ЕФИ-820(47)-85

Carlos Ca

ԵՐԵՎԱՆԻ ՖԻԶԻԿԱՑԻ ԻՆՍՏԻՏՈՒՏ ЕРЕВАНСКИЙ ФИЗИЧЕСКИЙ ИНСТИТУТ

12.00

第二 と、私を利用し

Ξ.

Н.М.АГАБАБЯН, М.Р.АТАЯН, Ж.Б.ГРИГОРЯН, Н.Г.ГРИГОРЯН, Г.Р.ГУЛКАНЯН, А.Р.КАНЕЦЯН, Ж.К.КАРАМЯН, Л.П.КИШИНЕВСКАЯ, З.А.КИРАКОСЯН, С.А.КОРЧАГИН

ИССЛЕДОВАНИЕ НЕКОГЕРЕНТНОГО РОЖДЕНИЯ ПИОННЫХ СИСТЕМ В РЕАКЦИЯХ $\pi^{-}A \rightarrow \pi^{-}\pi^{-}A'$ и $\pi^{-}A \rightarrow \pi^{-}\pi^{-}\pi^{-}\pi^{+}A'$ на ядрах при 5 ГэВ/с

ЦНИИатоминформ

EPEBAH-1985

С Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике (ЦНИИвтоминформ) 1985г.

УДК 539.172.5; 539.126.34

н.... Агабабан, ... р. атали, ж. б. гры горян, н. г. гры горян, г. р. гулк мнан, а. р. канзцан, а. к. карашан, л. п. кишиневская, з. а. кыракосан, с. а. корчагын

ИССЛЕДОВАНИЕ НЕКОРЕРЕНТНОГО РОЖДЕНИЯ .И.G. MULA CLICTEL В РЕАКЦЛИХ $\pi^-A \rightarrow \pi^-\pi^-A'$ и $\pi^-A \rightarrow \pi^-\pi^-\pi^-A'$ на друх при 5 гев/С

На эснове обработни снишков с метровой пропан-фреоновой правирыззой камеры Лаборатории ядарных проблем (АНП) СМАЙ, обправянол Π^- мезонали с имправсом ~ 5 Гоб/с на синхроразотране Л.М., изморени сечения и исследован ряд марактеристик нологоронтаки с ищи $\Pi^- A \to \Pi^- \Pi^- A'$ (на ядре углерода и адранорогова- конскол смеси) и $\Pi^- A \to \Pi^- \rho^* A'$ (на ядрах пропан-десоновон смеси) и $\Pi^- A \to \Pi^- \rho^* A'$ (на ядрах пропан-десоновон смеси), удовлетворяющих кинематике однонуклониюх реализми. На сравнения с данными на нуклонах оценены сечения волимоденствия нерезонансных дишевонных систем ($\Pi^- \Pi^-$) и , $\Pi^- \rho^*$) с нуклоном. Сделан вывод о том, что формирование мевонов с импульсали до нескольких ГоВ/с происходит внутри ядра.

Преврискии (изический институт

Провян 1985

MM-820(47)-55

N.M.AGABABYAH, M.R.ATAYAN, M.G.GRIGORYAN, Zh.E.GRIGORYAN, G.R.GULKANYAN, A.R.KANETSYAN, Zh.K.KARAMYAN, Z.A.KIRAKOSYAN, L.P.KISHINEVSKAYA, S.A.KORCHAGIN

ENVESTIGATION OF INCOHERENT PRODUCTION OF FIGH SYSTEMS IN REACTIONS $\mathfrak{N}^{-} \mathfrak{A} \longrightarrow \mathfrak{N}^{-} \mathfrak{N}^{N$

In the basis of processing the photographs taken from the 1 m propan-freen bubble chamber (faboratory of Luclear Froblens, JLR) irratiated with ~ 5 GeV/c \mathfrak{A}^- -mesons on the JLA synchrophasotron, there are measured cross sections and investigated some characteristics of incoherent reactions $\mathfrak{A}^+ \mathfrak{A}^- \mathfrak{$

Yerevan 1985

І.Введение

Исследование неупругих адрон-ядерных взаимодействий является важным источником информации о механизмах образования адронов. Процессам инклюзивного рождения адронов на атомных ядрах в широком интервале первичных энергий посвящено большое количество работ, в то время как эксклюзивные (полуэксклюзив – ные) каналы рождения нескольких адронов изучены мало, особенно в процессах некогерентного рождения. Практически нет данных о рождении нерезонансных адронных систем.

Данная работа посвящена исследованию реакции

на ядре углерода и на ядрах, входящих в состав пропан-фреоновой смеси, и реакции

на ядрах, эходящих в состав пропан-фреоновой смеси. Цель исследования — экспериментальное определение эффективных чисел нуклонов ядер для реакций

$$\overline{\mathfrak{I}} N \longrightarrow \overline{\mathfrak{I}} \overline{\mathfrak{I}} \overline{\mathfrak{I}} \overline{\mathfrak{I}} \overline{\mathfrak{I}} \overline{\mathfrak{I}} N, \qquad (2a)$$

и извлечение информации о характере вторичных взаимодействий рожденных мезонных систем в ядерном веществе.

Эксперимент выполнен на метровой пузырьковой камере [I] Лаборатории ядерных проблем ОМЯИ, облученной пучками Я⁻ - мезонов на синхрофазотроне ОМЯИ. Импульс первичных пионов в случае пропанового заполнения камеры равен (4,7±0,I)ГэВ/с, в случае пропан-фреонового заполнения (по весу 70% - пропан,30% - фреон) - (5,0±0,I) ГэВ/с. Просмотр стереофотоснимков, отбор, измерение и обсчет событий взаимодействия Я⁻ мезонов в пропане проводились в ЛЯП ОИЯИ и в ЕрФИ. В случае пропан-фреонового заполнения использованы результаты обработки событий в ЕрФИ.

2. Реакция Я-А — Я-Я-А'

Для исследования реакции (I) отбирались события топологии

где $m_p \ge 0$ – число нерелятивистских протонов с $P_p < 750$ МэВ/с, $m_\chi \ge 0$ – число зарегистрированных χ – квантов (события с $m_\chi \ge 1$ используются для оценки фона реакций с рождением \mathfrak{N}° – мезонов); \mathcal{A}'' – означает ядро-остаток и другие продукты развала ядра. При такой выборке событий взаимодействия \mathfrak{N} – мезонов в пропане гопологическое сечение реакций (3) на ядре углерода равно: $\mathfrak{S}_1^{ron}(c) = (5, 4\pm 0, 4)$ мб. Эффективность двукратного просмотра для событий топологии (см. (3)) близка к единице (такая же эффек – гивность при отборе событий, принадлежащих реакциям (1) и (2)

в пропан-фреоновой смеси). События измерялись на полуавтоматических устройствах для обмера снимков (ПУОС-I) [2] и обсчитывались по программе [3] геометрического восстановления событий в пузырьковой камере. Для дальнейшего анализа было отобрано 609 событий, имеющих удовлетворительное качество измерения; нормировочное сечение для данной выборки составляет -

 $G_o = 8,8$ мкб/соб. События, для которых вычисленное значение квадрата четырехимпульса $t = |t_{\pi^- \to (\pi^- \pi^-)}| > 0,5$ (ГэВ/с)² (что для однонуклонной реакции (Ia) соответствовало бы импульсу протона отдачи $P_P > 750$ МэВ/с), исключались из дальнейшего рассмотрения. Исключались также двухлучевые события (не содержащие протонов и "блобов"), удовлетворяющие кинематике реакции рассеяния налетающего пиона на электроне - $\pi^- e^- \to \pi^- e^-$.

На рис.І приведено распределение по квадрату недостающей к системе ($\mathfrak{A}^-\mathfrak{A}^-$) массы MM^2 для оставшихся после текой выборки событий. Наблюдаемый пик в облести $\mathsf{MM}^2 \sim 0.9(\Gamma \mathfrak{sB}/c^2)^2$ соответ ствует квадрату массы нуклона и обусловлен однонуклонной реакцией (Ia). Для выделения канала реакции (Ia) события текже фитировались по программе [4] кинематического анализа. При этом протон отдачи реакции (Ia) не принимался во внимание (IC-фит), так как целью анализа было выделение случаев, где налетающий и вторичные пионы не претерпели внутри ядра вторичных взаимодей ствий, заметно нарушающих (по сравнению с экспериментальными погрешностями) кинематику реакции (Ia). Для эффективного учета ферми-движения нейтрона мишени, в фите импульсу первичного пиона приписывалась дополнительная ошибка ± 200 Кэь/с, соответствующая среднеквадратичному импульсу нейтрона в ядре примерно IOO МэВ/с. События, прошедшие фит по гипотезе (Ia) на уровне достоверности

более 6% (χ^2_{MuH} < 3), показаны на рис.І пунктирной гистоґрам мой. Сплошной линией показана кривая разрешения квадрата недостающей массы со стандартным отклонением 0,4 (ГэВ/с²)², вычисленная с учетом средних погрешностей восстановления импульсов и углов пионов, неопределенности в начальном импульсе и ферми-движелия пуклона мишени. Для оценки сечения реакции рождения дипионной системы на ядре углерода, удовлетворяющей кинематике однонуклонной реакции (Ia), брались события с $\chi^2_{MuH} < 3$ и 0,3< MM^2 I,5 (ГэВ/с²)² – всего 79 событий; при таком обрезании теряется около I3% от истинного числа событий,что учитывается при определении сечения реакции.

Основным источником фона для исследуемого процесса являются реакции рождения 97°- мезонов, имеющие топологию (3) с п_X = 0. Для оценки этого фона анализировались события с Пу > I зарегистрированными Х - квантами. Их принадлежность к событию прове рялась при помощи программы [5] анализа X - квантов, вычислялись их геометрические веса; средняя эффективность регистрации X - квантов, включающая в себя геометрическую эффективность и эфдективность просмотра, в данном эксперименте оказалась равной $\overline{\varepsilon}_{\chi} = 0,16$. Распределение по MM² для событий с $n_{\chi} \ge 1$ показано на рис.1 (заштрихованная гистограмма). Видно, что для фоновых каналов реакций нет выделенности в области MM² ~ m²_N. в интервал 0,3< MM²<1,5 (ГэВ/с²)² поладают 9 событий с $\chi^{2}_{мин} < 3$ и п_X ≥ I. Они составляют часть событий с рождением Я°- мезонов. Если пренебречь процессами рождения трех и более Я°- мезонов, можно оценить верхнюю и нижнюю границы фона в событиях с п_X = 0. Верхняя (нижняя) граница этого фона получается в предположении, что источником Х - квантов являются события с

рождением только одного (двух) \mathfrak{N}^{o} - мезона; таким способом получена оценка величины фона - 15<u>+</u>6 событий. Для сечения одно нуклонной реакции (Ia) на ядре углерода получаем

$$G_{1a}(c) = (0,65 \pm 0,11) MG,$$

где в ошибке учтена также ошибка вычитания фона.

Аналогичным образом определяется сечение однонуклонной реакции (Ia) на ядрах, входящих в состав пропан-фреоновой смеси. Сечение реакций топологии (3), приходящееся на "среднюю" молекулу смеси, найдено равным $\mathfrak{S}_1^{\text{ron}}(\bar{\mathcal{A}}) = (22,8\pm1,6)$ мб. После обсчета отобранных и измеренных событий для дальнейшего анализа оставлено 396 событий, имеющих удовлетворительное качество измерения (нормировочное сечение $\mathfrak{S}_0 = 57$ мкб/соб.). События анализировались ток же, как и в случае пропанового облучения. Для оценки сечения реакции (Ia), $\mathfrak{S}_{1a}(\bar{\mathcal{A}})$, приходящегося на "среднюю" молекулу смеси, брались события с $t < 0.5(\Gamma \mathfrak{PB}/c)^2$ и с $\chi^2_{\rm мым} < 3$ и $0.3 < \mathrm{MM}^2 < \mathrm{I}.5(\Gamma \mathfrak{PB}/c^2)^2$. В указанные интервалы попадают 50 событий с $n_g = 0$ и 8 событий с $n_g > \mathrm{I}.\Phi$ он от реакций с рождением \mathfrak{N}^- мезонов в событиях с $n_g = 0$ составляет 4±2 события (средняя эффективность регистрации χ – квантов в пропан--фреоновой смеси – $\tilde{\mathcal{E}}_{\chi} = 0.33$). Для сечения $\mathfrak{S}_{1a}(\bar{\mathcal{A}})$ получаем:

$\tilde{6}_{1\alpha}(\bar{A}) = (3, I\pm 0, 5) M \delta.$

Для нахождения эффективных чисел нейтронов ядер для реакции (Ia) необходимо провести сравнение с сечением этой реакции на свободном нуклоне. Такие данные при близких начальных импульсах и в области $t < 0.5(\Gamma$ эВ/с)² имеются для сравнительно узкого интервала масс дипионной системы $m_{\pi\pi} < I.5 \Gamma$ эВ/с² [6-8]. Дифференциальное сечение d6/dt на свободном нуклоне имеет выраженный пик [6] в области t < 0,1 (ГэВ/с)², в то время как на ядре такой пик отсутствует (см.рис.2, где для увеличения статистики объединены данные пропанового и пропан-фреонового облучения при $m_{gist} < 1,5$ ГэВ/с²), что связано с влиянием принципа Паули при небольших передачах импульса нуклону в некогерентных процессах. Это влияние практически должно отсутствовать при сравнительно больших передачах t > 0,1 (ГэВ/с²). В связи с этим для дальнейшего анализа были отобраны события реакции (Ia) на ядрах из интервалов $m_{gist} < 1,5$ ГэВ/с² и 0,1 < t < 0,5(ГэВ/с)². Соответствующие сечения оказались равными:

- на ядре углерода

 $S'_{io}(c) = (0, 42 \pm 0, 08) \text{ MO};$

- ча "средней молекуле пропан-фреоновой смеси

 $G_{1}(\bar{A}) = (1, 46 \pm 0, 34) \text{ Md}.$

Сечение $\hat{G}'_{e}(N)$ элементарного акта (Ia) на своеодном нуклоас при указанных кинематических ограниченият (по \hat{t} к по \mathcal{T}_{SIS}) спенивалось на основе данных работ [6-8] при $\mathcal{P}_{e} = 4$ ГэВ/с к 5.8 ТэГ/с и подучено равным $\tilde{G}'_{1a}(N) = 0,24$ мб при $\mathcal{P}_{o} =$ 5.4 ° ГэВ/с и $\tilde{G}'_{1a}(N) = 0,21$ мб при 5 ГэВ/с (зависимость $\hat{G}_{1a}(N)$ от \mathcal{P}_{o} в указанной области импульсов имеет [6-8] вис $\sim \mathcal{P}_{o}^{-2}$, что следует также из доминирования механизма одноияонного обмена для реакции (Ia)). Эфективные числа нейтронов тыс реакции (Ia) равны:

- для ядра углерода

$$N_{1\alpha}(c) = I,73 \pm 0,3I;$$

ъ

-для "средней" молекулы процан-фреоновой омеси

 $N_{10}(\tilde{A}) = 6,9 \pm 1,6$

Выражение для эффективного числа нуклонов для случая некогерентного рождения адрона под малыми углами на ядрах приведено в [9]. Для случая рождения двух адронов на нейтроне ядря эффективное число нейтронов имеет вил:

$$N(\overline{G}_{i},\overline{G}_{f}) = \frac{\mathcal{A}-z}{\mathcal{A}} \int \frac{e^{-\overline{G}_{i}T(B)} - e^{-\overline{G}_{f}T(B)}}{\overline{G}_{f} - \overline{G}_{i}} - d^{2}\overline{\mathcal{B}}, \quad (4)$$

где \mathfrak{S}_{l} - сечение взаимодействия налетающей частицы (Я - мезона) с нуклоном, $\mathfrak{S}_{f} = \mathfrak{S}_{Ri} + \mathfrak{S}_{R2}$ - суммарное сечение взаимодействия вторичных адронов (Я - мезонов) с нуклонами адра; А - атомний вес, \mathbb{Z} - заряд ядра, $\Upsilon(\mathfrak{S}) = \int \rho(\mathfrak{Z},\mathfrak{S}) d\mathfrak{Z}$, где $\rho(\mathfrak{Z},\mathfrak{S})$ - плотность распределения нуклонов в явре (в расчетах для ядра углерода используется плотность, соответствующая осцилляторной волновой функции ядра, цля ядер F , Вг - распределение Вудса-Саксона). Для сечения взаимонействия налетаюнего Л - мезона с нуклоном используется значение $\mathfrak{S}_{\pi N} = 20$ мб [10] я гой части сечения упругого зечения $\mathfrak{S}_{\pi N}^{(m)} = 20$ мб [10] я гой части сечения упругого рассеяния $\Delta \mathfrak{S}_{el}$ [11], кожерая пункодит и мялимому нарушению (применительно и танесар заселе-

Как отмечалось выве, выражение []: Опривельно для отрана малки униов рождения вторичных частит. Одилы – тал сулет исс запо ныез, ово примению также в случяе! когда стри за толого рограется под малими углами в взаимодействует с сеченкам тор чак с естотка сванной слодействание со сеченкам тор

второй пион имеет произвольные значения угла рождения \mathcal{O}_{π_2} и сечения взаимодействия бла Угловые и импульсные распределения лидирующего (обладающего сольшим импульсом) и нелипируюшего (облалающего меньшим импульсом) пионов приведены на рис.3 и 4. Как вилно. лилирующий пион рожнается пол малыми углами. а его импульс лежит в области 2,4 ГэВ/с $\leq P_{si2} < 5$ ГэВ/с, гле сечение пион-нуклонного взаимодействия практически постоянно [10]. [11] и примерно равно сеченив взаимодействия налетакщего пиона: $\tilde{G}_{\pi_1} \approx \tilde{G}_i = 26$ мб. Поэтому, если предположить, что вторичные пионы из реакции (Ia) взаимодействуют в ядре как "обычные", то при помощи выражения (4) можно вычислить ожидаемне эффективные числа нейтронов ядер. При вычислениях эффективные числа N ($\mathfrak{S}_i, \mathfrak{S}_{\pi_1} + \mathfrak{S}_{\pi_2}$) усредняются по сечению \mathfrak{S}_{π_2} взаимодействия нелидирующего пиона в соответствии с его импульсным спектром (рис.4). В зависимости б_{яз} от импульса пиона Р_{яг} < 0,5 ГэВ/с учитывалось также поглощение пиона квази-IDR цейтронными парами. отношение плотности которых к нуклонной плотности варьировалось от единици до двух. и подавленность перезарядки Я-р - Я°п при малых передачах четнрехимпульса $(\leq 0.05 \ \Gamma_{2}B^{2}/c^{2})$ вследствие влияния поинципа Паули. Неточный учет этих, процессов приводит к неопределенности в 6 ;; например, усредненное по спектру нелициру лего пиона сече ние [10], [11] оказалось равным значению $G_{\pi 2} = 22 - 26$ мб, складывающемуся из неупругого сечения $\widetilde{G}_{g_2}^{in} = I4 - I8$ мб и части сечения упругого пион-нуклонного рассеяния $\Delta \overline{6}_{\pi_2}^{el} \approx 8 \text{ мб},$ приводящего к нарушению кинематики исследуемой реакции. Расчетные значения эффективных чисел нейтронов для ядра углерода

IO

и "средней молекулы" смеси оказались равными соответственно $N_{1a}^{pacu}(c) = I,58 - I,62$ и $N_{1a}^{pacu}(\bar{A}) = 5,6 - 5,8$, что находится в согласии с приведенными выше экспериментальными значениями $N_{1a}(c) = I,73 \pm 0,3I$ и $N_{1a}(\bar{A}) = 6,9 \pm I,6$. Этот результат означает, что сделанное выше предположение о том, что вторичные пионы из элементарной реакции (Ia) взаимодействуют в ядерном веществе как "обычные" пионы, не противоречит эксперименту.

Попытаемся теперь определить $\delta_f = \delta_{g_1} + \delta_{g_2}$ из полученных экспериментальных значений эффективных чисел. Для этого необхолимо оценить поправки к выражению (3), связанные с большим утловым разо хосом нелицирующего пиона (рис.3), при произвольных значениях сечений бу, и бу, Для у трощения расчетов эти поправки вычислялись в молели япра с постоянной плотностью. Вычисления проводились для гроизвольных значений б_{ят} и б_{яг} из $G_{f} = G_{\mathfrak{f}1} + G_{\mathfrak{f}2} \leq 90$ мо для экспериментально наблюдаемообласти го распределения по утлу вылета нелицирующего пиона \mathcal{J}_{π_2} .Как показали расчеты, усредненные по 🖓, поправки к выражению (3) зависят от величин и от соотношения сечений $\mathfrak{S}_{\mathfrak{N}_1}$, $\mathfrak{S}_{\mathfrak{N}_2}$ и растут с увеличением $\mathfrak{S}_{f} = \mathfrak{S}_{\mathfrak{F}_{1}} + \mathfrak{S}_{\mathfrak{F}_{2}}$, достигнув при $\mathfrak{S}_{f} = 90$ мб значения + 8% для ядра углерода и + 15% для ядра брома. В частном случае $(G_{II}, = G_{i})$, эти поправки оказываются практически не зависящими (с точностью до нескольких процентов) от ϑ_{π_2} в широком интервале изменения б_{яга}. На рис.5 приведена зависимость эффективных чисел $N(G_i, G_f)$ от $G_f = G_{\mathfrak{f}_1} + G_{\mathfrak{f}_2}$ (при б_і = 26 мб) для ядра углерода и "средней" молекулы пропан-

-фреоновой смеси с учетом поправок при произвольных значени-

IJ

нх \mathfrak{S}_{g_1} , \mathfrak{S}_{g_2} Как видно из рис.5, экспериментально измеренным эффектианым числам нейтронов япра углерода и "средней" молекулы омеся для реакции (Ia) соответствуют значения $\mathfrak{S}_{f} = 43^{+15}_{-13}$ мб; $\mathfrak{S}_{f} = 35^{+26}_{-12}$ мб. Поскольку эти оценки, полученные но независимых экспериментов (ощибки в \mathfrak{S}_{f} в основном связаны со статистическими ощибками), близки, их можно усреднить:

$$\bar{\overline{C}}_{j} = 40^{+15}_{-9} \text{ MS}$$

LINE OF SAL SE, - 148 - 52) NO , ROTOPOE UREDUCTOR D CATHAC, о слу роклежные о слементарном акте (Ia) дось усосло формы-HE CHORE AN AUTOMATIC REPORTED AND A DESCRIPTION OF A DES we to the the second come, in relative of the transfer an su kier and a balance (05 signing) a woronwa ana a a LETTER PROFESSION SETTER REPORT OF A REMARKATION REPORT. -OTE STORE TO STORE AND A AND BALLEN HOLE WATCH THE FOR STO COMPANY COLOR REGENERATE (La) (CN PROUS) MPEBHOZER OF PREMEDE ноор слоговных ядуа углерода, даюжего освовной вилад в анализисуемые чеспериментальние данные). Из наших ланных можно оденить анины праницу параметра м², пользуясь тем, что время формиров тля лидирунцего пнона из реакции (Ia), обладанцего средним Р_{Л1} = 3,6 РэВ/с, по крайней мере не превышает MODAL ALMAN редние расстояния 2. преходимые им в ядре углерода $\ell < \tilde{\ell}_c \approx 3 \ \Phi M$; отсюда получаем $\mu^2 > \overline{P}_{sf} / \tilde{\ell}_c \approx 0.25 \ \Gamma_2 B^2$. Отметим также, что полученная выше оценка $6_{\ell} = 40^{+10}_{-9}$ мс

не противоречит предсказаниям аддитивной кварковой модели [13], в соответствии с которыми после первого акта неупругого взаимодействия лидирующий адрон (пион) взаимодействует в ядре с сечением, равным сечению кварк-нуклонного взаимодействия —

 $G_{\tilde{y}_{1}} \approx G_{q_{N}} \approx 10$ мб, а малоэнергичный пиоч из области фрагментации мишени формируется быстро и взаимодействует с "обычным" пион-нуклонным сечением. Дальнейшие экспериментальные исследования реакций типа (I) при различных энергиях на разных ядрах, обладающие бо́льшей статистической точностью, позволят получить более достоверную информацию о пространственно-временных свойствах процесса адронообразования.

3. Реакция 57-А -- Я-Я-Я+А'

Для исследования реакции (2) на ядрах пропан-фреоновой смеси отбирались события топологии

$$\mathfrak{T} = \mathfrak{T} + \mathfrak{T} +$$

где \Re^+ идентифицированный пион, (\Re^+/P) - неидентифицирован ная положительная частица с минимальной ионизацией; остальные обозначения те же, что и для топологии (3). Событиям с $m_P = I$ могут соответствовать также реакции на водороде, поэтому такие события брались в случае, когда угол вылета протона превышал $\mathscr{O}_P \approx 75^\circ$ (максимальный угол вылета протона в $\Re N$ соударении с тремя пионами в конечном состоянии); при этом теряется "некоторая доля событий на ядрах, которая будет оценена ниже путем специального анализа событий с $\mathscr{O}_P < 75^\circ$ на части статистики. События с $\Pi_X \ge I$ используются для опре-

деления фона от реакций рождения \mathfrak{N}° - мезонов. Для топологии (5) сечение (в дальнейшем изложении будет иметься в виду сечение, приходящееся на "среднию" молекулу смеси) — $\mathfrak{S}_{2}^{\operatorname{топ}} =$ = (106 + 9,5) м.С.

После измерения и обсчета было отобрано 963 собнтий; имершие удовлетворительное качество измерения (нормировочное сечеб. = 0.11 мс/сос.). Распределение по квадрату недоставние пей к системе (Я Я Я) масси привелено на рис.6. Пик в распреление в области $MM^2 \sim 0.9(\Gamma_{2}B/c^2)^2$ соответствует олнонуклонной реакции (2а). Заштрихованная гистограмма показывает распределение по ММ² для событей с Пу > I. События енализировались по программе [4] кинематического авализа. Лля дальнейшего рассмотрения онли отобраны события из области $2.3 \le MM^2 \le 1.5(\Gamma_{2}B/c^2)^2$. IMERIMUE $\chi^2_{MUH} \le 2$ HIR IC -THINOTE-ЭБ $\pi^* N \rightarrow \pi^- \pi^- \pi^+ N$ (события с $\pi_x = 0$ и $\chi^2_{MuH} \leq 2$ показаны на ряс.6 пунктиром). При указанных ограничениях количество событий без зарегистрированных X - квантов - no= 207, а количество событий с одним, двумя, тремя зарегистрированными х -- квантами равно соответственно $n_1 = 50$, $n_2 = 19$, $n_{2} = 6.$ Такая статистика позволяет иля оценки вклада фоновых собнтий Я° - мезонов воспользоваться более точным метос рождением ном, чем это было спелано выше для реакции (Ia) с заметно более ограниченной статистикой событий. Пренебрегая вкладом процессов с рождением трех и более Я° - мезонов. можно написать выражение истинного числа событий No без рождения Я° - ме-SOHOB:

I4

$$N_0 = \Pi_0 - \frac{5}{8} \left(\frac{1-\varepsilon}{\varepsilon} \right) \Pi_1 + \frac{1}{4} \left(\frac{1-\varepsilon}{\varepsilon} \right)^2 \Pi_2 = I64 \pm I8 \text{ cochtrain}$$

($\mathcal{E} = 0,33$ - средняя эффективность регистрации χ - квантов в протон-фреоновой смеси). Соответствущее сечение с учетом примерно I6%-ной потери соонтий из-за обрезания по $\chi^2_{\text{мин}}$ и по MM² равно 2I,4 ± 2,4 мо.

Другим источником фона в исследуемом процессе может служить реакция $\Re^{-n} \rightarrow \Re^{-} \Re^{-} \rho$ с большой передачей импульса протону ($P_{p} > 750$ MaB/c), которая будет иметь топологив (5) с $m_{p} = 0$ и $n_{g} = 0$; кинематический анализ событий с такой топологией показал, что их нилад в исследуемый процесс пренебрежимо мал.

Как отмечалось выше, в однонуклонную реакцию на ядре (2а) могут дать вклад также не включенные в топологию (5) события с $m_{p} = I$ и $\mathcal{V}_{p} < 75^{\circ}$ (события типа "P"). На части статистики такие события анализировались так же, как и события топологии (5); оказалось. что собнтиям типа "Р", удовлетворяниим кинематике однонуклонной реакции без рождения Я° - мезонов, соответствует сечение б ("Р") = II,5 + 2 мб. Часть этих событий относится к реакции Я р - Я Я Я Р на водороде пропан-фреоновой смеси. Используя тот факт, что при 5 ГэВ/с б (Я р -Я-Я-Я+Р) ≈ I,7 мо [I0] и что примерно в 70% [I4, I5] этой реакции протон отдачи имеет Po < 750 МэВ/с, находим её вклад в сечение $\tilde{G}(, P')$, который оказался равным — $\tilde{G}_{H} = 6,5$ мб; таким образом, событиям типа "Р", происпедшим на ядрах без \mathfrak{N}° - мезонов, соответствует сечение $\mathfrak{S}(\mathbb{P}^{\circ}) - \mathfrak{S}_{H} =$ RIHHIKOO = 3 + 2 мб. С учетом этой поправки находим сечение реакции . удовлетворяющей кинематике однонуклонной реакции (2a):

На рис. 7 приведено распределение по эффективной массе $(\mathfrak{A}^*\mathfrak{A}^-)$ для отобранных событий с $\chi^2_{\mathsf{мин}} \leq 2 \mathfrak{n} 0, 3 \leq \mathsf{MM}^2 \leq$ I,5 (ГэВ/с²)². Видно, что в районе $m_{\pi^+\pi^-} \sim 775 \text{ МэВ/с}^2$ имеется заметный пик, обусловленный рождением р°- мезона. Там же приведено распределение по эффективной массе нерезонанской опотемы (Я Я); в этом распределении незаметно никаких особенностей, и оно может быть использовано в качестве фонсвого. Для сценки сечения реакции (26) с рождением р - мезона брались события из интервала $625 \le m_{\pi\pi} \le 925 \text{ МоВ/c}^2$. В этот интервал попадает ISI Я'Я - комоинация (I45 событий) и 86 я я ... - комбинаций (фоновых событий). Вычытая фоновые события. а тахже применяя описанную внше процедуру вичитания фона от реакцый с рохдение» 9° - мезонов, находим истинное число собы**тв** с рокцением ρ° - мезона: N_p = 75 ± 13 ; соответствующее $\hat{O}_{p}(\hat{R}) = II, 2 + I, 9$ Md. сечение

Для нахождения эффективного числа нуклонов для некогерентвой реакции (26) необходимо из $\tilde{0}_{\rho}$ исключить когерентную часть сечения рождения ($\pi^{-}\pi^{-}\pi^{+}$) на ядрах. На рис.8 привевено распределение по эффективной массе $m_{3\pi}$ для событел, удослетворяющих кинематике однонуклонной реакции (2а). Пунктирсм ноказаны события с небольшой передачей квадрата четырехимпульса $|t_{\pi - 3\pi}| < 0, 1 (\Gamma_{2}B/c)^{2}$, а заштрихованной гистограммой среди последних отмечены события с рождением ρ^{2} - мезона и не содержащие протоны или другие признаки развала ядра. Эти события группируются в области масс $m_{3\pi} = 1200 \pm 300 M_{2}B/c^{2}$

и в основном относятся к когерентному рождению \mathcal{A}_1 - мезона. Исключив все события с $(t_{\pi \to 3\pi} | < 0, I(\Gamma_3 B/c)^2$ (при этом устраняется и неопределенность, связанная с влиянием принципа Паули для некогерентных процессов), и, повторив описанную выше процедуру вычитания фоновых процессов, находим искомое сечение некогерентного рождения ρ° - мезона: $\mathcal{G}_{25}(\bar{A}) = 9, 3\pm I, 8$ мб. Соответствующее сечение на нуклоне оцениваем из [I0] с учетом того, что при обрезании $t = |t_{N \to N}| > 0, I(\Gamma_3 B/c)^2$ теряется около 25% [I4-I6] сечения реакций (2a), (2b); усредненное по нейтронам и протонам сечение на нуклоне $\mathcal{G}_{26}(N) \approx 0,7I$ мб (использовались значения сечений $\mathcal{G}(\pi^- n \to \pi^- \pi^- \pi^+ n) = I,I$ мб при $t > 0, I(\Gamma_3 B/c)^2$ и $\mathcal{G}(\pi^- p \to \pi^- \pi^- \pi^+ n) = 0,32$ мб при $0, I \le t \le (.5(\Gamma_3 B/c)^2)$. Эфективное число нуклонов для реакции (2c) при указанных ограничениях равно:

$$N_{2\delta}(\bar{H}) = I3, I \pm 2, 5.$$

На рис.9 приведена вычисленная при помощи формулы (4) (без множителя (A-z)/A) зависимость эффективного числа нуклонов "средней" молекулы пропан-фреоновой смеси для реакции (26) в зависимости от суммарного сечения $\mathcal{G}_{f} = \mathcal{G}_{p} + \mathcal{G}_{\pi}$ взаимодействия конечных мезонов с нуклоном. Заштрихованная область отражает неопределенность, связанную с разбросом углового распределения (см.рис.IO) \mathcal{R}^{-} мезона в реакции (2a) (p° - мезон рождается под малыми углами). Необходимо отметить, что в реакции (26) \mathcal{R}^{-} мезон в более чем половине случаев образуется в результате распада Δ_{33} - изобары [10], импульс которой в рассматриваемой реакции практически не превышает I ГэВ/с [17],

и ее средняя дляна пробега до распада не превышает межнуклонные расстояния в ядре; поэтому эффективное число нуклонов не зависит от сечения ΔN – взаимодействия, а определяется сечениями $\Re N$ и ρN – взаимодействий. Из рис.9 видно, что экспериментально измеренному эффективному числу нуклонов $N_{25}(\bar{A})$ соответствует $\tilde{G}_f = 37^{+19}_{-12}$ мб, что в пределах ошибок согласуется с значением этой величины, вычисленной на основе пион--нуклонных данных [I0][II], усредненных по импульсным спектрам (см.рис.II) пиона и ρ – мезона в реакции (26). Таким образом, полученный результат, как и для реакции (Ia), указывает на то, что в неупругих адрон-ядерных взаимодействиях формирование вторичных мезонов с импульсами до нескольких ГэВ/с происходит внутри ядра.

В заключение, авторы выражают благодарность Ю.А.Будагову за предоставление снимков с метровой пузырьковой камеры ЛЯП ОИЯИ и ленты суммарных результатов Я⁻С – взаимодействий, а также Е.М.Мкртчяну и Л.В.Кузнецову за помещь в работе.

Рис. I Распределение по квадрату недоставщей к системе (л-л-, масси для событий топологии (3) в пропане. Сплошная гистограмма - события с п_g = 0; пунктирная гистограмма - события с п_g = 0 и $\chi^2_{_{MUH}} \leq 3$; заштрихованная гистограмма - события с п_g ≥ I; кривая - кривая разрешения по квадрату недостающей массы

Рис.2 Распределение по величине квадрата переданного четырехимпульса t = |t_{я - яя} | для событий реакции (Ia) на ядрах с m_{яя} < I,5 ГэВ/с²

 Импульсные распределения лидирующего (пунктир) и нелидирующего (сплошная гистограмма) пионов в реакции (Ia) на ядрах с 0,1<t<0,5(ГэВ/с)² и m_{ял}<I,5 Гэь/с²

Рис.5 Зависимость от б_f эффективного числа нейтронов ядра углерода и "средней" молекулы пропан-фреоновой смеси для реакции (Ia)

Рис.6 Распределение по квадрату недсотающей к системе (Я⁻ Я⁻ Я⁺) массы для событий топологии (5) в пропан-фреоновой смеси. Сплошная гистограмма - события с П_g = 0; пунктирная гистограмма - события с П_g = 0 и $\chi^2_{мин} \le 2$; заштрихованная гистограмма - события с П_g ≥ I

Рис.7 Распределение по эффективной массе $\pi^* \pi^-$ (сплошная гистограмма) и $\pi^- \pi^-$ (пунктир) для реакции (2а) на ядрах

۰.

Рис.8 Распределение по эффективной массе ($\Re - \Re - \Re^+$) для реакции (2а) на ядрах. Сплошная инстограмма – все соонтия; пунктир – события с $|t_{\pi \to s\pi}| < C_{s}I(\Gamma_{2}B/c)^{2}$; заштрихованная гистограмма – события реакция (26) (с рождением g^2 – мезона) с $|t_{\pi \to s\pi}| < C_{s}I(\Gamma_{2}B/c)^{2}$. че содержащие протоны отдачи или признами развала пара

Рис. 9 Зависимость от б_f эффективного числа нуклонов "средней" молекулы пропан-фреоновой смеси для реакции (26)

Рис. IC Угловне распределения 9° - мезона (пунктир) и Я⁻ мезона (сплошная гистограмма) в реакции (26) на ядрах

Рис. II Импульсные распределения 9° - мезона (пунктир) к Я[°] - мезона (сплонная гистограмма) в реакции (26) на ядрах

СПИСОК ЛИТЕРАТУРЫ

- I. Богомолов А.В., Будагов Ю.А., Василенко А.Т. и др. Метровая пузырьковая камера в магнитном поле. ПТЭ, 1964, № I, с.6I.
- 2. Алмазов В.Я., Голутвин И.А., Инкин В.Ю. и др. Полуавтоматическая установка ПУ для автоматизации измерений камерных снимков. ОИЯИ-1952, Дубна,1963.
- Маркова Н.Ф., Мороз В.Н., Никитина В.И. и др. Программа геометрической реконструкции для больших пузырьковых камер. ОИЯИ, PIO-3768, Дубна, 1968.
- Иванченко З.М., Лукьянцев А.Ф., Макаренкова А.Д. и др. Программа идентификации каналов реакций. ОИЯИ, P-II-3983, Дубна, 1968.
- 5. Виноградов В.Б., Иванов В.Г., Яноутова Л. и др. Программа идентификации ∨° - частиц и γ - ква̀нтов. ОИЯИ-2613, Дубна, 1966.
- Aderholz M., Bondar L., Brauneck W. et al. M⁺ρ interac tion at 4 GeV/c. Phys.Rev., 1965, <u>138</u>, B897.
- Prukop J.P., Sander O.R., Poirier J.A. et al. 9⁺9⁺- 9⁺9⁺ scattering below 0.7 GeV from 9⁺P⁻⁻9⁺9⁺9⁺1 at 5 GeV/c. Phys.Rev., 1974, <u>D10</u>, 2055.
- Cohen D., Ferbel T., Slattery P., Werner B. Study of MM scattering in the isotopic spin-2 channel.Phys.Rev.<u>D7</u>,661, 1973.
- Kölbig K.S., Margolis B. Particle production in nuclei and unstable particle cross-section. Nucl. Phys., 1968, <u>B6</u>, 85.

- IO. Flaminio V., Moorhead W.G., Morrison D.R.O., Rivoire N. Compilation of cross-section. I: Il and I - induced reactions. CERN/HERA 83-01, 1983.
- II. Bracci E., Burichetti C., Droulez J.P. et al., Compilation of differencial cross section N -induced reactions. CERN/ HERA 75-2, 1975.
- 12. Шабельский Ю.М. Процесси множественного рождения в адрон--ядерных соударениях при высоких энергиях ЭЧАЯ, 1981, т. 12, с. 1070.
- 13. Анисович В.В., Кобринский М.Н., Нири Ю., Шабельский Ю.М. Аддитивная кварковая модель и процессы множественного рождения адронов УФН, 1984, т.144, с.553.
- 14. Galloway K.F., Mott J.E., Alyea E.D. et al. π⁻p --π⁻π⁻π⁻π⁺p reaction at 6 GeV/c. Phys.Rev., 1970, D1, 3077.
- Bonder L., Bongartz K., Burmeister H. et al. π⁻P interection at 4 GeV/c. Nuovo Cim., 1964, <u>31</u>, 485.
- 16. Slattery P., Kraybill H., Forman B., BFerbel T. A study of resonance production in 7 GeV/c $\pi^+\rho$ -interaction. Nuovo Cim., 1967, 50A, 377.
- 17. Pols C.L., Schotanus D.J., Toet D.Z. et al. Study of cross sections and spin-density matrix elements in 5 GeV/c St+P four-pronges interactions., Nucl. Phys., 1970, <u>B25</u>, 109.

Рукопись поступила 12 люня 1985 г.

Н.М.АГАБАБНН, М.Р.АТАЯН, Ж.Б.ГРИГОРЯН, Н.Г.ГРИГОРЯН,

Г.Р.ГУЛКАНЯН, А.Р.КАНЕЦЯН, Ж.К.КАРАМЯН, Л.П.КИШИНЕВСКАЯ,

З.А.КИРАКОСЯН, С.А.КОРЧАТИН

исследование некогерентного рождения пионных систем в реакциях п⁻А-л⁻п⁻А' и п⁻А-л⁻п⁻л⁻Л' на ядрах при 5 Гэв/с

Редактор Л.П.Мукаян Гехнический редактор А.С.Абрамян

Подписано в печать I4/X-85г. Офсетная печать.Уч.иэд.л. I,5 Зак.тип.№ 450 ВФ- 09027 Формат 60х84/16 Тираж 299 экз.Ц.22 к. Индекс 3624

Отпечатано в Ереванском физическом институте Ереван-36, Маркаряна 2 индекс 3624

: