Foincare 
plot which are required to encircle the island axis implies that i t takes 
276 toroidal circuits, Fig. 9, which is in agreement with Eq. (18). An 
approximate island width may be directly deduced from Fig. 9. The 
well-known formula of Hamiltonian theory for the half-width of an 
island is 

A * = ( 4 X n m A ' ) , / 2 (36) 

Using X 2 B = ' - 3 7 K I 0 " 7 3 n d i'=1«56, we would expect 2A^/^=0.06, which 
is roughly substantiated by Fig. 9. A more delicate test of the 
Kamiltonian formalism is the transformation of Fig. 9 into ordinary 
space using the transformation equations x(<h9,<P). The result of this 
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transformation is given in Fig. 10 , which should be compared to Fig. 5. 

IV) Summary 

Although the Hamiltonian procedure for studying magnetic field line 
trajectories may appear formal, it does provide a relatively simple and 
compact description of complicated magnetic fields. There are two 
parts to the Hamiltonian analysis of a field. First, one must find the 
Hamiltonian %($,$,$) and the '^ansformation equations ^(+,6,9) from the 
canonical coordinates to ordinary soace. This first part of the analysis, 
which is essentially finding the vector potential of the magnetic field, 
is carried out fty integrating a pair of ordinary differential equations on 
a mesh of 9,9 values and then Fourier decomposing in 9 and <p to obtain 
the Hamiltonian and the transformation equations in Fourier series form. 
The second part of the analysis is the evaluation of the field line 
trajectori&s in the canonical coordinate space. Frequently, one can 
obtain the Hamiltonian in a form which is close to magnetic, or 
action-angle, coordinates, which means jf is a function of f alone plus a 
smali perturbation. When the Hamiltonlan is close to rnaqnetic 
coordinate form, one can generally obtain the desired information on the 
field line trajectories without integrations by using canonical 
perturbation theory, which frequently must be a second order theory. 
The use of Hamiltonian methods does allow one to remove all the Fourier 
terms in the Hamiltonian that depend on the toroidal and poloidal angles 
"f and 8 unless the angle-dependent terms are resonant. It is the 
resonant terms in the Hamiitoman that are responsible for magnetic 
islands and stochastic regions. The use of canonical coordinates that 
have only resonant angle-dependent terms 1n the Hamiltonian provides 
the simplest and most compact description of .he structure of a 
magnetic field. 

The numerical example of the study of a magnetic field by 
Hamiltonian methods was based on a simple analytic field. Of course 
the Hamilturiiar, even for an analytic field, must be determined 
numerically; so the choice of an analytic field was made only for clarity. 
The example was atypical and more difficult than typical fields of 
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physical interest in two respects. The rotational transform per period, 
i^0.25, /as extremely large; so the magnetic surfaces were very 
nencircular. The shear di /d^, with 2Ttf the toroidal flux, was very 
small, which made the small contribution of the nonresonant terms to 
the transform far more Important than would typically be the case. The 
example also used a high poloidal mode number, m=8, island since the 
higher the mode number the more difficult it is to obtain the correct 
width. This feature arises from the Fourier terms in an analytic 
Hamiltonian having a typical scaling of <j>m ' 2. This feature is also 
present in ordinary space integrations of field lines; it is just not 
explicit as i t is in the Hamiltonian method. The <f , m ' 2 typical scaling is 
closely related to the exponential convergence of the Fourier series of an 
analytic Hamiltonian. The most sensitive comparison of the field line 
integration in real space and the Hamiltonian solved by perturbation 
theory is the number of toroidal circuits it takes a field line to encircle 
the axis of the island. The two methods differed on this number by less 
than 2%. 

This paper implemented for the first time a general method for 
finding the Hamilfconian of a given magnetic field. Although subtle, the 
method is simple and does allow one to utilize information that one 
already has on the field lines to ease the field line integrations. Indeed, 
the use of low order Hamiltonian perturbation theory often eliminates 
the need for any numerical integrations to determine the field line 
trajectories and thereby give an extremely efficient field line following 
package in a more general code. 
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FIGURE CAPTIONS 

Fig. 1 Canonical Coordinates: The pololdal magnetic flux outside a 
constant )C surface 1s 2«X- The toroidal magnetic flux inside a 
constant f surface is 2it*j>. However, the constant <$> and the 
constant % surfaces need not be identical. The po'oid3l angle 
is 8 and the toroidal angle is f . 

Fig. 2 Cylindrical Coordinates I : The use of cylindrical coordinates 
for describing a toroidal configuration is illustrated. 

Fig. 3 Cylindrical Coordinates I I : The cylindrical coordinates used in 
the computation of the model field. 

Fig. 4 Rotational Transform: The rotational transform i versus the 
toroidal flux function $. The dashed line is obtained from a 
field line integration. The so'id line is d%00/6$. The difference 
between the two curves is the contribution to the transform of 
the X i a Fourier term in the Hamiltonian. 

Fig. 5 Ordinary Space Poincare' Plot: The intersections of three field 
lines with a constant <j> plane are plotted. The four islands on 
the plot are part of the trajectory of a single line. Since the 
resonance is a second harmonic 2/8, not a first harmonic 1/4, 
resonance, there are two unconnected, but interweaving, sets of 
islands. A more complete Poincare plot would require another 
field line trajectory to show that there is an additional set of 
four islands about the same resonant surface with one of the 
additional islands in each of the four empty spaces between the 
Illustrated islands. 

Fig. 6 Initial Transformation equations: The X's lie on the surface 
obtained from the Fourier components of the coordinates x and 
y that are given in Table 1. The dots form a Poincare plot of 
the field line with transform 1=0.2524. The largest Fourier 
terms in the transformation equations to magnetic coordinates 
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for this field line were used to obtain Table i. 

Fig. ? The ^ Dependence of Hamiltonian Fourier Components: The f 
dependence of the three most important Fourier components of 
the Hamiltonian, X12. Xie. and Xse. are illustrated. 

Fig. 8 The m Dependence of HamiTtoman Fourier Components: The 
poloidal mode number dependence of the n=2 Fourier terms in 
the Hamiltonian is illustrated. There is a clear exponential 
convergence at high m as expected for an analytic field. Only 
multiples of m=4 are present due to the symmetry of the field. 

Fig. 9 Canonical Coordinate Space Poincare Plot: The intersection of 
a single field line with the constant >p plane is plotted by 
integrating the field line Hamiltonian of Eq. (10). 

Fig. 10 Transformed Poincare Plot: The Poincare plot of Fig. 9 is 
plotted in ordinary space using the transformation equations 
x(f F6,f). This plot should be compared with the equivalent 
islands of F1g. 5. 
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