FR 860 2469

PNO-ARE -- 83-28.



1PNO-D3E.33-13

8"/EC DECAY OF <sup>181</sup>Au : Y-BAY IDENTIFICATION

5. Brazangs-Gill, C. Bourgerts, V. Kilthee,
G. Parot, M.G. Forqueell. S. Roueslöre,
J. Seavage-Lotestion and the
ISOCELE Collaboration.

Institut de Physique Suchhies, Stalt Gesey, Statos <sup>\*</sup>Contro de Fisica Nuclear, 1609 118506, Portagoi <sup>\*\*</sup>Centro de Spacicométrie Nucléair, se lo Spectrométrie na Massa, 9406 docar, France.

UNIVERSITÉ PARIS SUD

LABORATOIRE ASSOCIÉ A L'IN2 P3 institut de physique nucléaire

IPNO-DRE.83-28

3<sup>+</sup>/EC DECAY OF <sup>131</sup>Au : Y-RAY IDENTIFICATION

F. Bragança-Gil<sup>\*</sup>, C. Bourgeois, P. Kilcher,
G. Parot, M.G. Porquet<sup>\*\*</sup>, B. Roussière,
J. Sauvage-Letessier and the
ISOCELE Collaboration.

Institut de Physique Nucléaire, 91406 Orsay, France <sup>+</sup>Centro de Fisica Nuclear, 1699 LISBOA, Portugal <sup>++</sup>Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91406 Orsay, France.  $\beta^+$ /EC DECAY OF <sup>101</sup>Au :  $\gamma$ -RAY IDENTIFICATION

F. Bragança-Gil<sup>+</sup>, C. Bourgeois, P. Kilcher, G. Parot, M.G. Porquet<sup>++</sup>, B. Roussière, J. Sauvage-Letessier, and the ISOCELE Collaboration

Institut de Physique Nucléaire, 91406 ORSAY, FRANCE \* Centro de Fisica Nuclear, 1699 LISBOA, PORTUGAL \*\* Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91406 ORSAY, FRANCE

The  $\beta^+/EC$  decay of <sup>131</sup>Au has been studied with mass separated sources from the ISOCELE facility. Main  $\gamma$ -rays which belong to the <sup>131</sup>Au + <sup>181</sup>Pt decay have been identified from X- $\gamma$  coincidence measurements. A rotational band built on the 1/2 - [521] Nilsson state has been developed up to the 7/2<sup>-</sup> state in <sup>131</sup>Pt.

-

## I. INTRODUCTION

The nuclei of platinum have been studied emensively (1-8) and a shape transition has been found for A = 186.<sup>145</sup>Pt corresponds indeed to a prolateshaped nucleus, whereas <sup>187</sup>Pt seems to correspond to an oblate-shaped one. However some phenomena observed in this transitional region are not yet well understood : the existence of very converted transitions in <sup>187</sup>Pt (8), <sup>137</sup>Au (9), <sup>185</sup>Au (10,11), <sup>193,195,197</sup>Hg (12, 13) for example. So we have extended the study of the platinum nuclei down to the very neutron-deficient isotopes. The present work is the first step of the study of the  $\beta^+/EC$ decay of <sup>181</sup>Au. Gold isotopes were produced by Pt(p,xn)Au reactions,then mass-separated using the ISOCELE II facility at Orsay. X- $\gamma$  coincidence measurements allowed us to clearly attribute twenty four  $\gamma$ -rays to the <sup>131</sup>Au + <sup>131</sup>Pt decay.

Such results can also be very useful to identify the <sup>131</sup>Au or <sup>191</sup>Pt nuclei produced by (HI,xn) reactions.

## 2. EXPERIMENTAL PROCEDURE

7

A thick target of molten Pt-B alloy was bombarded by a 200 MeV proton beam from the Orsay synchrocyclotron in order to produce gold nuclei via Pt(p,xn)Au reactions.

The proton beam intensity was 2.5  $\mu$ A. The target was placed inside the high-temperature ion source (14) of the ISOCELE II isotope separator (15). The mass-separated gold ions were collected on a mylar/aluminium tape and then carried to the counting station using a fast mechanical tape-transport system.

Singles gamma-rays were measured with a planar Ge(HP) X-ray detector (0.6 keV FWHM resolution at 122 keV) and a 12 % efficiency coaxial Ge(HP) detector (2 keV FWHM resolution at 1.33 MeV). The energy ranges were from 4 keV to 400 keV and from 30 keV to 1500 keV respectively. The X- $\gamma$ -t coincidence data were simultaneously recorded event by event on magnetic tapes. The experimental data were analysed off-line on the Orsay IBM 138-370 computer. The coincidence events have been treated in order to get prompt coincidence bidimensional matrix. The coincidence spectra shown in Fig. 1 were obtained by setting 2 keV gates on  $K_{\alpha}$  X-rays e.g. from 60 to 70 keV. Collecting and counting times were 5 s per source and the data were accumulated for ten hours.

## 3. EXPERIMENTAL RESULTS AND DISCUSSION

-

Energies and intensities of  $\gamma$ -rays deduced from the  $\gamma$  and X spectra are listed in table 1 together with the coincidence results. Twenty three  $\gamma$ -rays can be clearly ascribed to the <sup>101</sup>Au  $\rightarrow$  <sup>101</sup>Pt decay.

· 2 -

In spite of lack of intensity for the 159.4 keV  $\gamma$ -line observed in coincidence with K<sub>α</sub> X-rays of Pt (see fig. 1), we can attribute this transition to the <sup>181</sup>Au + <sup>181</sup>Pt decay because the 40.5 keV  $\gamma$ -line has been observed in coincidence with the 118.9 keV  $\gamma$ -line and the sum 40.5 + 118.9 corresponds to 159.4 keV. This fact suggests a rather long lifetime for the state which decays by both the 159.4 keV transition and the 40.5 - 118.9 keV cascade.

The studies of the  $\alpha$  decay of the mercury isotopes allowed E. Hagberg et al (16) to propose level schemes for  $^{177, 179, 191}$ Pt and to identify the  $1/2^-$  [521] state and the  $3/2^-$ ,  $5/2^-$  rotational states built on it. Recently we have studied the  $8^+/EC$  decay of  $^{135}Au$  (17) and  $^{183}Au$  (18), and identified the  $1/2^-$  [521] rotational band built on the isomeric state of  $^{165}$ Pt and on the ground state of  $^{163}$ Pt. The results obtained in the present work support the previous identification of the 5/2, 3/2, and 1/2 states of the  $1/2^-$  [521] band in  $^{161}$ Pt and allow us to propose the additional 7/2  $1/2^-$  [521] state. The systematic of the  $1/2^-$  [521] rotational band through the platinum isotopes is shown in figure 2. The stability observed indicates clearly that all the  $^{177-235}$ Pt isotopes correspond to prolate-shaped nuclei contrary to the heavier platinum isotopes.

## REFERENCES

- 1) M. Finger et al., Nucl. Phys. A188(1972)269
- 2) V. Berg, Thesis Orsay (1976)
- 3) M.A. Deleplanque et al., coll. de la Société Française de Physique, DIJON (1975); J. de Phys. C5 36(1975)97
- 4) C. Bourgeois et al., 3rd Int. Conf. on nuclei far from stability CARGESE (1976); CERN 76-13, p. 456
- 5) J. Kalifa, G. Berrier-Ronsin, G. Rotbard, M. Vergnes, J. Vernotte and R. Seltz, Phys. Rev. C22 (1980)997
- 6) M. Piiparinen, J-C Cunnane, P.J. Daly, C.L. Dors, F.H. Bernthal, and T.L. Khoo, Phys. Rev. Lett. 34(1975)1110
- A. Visvanathan, E.F.Zganjar, J.L. Wood, R.W. Fink, L.L. Riedinger and F.E. Turner; Phys. Rev. C 19(1979)282
   B.E. Gnade, R.W. Fink, J.L. Wood; Nucl. Phys. A 406(1983)29
- 8) A. Ben Braham et al., Nucl. Phys. A 332(1979)397
- 9) E.F. Zganjar, J.D. Cole, J.L. Wood and M.A. Grimm, 4th Int. Conf. on nuclei far from stability, HELSINGOR (1981), CERN 81-09 p. 630
- 10) C. Bourgeois, M.G. Desthuilliers-Porquet, P. Kilcher, B. Roussière, J. Sauvage-Letessier and the Isocèle collaboration, 4 th Int. Conf. on nuclei far from stability, HELSINGOR (1981), CERN 81-09 p. 618
- 11) C. Bourgeois, P. Kilcher, B. Roussière, J. Sauvage-Letessier, M.G. Porquet and the ISOCELE Collaboration, Nucl. Phys. A386(1982)308
- 12) G.M. Gowdy, Ph.D. thesis, School of Chemistry, Georgia Institute of Technology (1976)
- 13) G.M. Gowdy, J.L. Wood and R. Fink, Nucl. Phys. A312(1978)56
- 14) J.C. Putaux et al. 10<sup>th</sup> EMIS Conf., ZINAL (1980); Nucl. Instr. 186(1981)321
- 15) P. Paris et al. 10<sup>th</sup> EMIS Conf., ZINAL (1980); Nucl. Instr. 186(1981)91

=

- 16) E. Hagberg, P.G. Hansen, P. Hornshoj, B. Jonson, S. Mattsson, P. Tidemand-Petersse The ISOLDE collaboration, Nucl. Phys. A 318(1979)29
- 17) B. Roussière, C. Bourgeois, P. Kilcher, M.G. Porquet, J. Sauvage-Letessier, Annuaire IPN Orsay (1983) DRE
- 18) C. Bourgeois, P. Kilcher, M.I. Macias-Marques, M.G. Porquet, B. Roussière, J. Sauvage-Letessier, C.Schück, Annuaire IPN Orsay (1982) DRE, E82.

Table caption

1

الأراميا المتحسين

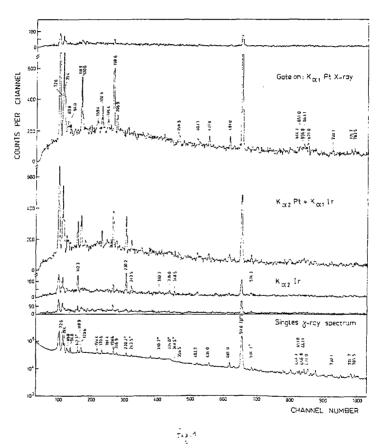
.

. . .

<u>Table 1</u>: Gamma-ray data for the decay of <sup>181</sup>Au (collecting and counting times, for <sup>181</sup>Au sources, were 5 s)

note : - energy error ≦ 0.3 keV - intensity error ~ 10 %

Ļ


Figure captions

- <u>Fig. 1</u>: Coincidence spectra (2 keV gates from 60 to 70 keV) and singles  $\gamma$ -ray spectrum. + indicates  $\gamma$ -lines which belong to the  $1^{81}Pt + 1^{81}Ir$  decay.
- Fig. 2 : The systematic of the rotational band built on the 1/2<sup>-</sup> [521] state. Data were taken from ref. 16 (<sup>177,179,181</sup>Pt), this work (<sup>101</sup>Pt), ref. 18 (<sup>183</sup>Pt), and ref. 17 (<sup>185</sup>Pt). Dashed line indicates transition not observed experimentally. Numbers in parentheses are y-line intensities.

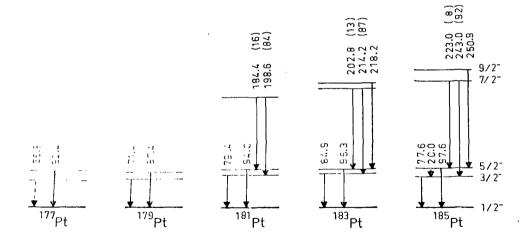

| ENERGY<br>(keV) | ly<br>relative | MAIN COINCIDENCES     |              |                 | Ιγ       | MAIN COINCIDENCES     |        |
|-----------------|----------------|-----------------------|--------------|-----------------|----------|-----------------------|--------|
|                 |                | K <sub>α</sub> X-rays | y-rays       | ENERGY<br>(keV) | relative | K <sub>a</sub> X-rays | γ-rays |
| 40.5            | 15             | Pt                    | 118.9 .      | 431.0           | 45       | Pt                    |        |
| 49.9            | 23             | Pt                    | 120.6, 431.0 | 481.0           | 74       | Pt                    |        |
| 72.0            | ~ 15           | Pt                    | 120.6        | 491.8           | 2.3      |                       |        |
| 79.4            | 8-1            | Pt                    | 198.6        | 534.3           | 42       | Ir                    |        |
| 87.7            | 10             |                       |              | 542.3           | 24       |                       |        |
| 89.8            | 13             | Pt                    |              | 556.4           | 20       |                       |        |
| 94.0            | 56             | Pt                    |              | 591.4           | 14       |                       |        |
| 112.3           | 23             | Ir                    | 230,2        | 611.0           | 41       |                       |        |
| 118.9           | 23             | Pt                    | 40.5         | 615.2           | 27       |                       |        |
| 120.6           | 43             | Pt                    | 49.9         | 629.3           | 58       |                       |        |
| 1.18.6          | 10             |                       | ļ            | 644.3           | 40       | Pt                    |        |
| 159.4           | 55             | (Pt)                  |              | 651.0           | 44       | Pt                    |        |
| 170.6           | 38             | Pt                    |              | 656.8           | 48       | (Pt)                  |        |
| 184.4           | 19             | Pt                    | 94.0         | 663.1           | 72       | Pt                    |        |
| 198.6           | 100            | Pt                    | 79.4         | 671.0           | 84       | Pt                    |        |
| 206.9           | 26             | Pt                    |              | 679.0           | 29       | 1                     |        |
| 230.2           | 36             | Ir                    | 112.3        | 689.7           | 72       |                       |        |
| 243.5           | 2:1            | Ir                    |              | 710.1           | 29       |                       |        |
| 289.4           | 35             |                       |              | 721.0           | 20       | l                     |        |
| 310.2           | 23             | Ir                    |              | 730.1           | 23       | Pt                    |        |
| 328.9           | 4              |                       |              | 750.6           | 29       |                       |        |
| 332.3           | b              |                       |              | 756.4           | 15       |                       |        |
| 336.0           | 6              | Ir                    |              | 767.6           | 26       |                       |        |
| 348.5           | 8              | lr                    |              | 774.7           | 61       | Pt                    |        |
| 358.5           | 13             | Pt                    | Ì            | 783,5           | 48       | Pt                    |        |
| 402.7           | · 15           | Pt                    |              | · •             |          |                       |        |

TABLE 1

1



Ę



×

fig z

40 P

j