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ABSTRACT 

We study the finite size effect on the momentum distribution 
ntk) of an ensemble of A non-interacting fermions enclosed in 
a box. Analytical expressions are obtained in the two limi
ting cases | — » 1 and -r—«1 (kr being the Fermi momentum). 

K p K p r -•-
It allows us to analyze the convergence of n(k) toward the 
standard step function in the infinite medium. Applying oû r 
results to the nuclear case, we compare the changes in n(k) 
generated by the finite size of actual nuclei to there due 
to short range correlations. Both effects are shown to be of 
same order of magnitude. The next step should be to take in
to account the short range correlationsdirectly in finite 
systems. 

1. INTRODUCTION 
The nuclear interaction is responsible for the departure of 

the actual distribution of momentum in the nuclei n(k) from the 
step function limit 9 (k-k.-) (case of the uncorreldted nuclear 
matter). In first approximation the effect of the interaction 
can be divided into two parts i) a selfconsistent average field ; 
ii) the short range correlations (SCR). In a further simplification 
one can i) mock up the average field by confining non-interacting 
nucléons inside a Hill and Wheeler box of length a and ii) simulate 
the SCK by replacing the point particles by hard spheres of core 
radius c. By doing so, one can get analytical expansions of n(k), 
the small parameters being respectively (ak^.)" and ck f. In this work 
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we will first calculate n <t) for free point particles in a box, 

then derive simple expressions in the two limiting cases -r—«1 and 
k F 

r — » 1. The structure of our formulae resembles that of Belyakov 

[i] who has calculated n(kï for a gas of hard spheres j we are then 

able to compare, the role of the finiteness of the nuclei to that of 

the finiteness of the nucléons. 

2. BACKGROUND AND NOTATIONS 

The particles move freely inside an infinite cube potential 

well. The individual wave functions are 

"'ton - H^^K^ 
(pa(x) = y-| sin Ti | x 0 < x < a (1) 

<p.(x) = 0 . otherwise 

Like in the r-space, the Fourier transform of the wave functions can 

be factori2ed. Therefore the momentum distribution is 

P<*>= E i?<* x>r i * m

( k z ) | ' i w i * • <2> 
Jc, ui,n 

In the ground state, the summation entering (2) runs for H,m and 

n positive integers , with the condition H* + m 1 + n* < N. 

N and E (the energy of the A particles of the system) are related 

by 

' E ' S 7 ^ <l» <-'•..'> (3) 
a limn 

The energy of the last particle being — !,. N, j t } s natural to 
2m a 

define the Fermi momentum by 

Let us now relate N to the number of states A (we assume one 

particle for each state). Eq.(3) identifies A with the number of 



points of integer coordinates inside the octant of the sphere of 

radius /N. For large N 

A * 1 | * (/N)> . (5) 

The precise counting is known as the lattice remainder problem [2] 

and surface and curvature terms can be obtained. 

To deal with dimensionless quantities we Introduce K = -r— 
(K will stand for [ < |) and replace p (k) by n{<) = ̂ —— where 

P = ( -fjTZj.) • In. the thermodynamic limit ïa and A °+ r a with 

a finite matter density) 

nU) =1 K < 1 
= 0 K > 1 (6) 

3. RESULTS 

We are interested in understanding how n(<) tends to its 

limit (6). For sake of simplicity let us explain the calculation 

when < = 0. In that case, it is easy to show that 

| ? J , ( P ) | ! 4a 1 

0 

Therefore n( 0) reduces to (-rr)J £ -

odd. The result is 

L — — - (Jr>' !" 
*-" t'm'n* 8 L 

H odd 

£ even (7) 

with £,m and n being 

IF V N 

One cannot derive compact formula for any K , but in the two limiting 

cases ic « 1 and ic >> 1. After some straightforward if tedious 

calculations one can write, up to first order in (ak.-) and K* 

n< K ) = 1 - ̂  (ak,-)"1 (1 + | K ' ) < « 1 (8) 

For K >> 1, the distribution is highly anisotropic (and depends 

on the shape of the potential). For instance, in the cube, 



n(Ki = (f) 5 jfe [n (akp)-1]^ T K- "y"*?* 
K » 1 
q 
q=1,2|3 

(9) 

FIG.1 - n( K ) as function of K in the cubic case (A=26). 
The full line corresponds to K = K = K = ~ L 1 the 
dashed line to K = K = — and K =0, tne dotted 

y z -Tz * 
line to K = K = 0 and K = K . The approximation (8) 
is represented by the crosses. 

£j. DISCUSSION 

4.1 Role of the shape of the infinite well 
We have replaced the cubic shaped domain by 3 parallelepipedic 

or a spherical one and shown that n(0) is still given by eq. (8) 
provided that the size of the cube, a, is replaced by 6<r (V and 
5 are the volume and the surface of the box). Therefore we believe 
that eq.(8) holds for K - 0 irrespective of the shape of the domain. 
Now for large values of < , the behaviour of n( K ) is strongly 
affected by the shape of the potential. In contrast to the cubic 
case, for instance, in a spherical potential (all magnetic substates 
being filled) n( K ) is spherical symmetric and decreases to zero 
like J j . 



4.2 Role of the depth of the potential 
We have obtained analytical formulae in the case of a finite 

square potential in one dimension. As expected, if the well is 
far from being filled, the situation resembles that of the infinite 
case. Now when ail the bound states are occupied, n{< ) shows large 
shell oscillations and, on the average, n(0) increases while the 
plateau for K < 1 is decreasing more rapidly. ft'e believe that 
the same trend remains true in 3 dimensions. 

5. COMPARISON WITH THE EFFECTS DUE TO THE SCR 
The momentum distribution has been calculated by Belyakov [1] 

in a gas of hard spheres. By expanding his "formula up to the first 
order, one finds 

nC< <) * 1 - -^y- Q.kO (ckp)1 [1 + 1,07 K 2] K « 1 (10) 

v is the spin-isospin degeneracy (v = 4 for symmetric nuclear 
matter) which plays here a key role. 

In the nuclear case ckF ~ 0.7 and (ak.-)~ varies from 0.12 
to 0.052 from A = 16 to A = 106. From eqs.(8) and (10) one sees 
that both finite size effects are of the same order of magnitude. 

Concerning the energy per particle, for point particles in a 
box 

- ^ = 1 * l ' ^ r ' " 1 •••• <"> 
(E/A)o

 6 * 

for the hard sphere gas 

E/A . . 10 , c kF , v- 1 (E/A) 3 (12) 

3 IS' «here <£/*>„ = f jfc kf . 

Although similar, both formulae have different meanings : the 
first corrective term of (12) is generated by the (pseudo) potential, 
whereas it is of course of kinetic origin in eq. ( 11 ). In the 



infinite medium the SCR produce an increase of 75 X of the energy 
while in nuclei the finite size effect on E/A varies from 29 * 
to 12 % from light to heavy nuclei. 

Despite its schematic character, our study can help disentangle 
the various effects entering the actual n(k) ; i) the finite size 
effect smoothly varying w.'th A, ii) the shell effects caused by 
the filling of the orbits, iii) the SCR effects. An interesting 
extension of this work is to consider SCR directly in finite system 
within - the same framework, using the technique of the pseudo 
potential [3]. 
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