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ABSTRACT

The structure of a magnetic field is determined by a one-degree of
freedom, time-dependent Hamiitonian., This Hamiltoitian is evaiuated for
3 given field in a perturbed action-angle form. The location and the
size of magnetic islands in the given field are determined (rom
Hamiltonian perturbation theory and from an ardinary Paoincare plot of

the field line trajectories.
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I} Introduction

As early as 1951, Spitzer! appreciated that plasma confinement in a
torus depends critically on whether the magnetic field lines le in
surfaces, so-called magnetic surfaces, for many transits of the torus.
Kerst? used an analogy between field lines and particle trajectories to
shaw that a smail perturbation could cause magnetic field lines to strau
=ar from simple toroidal surfaces. Rosenbluth et al.? astimated the rate
at which field lines leave a torus if they do not lie in surfaces. Grad*
has discussed some of the subtleties of toroidal equilibria that are
associated with the existence of magnetic surfaces. Even in a given
vacuum magnetic field, the determination of the quelity of magnetic
surfaces is nonirivial. The standard method uses puncture, or Poincare,
piets which require long and numereus field line integrations. Also, the
Poincare plot method of determining surface quality is difficult to
automate and to quantify.

This paper impiements a Hamiltonian procedure for evaluating the
magnetic surface quality of 3 given magnetic field. A magnetic field is
equivalent to a one-degree of freedom, time-dependent Hamiltonian
system. That is, the three ordinary spatial coordinates can be
considered to be functions of the canonical momentum, coordinate and
time of a Hamiltonian with the trajectories of the Hamiltonian baing the
trajactaries of the magnetic field lines, If the magnetic field has a
nonzero toroidal component in the spatial region aof interest, then the
transformation equations between the canonical coordinates and ordinary
spatial coordinates are well-behaved, invertible functions. Such
transformations preserve structural, or topelogical, properties; so the
Ham{ltontan function contains fult infermation on the existence of
magnetic surfaces, isiands, and stochastic regions.

Magnetic fields that are of interest for confining toroidal plasmas
must have magnetic surfaces in much of the plasma volume, A magnetic
field which has perfect surfaces throughout the volume of interest is
said to be integrable; so the magnetic fields associated with toroidal
_confinement must have a neighboring integrable field. This means that
the canonical coordinates of the field 1ire Hamilionian can always be
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chesen so that the Hamiltenian is a function of the canonical momentum
alone plus a small perturbatvion. Such Hamiltonians are said to be in
near-action-angle form, and standard Hamiltonian perturbaticn theory
gives methods for Jocating and assessing the importance of islands and
stochastic regions. Consequentiy, the determination of the field line
Hamiltonian not anty reduces the study of the structure of the field lines
frem 3 vector te a scalar problem, but it alse gives a concise and
complete statement of the quality of the magnetic surfaces provided
near-action-angle canonical coordinates are used. If one has a_prigri
knowledge of the shape of the magnetic surfaces or other information on
the field line trajectories, this information can be easily incorporated in
the choice of canonical coorginates to make the fleld line Hamiltonian
close to the actfon-angie form. The method thal we will use to fing the
field line Hamiltonian makes it close to the action-angle form by using
information from a single field line trajectory.

II) Theoretical Basis

The metheds that will be used to examine the structure of a given
magnetic field are a generalization of magnetic coordinate techniques.
Therefare, the properties of magnetic toordinates will be reviewed, Sec.
(11a), before the more generai canonical representation is discussed, Sec.
(IIb). In addition to magnetic and canonical coordinates, there are three
technical points which must be dealt with, First, we must know the
conditions that are required for a set of transformation equations to he
analytic in order to abtain smooth transformation equations from a few
field lne integrations, Sec. (lIic). Second, we must know the relations
between the near-magnetic coordinate form for the Hamiitonian and the
properties of magnetic islands. These relations are needed if the
Hamiltonian method is to be compared with the ordinary Poincare plel
method for studying magnetic fieid structure, Sec. (l11d). Third, we must
develop the second order perturbztion theory that is naeded to transform
canonically the Hamiltonian into the appropriate near-magnetic
coordinate form, Sec. (Ile).



11a) Magnetic Coordinates

If the field lines of a magnetic field B(x) lie in nested toroidal
surfaces, then the magnetic field is integrable and can be described by
the well-known magnetic coordinate representation,

Biz) = V¢ X Vo + TP X V(). (n

The physical interpretation of ¢,6,$, and X is given in Fig. 1. The
primary feature of magnetic coordinates is that they trivialize the
problem of ewaluating the trajectory of a field line. A field line
trajectory obeys the relations

=9, and O =8y + 1{P)Y (2)

with v = d)X/d¥, the rotational transform, and with ¥, and 8, constants.
The trajectory relations folloy from the ohvious equations B-¥y = ¢ and
B-¥(0 - 1) = 0. To actually trace the field lines in ordinary space, tne
transformation equations x(¥,9,$), which give the spatial location of
each ¢,0,9 peint, are reguired in addition to X(y). Conversely, the dual
relations of partial differentiatien theory can be used to show that any
two functions X({} and x(¥,8,9) uniguely specify a magnetic field B(x).
The dual retations are

vy = L% 3%y ng X - y(ve X VY) (3)
Jae oy 39

with even permutations of the ¥,8,f labels also giving valid reiations.
The Jacobian J is defined by

J=0%. (3w By (yy x VeI VY. (4)
ay s oY
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The dual relations together with Eq. (1) imply

B-= _.L(a_x-hlﬂ) (5)
J 09 0s

and demonstrate that x($,6,9) and X(¥) uniquely speciiy B.

The magnetic ceordinate functions x(¥,8,9} and ;{$), which provide
a particularly useful representation of the magnetic field, can be
evaluated computationally®? for any given integrable field B{x). To
carry out this evaluation, a field line trajectory (¥} is determined by
integrating the differential equation

dax _ B(xj (6)
& B-vY

with a definite choice of toroidal angie P{x). One can show that the
toroidal angle of magnetic coerdinates can be chosen arbitrarily, but the
most convenient choice is often the azimuthal angle, which is the angie
of cylindrical coordinates R,$,2, Fig. 2. Knowing x(¥) along field lines,
one can obtain x(,6,9) and (¥} using the periodicity of the peloidal and
toroidal directions, namely

#($,8,9) = T Xppo(¥) expl 1 (0P ~ MO)L (7

Equation (2) and Eq.(7) IMply that the functienal form of a field line x(Y)
must be

%(P) = £ %pp($) expl § {n - um)¢)] (8)

with 8y assumed zers, which is always passible. A Fourier
decomposition of a known trajectory x(9) gives the x,., and L on a

magnetic surface. The toroidal magnetic flux 271 associated with that
surface can be determined by an area integral.



iIb) Canenical Coordinates

4 general magnetic field is constrained only by one cendition,
V-B=0 globally, and cannot be written in magnetic coordinate form.
iNevertheless, if B-¥Y is nunzero, an otherwise general divergence-free
field can be written in the canonical representation®

B=- V§ X V0« V¢ % Vx($,0,9). (9)

The magnetic coordinate representation is a special case of the
canonical regresentation in which the poloidal flux function ¥ is 2
function of ¥ alone.

The poloidal flux function Y(¥,0,9) is also the field line
Hamiltonian. This can be demonstrated by using dy/dP=(Vy)-dx/dy and
Egs.{6) and (9} to show that

9 - -9 gapg 98-3X, (10)
gy a6 gy 9¢

As in magnetic coordinates, the flux function X and the transformation
equations x(y,8,¥) uniquely specify the magnetic field, The important
feature of canonical coordinates is that the structure of the magnetic
field is determined by X{$,8,9} alone. This follows from the fact that
well-behaved transtormations do not alter topological features of the
field such as magnetic islands or stochastic regions. In practice one
rarely needs to know the spatial location of 2 field Fine trajectory with
as great an accuracy as one needs to know its topoclogical suructure sucn
as the existence of nested magnetic surfaces. This means that oniy the
magnetic Hamiltonian need be evaluated with high numerical accuracy.
The magnetic Hamiltonian can be conveniently represented in Fourier
series farm,

X = Xol¥) *+ T Ay expl i (n9 - me)]. (11}



The canonical coordinates of a given field B{x) are not unique; there
is the freedom of canenical transformations,® which are a major part of
the Hamiltonian theory of classical mechanics, The maost useful
canonical coordinates, near-magnetic coordinates, are as close as
possible to magnetic coordinates in the sense That only resenant X,

Fourier coefficients occur in the series. A Fourier coefficient is
resonant 11 1=d)y/d¥ satisfies n=um for a value of ¢ in the region of
interest. The resonant Fourler terms In near-magnetic coordinates
represent magnetic islands or stochastic field line regions. These
features are topological and therefore appear regardless of which
coordinate system is used to describe the field.

The arbitrariness of the canonical coordinates eases the problem of
evaluation. Let x(p,e,‘P) be a set of transformation equations, which are
arbitrary except that the Jacoblan is Tinite, {hat @ and ¢ are a poloidal
and a toroidal angle, respectively, and that p, the radial coordinate, is
zero along the axis of the poloidal angle. Equations for evaluating the
canonical coordinates of a given field B{x) are derived by dotting Eq.(9)
with V¥ and V@ while considering ¥ and X to be functions of p,6,9.

That is, awa;’:JPB-w and 3}(/89=JPB-‘79 with Jp the p,6,¥ Jacobian.

The dual relations of partial differentiatien theory, which relate ¥é and
V¢ to derivatives of the transformation equations x(p,8,), Eq.(5), allow
one te obtain the differential equations®

'

- 1 , 9X _ Bel(3x/39)%(3x/3p)] (|2
9y  B-{(0x/0p)X(0x/06)] 3y B-[(Ox/0p)X(3x/30)]

The right-hand sides of these equations are known functions of p,8,y.
To integrate them, one picks a valus of @ and of Y and uses the boundary
conditions, which are implied by regularity, that p is 2erc and X is 2
constant at ¢ equal to 2ero [see Eq.(14); also note that a purely ¢
dependent, additive term to X is irrelevant].. After evaluating ¥ for a
number of 9,9 values, one can use a fast Fourier transform to obtain ¥ in
Fourier-decomposed form, EqQ.(11). For an analytic field the Fourier
coefficients converge exponentially; so the number of 6,9 values required
to obtain an accurate Hamiltonian is small. In principle one sheuld



integrate B over tnhe area enclosed by the curve $=0 to obtain the
poloidal flux 27¥e(0), but this constant, which is additive to ¥, is
important only in time-dependent problems and will be ignored.

The magnetic fields that we wish to study are nearly integrable.
This means that for a number of terpidal transits the trajectory of a
field line will remain close to one surface in a set of nested toreidal
surfaces. Nearly integrable fields can be studied by using a few short
trajectory integrations to set up a smooth approximation to magnetic
coordinate transformation equatiens [see Eq.(8) and the retated
discussion]. If these transformation equations are denoted by x(p,6,9),
then the procedure outlined in the discussion ¢f Eq.(12) gives the
magnetic Hamiltonian ¥($.8,¥) and the canonical transformation
equations x($,6,9). If the field were integrable, and if the magnetic
coordinate evaluation were carried ouf with perfect accuracy, then ¥
would be 2 function of ¥ alone. For nearly integrable fields, ¥ will not
be a function of $ alone, but the angle-dependent part of X will be small
compared to ¥o{$). Consequently, one can use a simple perturbation
analysis, atthough frequently of second order, to search for magnetic
islands.

Iic) Analyticity Conditions

The analyticity conditions for polar coordinates, such as the p and o
coordinates, can be determined by defining pseudo-Cartesian coordinates
2 = r cos(®) and M = r sin{@). The reason for defining & and 7 is that
analyticity gives conditions near the origin of the polar coordinates.
Both £ and 1} g2 to zero at the origin, but the © coordinate does not. The
reason for using the symbol r, instead of £, for the radial coodinate is
that r will be assumed proportional to distance near the origin. The
radial ceordinate p is often taken to be a flux coerdinate, which is
proporticnal to the distance from the origin squared. Any analytic
function T has a Taylor expansion in £ and T near the origin. That is, for
¢ and m sufficiently smal), f can be written as

(=21 80 qk =515 o*K coste)] sin@)X . (13)



The function cos(8))sin(8) can be wrilten as a Fourier series in cos(me)
and sin{m®&), This series contains values of m only in the range Osmx<j+k
and only even or odd values of m depending on whether j+k is even or
odd. (Throughout this paper we use the convention that the poloidal mode
number m is positive.} An analytic function of position f can therefore
be put in the form

1(r8) = £ ™ [ap,(r?) cos(me) + by, (r2) sin(me)] (14)

with the a,, and by, analytic functions of r2, Equation {14) will be used

to obtain smooth transformation equations. The analyticity conditions
for one set of polar coordinates expressed in terms of another are subtle
since neither the polar angle © nor the radial coordinate r is an analytic
function of position. For this reason it is best to use spatial
coordinates that are not polar around the axis of the poloidal angie, such
as the R,$,2 coordinates of Fig.(2).

11d) Comparison of a Poincare Plot with a Hamiltonian

[t is important to have a method for comparing magnetic islands as
seen in 3 conventional Poincare plot with their representation using the
magnetic Hamiltonian. The number of toroidal circuits N, required for a
field Hne to encircle the island O-point on the Poincare plot gives such a
comparison. This number is almost constant for field lines inside the
island except for a logarithmic singularity at the island separatrix . The
number Ny can be evaluated for the magnetic Hamiltonian

X = Xol§) - X cos(ng - me), (15)

which has a magnetic island about the surface Yo on which v=n/m wtth
v=d)/dy. 1f we assume that v’=di/d$ and ¥ are positive, then the
O-point of the island is at $=P; and 9=8y with 8g=nP/m. Expanding the
Hamiltonian about 4,8, and ignoring an additive constant,

XxBg-g+ Lo (g-gp2sLimee-62.  (16)
2 2

n
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Using Hamilton’s eguations, Eqg/T~' one can easily show that the
trajectories are

Y =g+ ¢, expli P/Ng) and 8 = 85+ 1 Ng V" ¢y expli $/Ng) (17}

with ¥, a constant and

NG:___I_.....—. (18)
m (LJ i)l/?

Each time ¥ advances by 27N, the Poincare plat of a figld line stows the
line encircling the O-patnt.

lle) Canonical Perturbation Theory

The Fourier decomposition of the magnetic Hamiltonian, Eg. (11),
frequently contains large, nonresonant, Fourier terms. Perturbation
theory can be used to find a canonical transfermation that remeves these
nonresonant terms, but there is a correcfion to the resonant Fourier
terms, which create islands, that is second order in the nonrescnant
terms. Consequently, an accurate study of the isiands frequently
necessitates the use of second order perturbation theary,  Any
Hamiltonian can be written as X=Yo{¢}+X{$,0,9)+7(9,8,$) with X
containing only nonresonant Fourier terms and ¥ containing only resonant
Fourier terms. Let X be a function of a parameter € as well as ¥,6,$,
then one can canonically transform away the nonresonant Fourier terms
by integrating the equaticns®

BXolP,e)/0c = 35789 +13s/30 + ¥ - €0 (19)
3X{y,8,9,6)/0¢ = [¥,5] - @ (20)
3Y(y,6,9,e)/9€ = [{,8] + @ 21

with s and o functions of ¥,8,9,6, which ar: chosen so that ¥ remains
nonresonant and ¥ remains resonant, 1=8x,/0%, and | -, - ] is the Poisson



bracket, That is,
1%,s] = (8%/99)0s/86) - (9%/08)(3s/A%). (22)

At £=0 one lets Xo, ¥, and X 2qual the given T:nctions; at =1 the exact
Hamiltonian has no resonant terms anr Y=zxo+X. Although the exact
removal of the nonresonant Fourier ierms using Eqs. (19) to (22) can be
very useful, hera we consider only a second order analysis. 'wa assume
"he ¥ terms are sufficiently large that second order terms due to ¥ are
of the same magritude as ¥. By a second crder term; we mean the
solutions to the differentia! equaticns (19 - 21) arz Taylo- expandad in =
to order €2 and the second order Taylor expansion is assumed valid at
e=1. One can then show that at e=1

Xol$) = Xool$) + (XoSoly/2 (23)
X(9:8,9) = Xo + [XosSoly (24)

with the subscript "a” implying an average over 8,9 and "r" impiying that
only resonant Fourier terms are retained. The final subscript "o" in ¥,

%o, and X, implies that the initial, £=0, expression is used. The
“ function s,, which is a se-called infinitasimal generating function, is

given by
359709 + 1(054/38 + ¥y = O. (25)

A single nonresonant Fourier term cannet produce a resonant Fourier
term, but such a term can modify the transform 1 and therefore move the
location of the resonance. That is, if Xo=¥,($)cos(ng-me), then

[X0sSply = I/ (n=1om)Ix "Xy + My /{n-vgm)I21y*/2, (26)

The first term in this expression is the so-calied stellarztor expansion
term for the poloidal flux function.!® The more important case is one in
which there are two, or more, nonresonant Fourier termis. The general
£ase can be treated by summing up the second order interaction of each
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nonresonant term with itself, Eq. (26), and its beats with overy other
nonresonant term, with each pair of terms counted once. Consider ¥ of
the form X=X {¥)cosin P-m,8)+x,{ficas(ny,P~m,8), then

[¥:sel = agcosling+n)P - (my+m,)8] + aycosling-ny)Y - (my-mplek. (27

The ay, or upshift, term is normally more important than the downshift,
or ap, term. We, therefore, only give the expression for a,,

3 = - MuMaXaXalel 1 4 el ), (28)
2 (ni-tomi)"’ (nz'lgmz)z

At the resonance 1g=(ngtmy)/(myrmy), the terms (ng-1gmy)2  ard
{ny-1gmy)? 2re equal.

111} Numerical Implementation

To give 3 simple illustration of the Hamiltonian method, we will
study the vacuum magnetic field of a culinder. This field can be
expressed analytically while retaining all the features of interest of the
toroidal equivalent. The general vacuum field in a cylinder with
coordinates r,x,z that has no internal currents is

B = Bg Z + VIZ (R/n) by, Iy (nr/R) cosny - me)i  (29)

ptus a similar sine series. The I, are the modified Besse! functions,
27R is the periodicity distance along the axis of the cylinder, and $=z/R

is equivalent to the toroidal angle, Fig. 3. The position vector in
cylindrical coordinates,
R=rrx)+zz (30)

with dr/dx=&, can be used to obtain the fisld line equations [ see Eq.(6)),

dr/d9 = RB/B, ani “x/d9 =RB/rBy). (31
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The field whick will be studied has oniy two Fourier components,
by2/By=1.68 and byg/Bg=900. The constant fieid By is taken to have unit
strength and the periodicity distance R is taken to have unit length. The
field will be investigated in the region r<0.4; so the modified Besse!l
functions are small, 12<2x10‘2 and 15<9x10'6.' Despite the large value
for byg the field is essentially that of an m=2 stellarator. ~ The
rotational transform varies from 120,225 at the axis and would
increase to 1=0.5 at the separatrix, Fig. 4. A small magnetic island
chain is driven around the 1=0.25 surface due to the beating of the m=2
and m=6 Fourier terms, Fig. S.

The magnetic field which has been defined can be studied in twao
weyst bu the traditional Poincare plot (for example on the $=0,27,.
surfaces) and by the Hamiltonian method. The Poincare method consists
of a straight forward integration of tq.{21) for the field lines using a
4" order Runge-Kutta scheme at equal ¥ intervals. This s the method
of construction of Fig. 5. The Poincare plot of the outermost field line,
which hcs & transform of 1=0.2524, appears to be forming a srnooth
magnetic surface; so the method outlined in the discussion of Eq.(8) can
be utilized to evaluate magnetic coordinates for this surface. To
simplify the imposition of the analyticity constraints, the field line
trajectory is recorded in Cartesian coordinates x = r cos{x) and y = r
sin(x) (see Fig. 3). In ather words, the field line integiration determines
x(9) and y(P) which are Fourier decomposed to obtain the Fourier
coefficients of :

x(8,9) = £ Ky cos(ny ~ me) and y(6,9) = g sin(np - me).  (32)

Due to the foerm of the field, only cosine terms are needed to describe
the x coordinate and sine terms to dascribe the y coordinate. Most
stellarator fields of practicai interest have the analogous property for
the majur radius R ano the ver ucar wourdinate 2, Fig. 2. The Fourier
gecomposition was carried out using field line data from 256 equivalent
taroidal circuits using a fast Fourier transform and a Gaussian window
function.5-7 At the same time, we calculate the toroidal flux 2Ty from
/B.da, Fig. {. Only two Fourier coefficients were used to represent each
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oi the two coordinates, x and y. These are given in Table 1.
Table 1 Fourier components of the position coardinates of the

magnetic field line

. m Xm Y

¢ -1 0.23838 0.23638
! 1 0.14206 0.14206

The surface reconstructed from these Fourier coefficients is outlined by
crosses in Fig. 6. The dotted curve, by comparison, shows the Poincare
piot of the outermost field line of Fig. 5. The initial transformation
equctions x(p,8,9) are set by the Fourier components of Table L. The
Fourier components of x(p,8,9) are

*nm{P)=¥Xnm p™2  and UnmP) = Ypm P2, (33)

with p, the radial coordinate, having the value unity at the reference
surface.

The magnetic Hamiltonian x{($,8,9) is obtained by integrating the
differential equationg of Eq.(12). These differential equations are
integrated as ordinary differential equations in ¢ on a grid of 64 equally
spaced values of © and 16 equally spaced values of ¥, The value of
%(4,6,9) is recorded at 10 evenly spaced ¢ values for each value of ©
and ¥. A fast Fourier transform then gives the Fourier series for X on
each § surface. The behavior of the most important Fourier components,
X12l93, X16(P) ,and Xpe(¥) are given in Fig. 7. The exponential
convergence of the Fourier series for X is tllustrated in Fig. §. which
gives the amplitudes of the n=2 Fourier terms at $=1,78x107? for

various values of m. The symmetry of the magnetic field implies that
only multiples of m=4 can appear.

There are two curves in Fig. 4 for the rotational transform (). The
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dashed curve is derived from a field iine integration with the toroidal
flux 2y determined by integrating B-da over the cross section of the
apparent magnetic surface. The full curve is dX,g/d¥, the derivative of
the n=0, m=0 Fourier component of the Hamiltonian. This must be
corrected for the contribution of the nonpresonant terms, of which X4, 18
the most dominant, to obtain the rotational transform of the field. This
correction can be made using Egs. 123) and {26) and we have therefors
V=dYge/dy+Ar. If we ignore the second term in At due to the shear
dv/d$=1,56, then Eqgs. (23} and {26) impiy

Av =

idle.'z Xz * {UX12}2]/2 {34)
n-im d$? dy

Computed values for dx,,/d and d?x,,/d$? at the resonant surface,
$=1.728x1072, give A1=-0.0018. The displacement in § for the tull curve
from the dotted curve is therefore AY=A1/{dX/d$)=-0.0011 , which is in
full agreement with measurements from Fig. 4.

To study the istand structuie at 1=2/8, which is ¥=1.78%1072, the
amplitudes of the potentially resonant Fourier terms in the Harniltonian
are required. The important Fourier terms in the Hamiltonian are given
in Table 1L

Table Il Fourier components of the Hamiltenian.

n m Xnm

4.244%1073
1.240%10°6
8.777%10°6
-4.246%10°%
3.563x1078
5.400x%107¢

N - - NDNOo O
= I v O R A s |

The resonant n=2, m=8 term is driven not only by the direct },, term in
the Hamiltonian, but also by the coupling of X, and X1 ,and Xy and X,,
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terms. With the use of £q. (28) and asseociated equations, we find
ay = 1.0R9% 10”7 for the coupling of X, and X, and 3y = 026181077
for the coupling of Xg4 ang X34 . Therefore the total resonant term

%28=X g% 1.089%1077-0.261x107? =1.369x1C™7. This value together with
dv/d¥=1.56 implies that it would take 276 circuits of the torus for a
field lina to encircle the island magnetic axis, £q. {18). If the island is
wide enough, the number of toroidal circuits can be obtained by counting
the number of dots on an ordinary Poincare plot required to encircie the
island axis. As the island width decreases. the Poincare plot method

becomes increasingly impractical, but in our case it is still feasible.
The number of toroidal transits that were required to encircle the icland
magnetic axis was 280 on the Poincare plot. This corresponds to a
Hamiltonian perturbation X,z of 1.33%x10°7, which is in excellent
agreement with the calculated ¥,4=1.369%1077,

One can, of course, check the formula for the number of toroidal
circuits required to encircle an island axis by an explicit integration of
the Hamiltonian., ‘We take

X = X+ ¥opc0s(29 - 88) with d¥p/dy = 1/4 + ($-Poh’, (35)

1'=1.56, and $4=.0178. The ¢ dependence of X,g iS approximated by
1'"'/ 2 pear the resonant surface. The number of points on the Faincare
plot which are required to encircle the island axis implies that it takes
276 toroidal circuits, Fig. 9, which is in agreement with Eq. (18). An
approximate island width may be directly deduced from Fig. 8. The
well-known formula of Hamiltonian theory for the haif-width of an
island is

&9 = (dxymn12 (36)

Using iza=l.3?>¢|0'7 and 1°=1.56, we would expect 2A4/Y=0,96, which

is roughly substantiated by Fig. 9. A more delicate test of the
lamiltonian farmalism is the “transformation of Fig. 9 into ordinary
space using the transformation equations x($,6,9). The result of this

P
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transformation is given in Fig. 10, which should be compared to Fig. 5.

1V} Sumrary

Although the Hamiltonian procedure for studying magnetic field line
trajectories may appsar formal, it daes provide a relatively simple and
compact description of complicated magnetic fields. There are twd
parts to the Hamiltonian analysis of a field. First, one must find the
Hamiltonian X{¥,6,9) and the L ansformation equations x({,6,¢) from the
canonical coordinates to ordinary zpace. This first part of the analysis,
which is essentially finding the ve.tor potentiat of the magnetic field,
s carried put by integrating a pair of ordinary differential sguatiens on
a mesh of 8, values and then Fourier decompasing in @ and ¥ to obtain
the Hamiltonian and the transformation equations in Fourier series form.
The second part of the analysis is the evaluation of the field line
trajecterics in the canonical coordinate space. Freguently, one can
obtain the Hamiltonian in a form which is close to magnetic, or
action-angle, coorvinates, which means X 15 2 function of  alone plus a
smali perturbation.  When the Hamiltonian s close to maqgnetic
coordinate form, one ¢an generally obtain the desired information on the
field line trajectories without integrations by using canonical
perturbation theory, which frequently must be a second order theory.
The use of Hamiltonian methnds does allow one to remave all the Fourier
ferms in the Hamiltonian that depend on the toroidal and poloidal angles
§ and & unless the angle-dependent terms are resonant. It is the
resonant terms in the Hamiltonian that are respensibie for magnetic
istands and stochastic reglons. The use of canontcal coordinates that
have only resonant angle-dependent terms in the Hamiltonian provides
the simplest and most compact description of _he structure of a
magnetic field.

The nunierical example of the study of a magnetic field by
Hamiltonian methods was based on 2 simple analytic field. Of course
the Hamiltouian, even for an analytic field, must be determined
numerically; so the choice of an anatytic field was made only for clarity.
The example was atyptcal and more difficult than typical fields of



physical interest in two respects., The rotational transform per period,
10,25, vas extremely large; so the rnagnetic surfaces were very
noncircular. The shear dv/dy, with 21y the toroidal flux, was very
small, which made the small contribution of the nonresonant terms ta
the transform far more mportant than would typically be the case. The
exarnple also used a high poloidal made number, m=8, island since the
‘higher the mode number the mere difficult it is to obtain the correct
width., This feature arises from the Fourier terms in an analytic
Hamiitonian having a typicat scaling of ,},m12_ This feature is also
present in ordinary space integrations of field lines; it is just not
explicit ag it is in the Hamiltonian methed. The ‘Pm/z typical scaling is
closely related to the exponential convergence of the Fourier series of an
analutic Hamiltonian. The most sensitive comparison of the field line
integration in real space and the Hamiltonian solved by perturbation
theogry is the number of toreidal circuits it takes a field line to encircle
the axis of the island. The two methods differed on this number by less
than Z%.

This paper implemented for the first time a general method for
finding the Hamilionian of a given magnetic field. Although subtle, the
methed is simple and dses allow one fto utilize information that one
already has on the field lines to ease the field Jine integrations. Indeed,
the use of low order Hamiltonian perturbation theory sften etiminates
the need for any numerical integrations to determine the field line
trajectories and thereby give an extremely efficient field line following
package in a more generat code, '
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Fig. 3

Fig. 4
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FIGURE CAPTIONS

Canonical Cogrdinates: The poloidal magnetic Tlux outside a
constant ¥ surface 1s 21, The toroidal magnetic fiux inside a
constant ¢ surface is 2my. However, the constant ¢ and the
constant ¥ surfaces need not be identical. The pa'eidal angle

is 8 and the toroidal angle is 4.

Cylindrical Coordinates 1: The use of cylindrical coordinates
for describing a torsidal configuration is illustirated.

Cylindrical Coordinates Il : The cylindrical coordinates used in
the computation of the model field.

Rotational Transform: The rotational transform 1 versus the
torgidal flux function Y. The daghed line is obtained from a
field line integration. The solid line is d¥ge/d¥. The difference
between the two curves is the contribution to the transform of
the ¥, Fourier term in the Hamiltonian.

Ordinary Space Pgincare Plot: The intersections of three field
lines with a constant ¥ plane are plotted. The four islands on
the piot are part of the trajectory of a single line. Since the
resonance is a second harmonic 2/8, not a first harmomc 1/4,
resonance, there are two unconnected, but interweaving, sets of
islands. A more complete Poincare plot would require another
field tine trajectory to show that there is an additional set of
four islands about the same rescnant surface with one of the
aaditional islands in each of the four empty spaces between the
1Nustrated islands.

Initial Transformation equations: The X’s iie on the surface
cbtained from the Fourier components of the coordinates x and
y that are given in Table 1. The dots form a Poincare piet of
the field Hne with transform 1=0,2524. The largest Fourier
terms in the transformation equatiens to magnetic coordinates
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Fig. ?

Fig. 8

Fig. 9
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for this field line were used to obtain Table 1.

The ¥ Dependence of Hamiltonian Fourier Components: The ¢
dependence of the three most important Fourier components of

the Hamiltonian, X2, X5 200 Xas, are illustrated,

The m Dependence of Hamiltanian Fourier Companents: The
poloidal mode number dependence of the n=2 Fourier terms in
the Hamiltonian is illustrated. There is g clear exponential
convergence at high m as expected for an analytic field. Oniy
multipies of m=4 are present due to the symmetry of the field.

Cangnical Coordinate Space Paingara Plot: The intersection of
a single field line with the constant P plane is platted by
integrating the field line Hamiltonian of Eq. (10).

Fig. 10 Transformed Poincare Plot: The Poincare plot of Fig. 9 is

plotted in ordinary space using the transformation equations
x(¢,6,9). This plot should be compared with the equivalent
isiands of Fig. 3,
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