ФЭИ-1554

ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

Г. М. БЕЖАНОВ, Е. С. МАТАСЕВИЧ, А. А. ДАБИНИИ. А. М. ВОЛОШЕНКО, В. М. РОМАНОВ. М. Ю. ЗАНИЕВ. В. А. ДЕМЕНКОВ, В. К. ДАРУГА

Исследование временной эволюции спектров нейтронов утечки с поверхности молибденовой сферы в наносекундной области

УДК 539.125.5+539.17

С

Г. М. Бежунов, Е. С. Матусевич, А. А. Дубинин, А. М. Волощенко. В. М. Романов. М. Ю. Зайцев, В. А. Деменков, В. К. Даруга.

Исследование временной эволюции снектров нейтронов утечки с поверхности молибденовой сферы в наносекундной области.

ФЭИ-1554 Обнинск: ФЭИ, 1984. - 30 с.

Обассана методака экспераментального неследования временной эзолюгие нейтр жему спектров в среде в напосекундной области при ввете нии соротного нейтронного импулься с использованием калифорниевой камеом в качестве статистического импульсного источника нейтронов и многоданального анализатора в режиме многомерного анализа.

Приведены результаты исследования нестационарных сиектров нейтронол утечки с поверхности молибленовой сферы в лианазоне энергий испройов 10,5 ± 0,4 МэВ во временном интервале 0 ± 130 ис. Результаты эусперимента дзются в сравнении с расчетом по книетической программе РОЗ-В.1 с использованием групновых нейтронных констаит БНАБ в области энергий нейтронов 2,5+0,4 МэВ наблюдается существенное разл'язов результатов расчетов и эксперимента Предиолагается, что набл'олземое различие связано с недостоверностью констаит неупругого разлевиеть нейтронов для молиблена в использованной библиотеке Исследование области быстрых переходных процессов при введении короткого импульса нейтронов в среду представляет интерес при решении ряда практических задач.

Введение временной координаты существенно усложнлет процесс нахождения решения уравнения Болыцмана в сравнении со стационарным случаем, что вынуждает в большинстве случаев использовать достаточно простые приближения. Справедливость таких приближений может быть обоснована лишь сопоставлением с экспериментами, выполненными в условиях, максимально приближенных к расчетным. Такое сопоставление упрощается, например, при проведении экспериментов в одномерной геометрии с гомогенной средой и источником, спектр нейтронов которого хорошо известен.

В настоящее время наиболее впрокое практическое применение среди численных методов решения нестационарного уравнения переноса нейтронов получили методики, основанные на диффузионном приближении в силу его простоты [1,2,3]. Однако, в ряде работ, посвященных епробации расчетных методик решения нестационарных задач путём сравнения с экспериментом, отмечается неудовлетворительное описание нестационарного спектра нейтронов в некоторых временных интервалах [1,3,4]. Такой факт стимулируст использование более строгих приближений при расчёте. В свою очередь, развитие расчётных методов для решения нестационарных задач требует от экспериментов получения более детальной информации. Следует отметить, что большинство экспериментов по изучению нейтронной кинетики в наносекундной области ограничивается представлением времейного поведения интегральных по энергии функционалов от нейтронного потока, измеренных детектором с неизменяемой и часто нерегулярной энергетической зависимостью эффективности регистрации нейтронов.

В работе [5] приведены результаты эксрерниентального исследования нейтронной кинетики в сфере из обедненного урана диаметром 51 см в широком временном диалазоне после введения в центр сферы нейтронного импульса длительностью 5 + 7 нс. В качестве импульсного источника нейтронов использовался ускоритель заряженных частиц. В измерениях, выполненных полупроводниковым детектором с фольгами из 235 U Ħ ²³⁷ND, регистрировалось изменение скорости делений ²³⁵U и 237 Nn во времени внутри сферы на различных расстояниях от центра. Измеренные скорости делений являются сверткой плотности потока нейтронов с сечением деления. Приведенные в [5] результаты свидетельствуют о сложном характере зависимости плотности потока нейтронов от времени и пространства. В работе [I] приводятся результаты обсчёта указанного эксперимента по двум системам нейтронных констант. Расчёты проведены по предложенной методике репения нестационарного диффузионного уравнения переноса нейтронов методом мнимых источников с использованием преобразования Фурье-Лапласа. Автор [1] делает вывод об удовлетворительном согласии эксперимента и расчёта по определению временных эквисимостей скорости делений 235

за исключением начального участка процесса, и значительном различии расчета и эксперимента по определению временной зависимости скорости делений ²³⁷ Np . Отсутствие детальных экспериментальных данных по временной эволюции нейтронного спектра в среде не позволяет проанализировать возможные причины такого расхождения. Одной из причин предполагается пренебрежение в расчёте делениями, вызвенными нейтронами, не испытавшими столкновений с ядрами среды или испытавшими одно-два столкновения. что следует из сути дифрузионного приближения.

Авторы работы [4] приводят результаты исследования нейтронной кинетики в наносекундной области в сфере из обедненного урана диаметром 20 см с использованием методики порогового детектора. В качестве импульсного источника нейтронов использовалась калифорниевая камера с регистрацией единичных актов деления ядер 252 (1 . Регистрания нейтронов утечки с поверхности сферы осуществлялась сцинтилляционным детектором. Значения энергетических порогов регистрации нейтронов устанавливались с использованием дискриминатора нижнего уровня импульсов с фотоэлектронного умножителя. С использованием процедуры, основанной на методе счетных эффективностей детектора, получены групповые спектры нейтронов утечки. Результаты эксперимента сравниваются с расчётом в диффузионном многогрупповом приближения по программе, описанной в [2] . Указывается на заметное различне расчёта и эксперимента в области больших времён для всех энергетических порогов регистрации нейтронов и некоторое различие в начальной области процесса для малых энергетических порогов регистрации. Делается вывод о

-3-

необходимости использования в аналогичных расчётах более высоких приближений.

Автором работы [3] выполнены измерения временной эволоции плотности нейтронного потока в железном параллелепипеде с использованием внешнего детектора нейтронов на основе пластического сцинтиллятора с различными зависимостями эфективности детектора от энергии нейтронов. Эффективность изменялась установкой дискриминаторов верхнего и нижнего уровней импульсов, снимаемых с фотоэлектронного умножителя (ФЭУ). Сложная зависимость эффективности регистрации нейтронов от энергии не позволяет в этом случае получить надёжную детальную информацию об эволюции спектра регистрируемых детектором нейтронов для адекватного сравнения с расчётом. В качестве импульсного источника использовался помещенный в центр сборки стационарный источник нейтронов деления ²⁵² (f единичные акты деления которого регистрирова-X - квантов при делении ядра 202 С лись по испусканию пластическим сцинтиплятором, размещённым вблизи источника. Сложности в получение результатов с использованием данной методики вносят высокий коррелированный фон от регистрации нейтронов, образуемых в незарегистрированных делениях, а также фон от запуска детектора, регистрирующего деления,

Х - квантами от неупругого рассеяния нейтронов на ядрах исследуемой среды, который не может быть учтён сравнительно простым способом. Результаты эксперимента сравниваются с расчётом, основанным на решении многогруппового диффузионного уравнения методом временных шагов, а также с расчётами, реализующими метод обратного преобразования Фурье-Лапятса для решения многогруппового диффузионного уравнения [1]. Отмечается существенное различие эксперимента и расчёта с использованием метода временных шагев для начального участка нестационарного процесса после нейтронного импульса и удовлетворительное совпадение расчётного и экспериментального наклонов участка спада плотности потока нейтронов утечки спустя некоторое время после импульса (20 ÷ 50 нс). Насборот, расчет методом, предложенным в [1], лучше воспроизводит начальный участок процесса, но заметно отличается от эксперимента в области больших времён. Неполная адекватность условий расчёта и эксперимента, а также отсутствие детальной экспериментальной информации об зволюции спектра регистрируемых нейтронов не позволяет проанализировать источники указанных различий расчётов и эксперимента.

Экспериментальные результаты по исследованию процесса нестационарного переноса нейтронов, приведенные в работе [6], получены аналогичным описан. ому в работе [3] методом за тем исключением, что зависимость эффективности регистрации от энергии нейтронов изменялась путём изменения высокого напряжения, подаваемого на ФЭУ, а получаємые при этом эффективности взаимно не нормировались. Методика такого изменения эффективности регистрации нейтронов ещё бодее усложняет возможность адекватного сравнения расчётов с экспериментом и, следовательно, затрудняет анализ результатов, что отмечают и сами авторы.

Проведение экспериментов по получению информации о процессе переноса нейтронов в среде, развернутой как во времени, так и по энергия, с одной стороны, и использование расчетных методик, основшаных на достаточно стратих приближениях, с другой сторона, позволяют не только детально

-5--

проверять расчётную методику, но и дают возможность получения развернутой информации для анализа групповых сечений взаимодействия нейтронов с ядрами. Такая информация, по сравнению с получаемой в стациснарных экспериментах, является более подробной, что позволяет внделить отдельные участки временного поведения нейтронного потока в среде с характерными для них процессами взаимодействия. Наглядно отмеченное обстоятельство можно проиллострировать на примере сред, в которых сечение деления равно нулю. Так, начальный участок нестационарного нейтронного процесса в конечной неразмножающей среде без эффективного замедлителя карактеризуется, в основном, утечкой нейтронов из системы и их неупругим замедлением. С увеличением времени роль неупругих расселний уменьшается в связи с быстрым уводом нейтронов под эффективный порог сечения неупругого рассеяния и, одновременно, увеличивается роль упругих столкновений и поглощений, если сечение поглощения достаточно велико или размеры среды много больше средней длины свободного пробега нейтронов. Такой характер нестационарного процесса был отмечен в работе 5 даже для такого материала, как 238() , характеризующегося сравнительно низким порогом сечения неупругого рассеяния и некоторым вкладом в кинетику процесса делений на быстрых нейтронах.

Следует отметить, что, как показывает анализ опубликованных работ, в исследованиях нестационарных спектров нейтронов в среде полезная информация для провержи нейтронных групповых констант может быть получена при использовании значительно меньшего количества исследуемого матернада в сравнении с измерениями стационарных нейтронных

-6-

спектров. В измерениях стационарных спектров за счёт интегрирования во времени при малых толщинах исследуемого материала существенным оказывается вклад в получаемые результаты нопровзаимодействовавших со средой нейтронов и нейтронов, испытавших малое число столкновений. В измерениях нестационарных спектров регистрация нейтронов, испытавших малое число взаимодействий с ядрами среды, и нейтронов, провзаимодействовавших значительное число раз и, следовательно, накопивших информацию о нейтронных сечениях материала, разнесена во времени. В то же время в измерениях стационарных групповых нейтронных спектров значения плотности потока нейтронов утечки в каждой группе і имеют существенную зависимость не только от нейтронных сечений для данной группы, но и от сечений в вышележащих группах

 $i \in E_i > E_i$), что усложняет анализ причин расхождения расчёта и эксперимента в общем случае. В измерениях нестационарных спектров нейтронов утечки для каждой группы может быть выделен временной интервал $t > t^n$, где изменение плотности потока нейтронов в группе определяется практически лишь сечениями в данной группе, поскольку плотность потока нейтронов в выпележащих группах спадает быстрее во времени вследствие большей скорости нейтронов и, часто, большего сечения увода при неупругом рассеянии.

Следует также отметить, что при исследовании нейтронной кинетики в среде информацию о процессе можно также получать в измерениях временной эволюции спектров испускаемых средой у - квантов, т.к. плотности вероятности регистрации у - квантов от неупругих рассеяний нейтроное

-7-

на ядрах среды, Х - квантов собственно нейтронного источника и Х - квантов от захвата нейтронов в исследуемом материала имеют максимумы, располоденные при существенно различных временах от момента нейтронного импульса.

В настоящей работе опизывается методика экспериментального исследования временной эволюции нейтронных спектров в среде с импульсным источником нейтронов спектра деления . Приведены результаты экспериментального исследования нестационарного нейтронного процесса в наносекунаной области в сфере из молибдена с калифорниевой камерой в качестве импульсного источника нейтронов. Измерения выполнены с использованием спектрометра нейтронов на основе кристалла стильбена. Экспериментальные энергетические распределения плотности потока нейтронов утечки с поверхности сферы приведены в абсолютных единицах для диапазона энергий 10.5 + 0.4 МоВ. Результаты эксперимента дартся в сравнении с расчетом по кинетической программе, основанной на модифи-)Sn - методе решения уравнений переноса излу-INDOBAHHOM чений и реализурдей численный метод для временной координаты

Экспериментальная установка

Взаимное расположение молибденовой сферы, камеры деления со слоем ²⁵² и сцинтилляционного детектора нейтронов показано на рис.1. Сфера и детектор размещались на лёгком измерительном столе. Камера деления со слоем ²⁵² (ј помецалась в центр сферы, заполненной порошком молибдена природного изотопного состава плотностью 2,51 ± 0,03 г/см³.

ţ

-8-

Состав порошка молибдена приведен в таблице І.

ТАБЛИЦА І.

Эленент	1	Mo	:	0+H ₂ 0	:	W	:	Fe	:Осталь- ные
Содержания, лд. %	13	99, 0	:	€0,7	:	±0,2	:	∉0,I	:*0,06

Состав молибленового поровка, % яд.

В качастве временной отметки момента испускания н ... тронов при делений ядра 252 С_{f} использовался сигная с камеры деления со слоем 252 С_{f} на одном из электродов. Мешелектродное расстояние плоской ионизационной камеры составляло 0,1 ом, давление смеси аргона + CO_2 , наполнявией камеру, равнялось 0,22 МПа, потенциал между пластинамивлектродами 500В, при этом фронт токового импульса составляя 1,3 х 10⁻⁸с.

В качестве нейтронного детектора использовался однокристалльний сцинтилялционный спектрометр нейтронов с кристаляом стильбена Ø 40 мм и высотой IO мм.

методика проведения измерений

Блок-схема измерительной системы представлена на рис.2. В измерительных трактах использовались блоки быстрой электроники "Вектор". Исключение составили: блок ПУ-быстрый токовый предусилитель, выполненный по схеме, приведенной в [7]; блок ШІА, обеспечивающий передачу двумерного массива в память внализатора; блок ДІС - дискриминатор - - формирователь с привязкой к постоянной доле фронта, выполненный по схеме [8]; блок ПВА - разработанный для проведения измерений преобразователь "время-амплитуда" высокой стабильности, реализующий старт-стопный режим регистрации временных интервалов между импульсами с временным разрешением не хуже 0,5 °10⁻⁹с в интервале ~ 99% рабочего диапазона.

Токовый импульс от регистрации деления в камере с фронтом ~13 нс усиливается быстрым предусилителем ПУ и подаётся на дискриминатор-формирователь с временной привязкой к постоянной доле фронта ДПС. Сформированный сигнал длительностью - - 6 нс задерживается кабельной линией задержки ЛЗ и служит сигналом "стоп" для блока преобразователя "время-амплитуда" ПВА. Сигналом "старт" для ПВА служит сформированный по аналогичной цепочке импульс от фронта токового импульса с 10-го динода ФЭУ, возникающего при Х - кванта или нейтрона. регистрации сцинтиллятором Используемая инверсная схема включения позволяет существенно уменьшить загрузку ПВА сигналами "старт" и тем самым исключить перегрузки системы. Одновременно с 6-го динода ФЭУ через эмиттерный повторитель подаётся импульс на спектрометрический усилитель БУС2-97, формируется и задерживается пассивной линией задержки ЛЗ на ~ І мкс. Линейные ворота ЛВ запускаются сигналом блока ДПС и запредают поступление импульсов на вход БПА2-97, если одновременно на вход ПВА не подаётся стартовый сигнал. Сигнал управления для обоих блоков преобразователей БПА2-97 и БПА2-95 формируется с использованием схемы дискриминации Х -хвантов.

подобной [9]. Техим образом, одновременно на вход анахиватора УЮ-4096 поступают код времени между делением в калифорниевой камере и моментом регистрации нейтрона в сцинтияляторе и код амплитуды светового импульса от регистрации данного нейтрона. Память анализатора разбивается на 16 плоскостей по 256 каналов. Запись в определённую плоскость определяется кодом времени, а запись в определенный канал данной плоскости - кодом амплитуды импульса. В результате единичного измерения получаются амплитудные распределения импульсов от регистрации нейтронов утечки с поверхности срады для 16-ти временных интервалов, ширина которых задаётся системой ПВА - БПА2-95.

<u>Временное разрешение</u>. Реализуемое временное разрешение с использованием приведенной схемы, определлемое по ширине регистрируемого χ - пика мгновенных χ - квантов деления $\frac{252}{6}$ на полувысоте, составляет 3,1 нс и 2,3 нс при порогах регистрации по электронам отдачи 20кэВ и IOOкэВ соответственно. На рис.3 приведено аппаратурное распределение χ - квантов и нейтронов деления $\frac{252}{6}$ с при расположении камеры и сцинтиллятора в воздухе на расстоянии 42 см с эффективным порогом регистрации нейтронов Π = 0,20 ± 0,05 МэВ.

На основании реализуемого временного разрешения выбиралась длительность временного интервала плоскости анализатора. В большинстве измерений ширина временной плоскости составляла 3,13 ± 0,04 нс. В ряде измерений ширина плоскости составила 1,54 ± 0,02 нс и 6,28 ± 0,08 нс. Эначених времени, соответствующие центру конкретной временной

:, -ÎI- плоскости, определяются из выражения

$$\pm \kappa = \Delta \pm (N_{Muk} - N_k) + \frac{\gamma}{2}$$
, He

где

 △t - ширина временной плоскости, нс
 Nnuk - номер плоскости, в которую регистрируется пик мгновенных X - квантов деления ²⁵² Сf
 NK - номер рассматриваемой плоскости
 2 - расстояние между камерой и детектором, см
 С - скорость света в воздухе, см/нс

<u>Дискриминация у - квантов</u>. Подавление незначительного сопутствующего у - фона проводилось с использованием схемы дискрими::ации, сходной с [9].

Следует отметить, что регистрация ў - излучения собственно деления ²⁵² С_f, составлящего основной вклад в ў - фон, приходится на первые ~ 5 нс с момента деления и, таким образом, не совпадает во времени с регистрацией нейтронов даже больших энергий. Дополнительно для подавления низкознергетического ў - излучения детектор окружался свинцовым чехлом толщиной 0,3 см. Таким образом, в этих условиях фон ў - излучения оказался пренебрежимо мал.

Восстановление спектров нейтронов. Восстановление нейтриных спектров по аппаратурным распределениям импульсов каждой временной плоскости проводилось по известной методике сглаживающего диференцирования. Экспериментальные спектры нейтронов сворачивались по энергии в группи БНАБ [10] для удобства сравнения с расчётом.

Фон нейтронов. В данных измерениях составляющими нейтронного фона являются а) нейтроны, рассеянные на стенах помецения, воздухе и материале детектора, б) нейтроны, образуринеся в делениях, не совпадающих с регистрируемым (явление рецикличности). Фон от нейтронов, рассеянных на стенах помещения, при выбранной геометрии (рис.1) приходится на времена, больше интрвала регистрации процесса. Так, нейтрон с энергией IO МэВ, замедлившийся за I столкновение на ближайшей рассенвающей поверхности до 0,8 МвВ, может достигнуть детектора яких спустя ~150 нс после деления ядра ²⁵²C4 . Фон от нейтронов, расселнных на воздухе и матернале детектора, пренебрежимо мал. Таким образом, наибольвий вклад в нейтронный фон, приходящийся на временной интервал измерений, дают нейтроны, связанные с явлением рецикличности. Характер распределения указанного фона во времени можно получить следующим образом. Вероятность того, что деление в камере не произойдет в интервале (0, t). определяется в соответствии с распределением Пуассона:

 $p(0,t) = e^{-d \cdot t}$, где

- число делений в камере в единицу времени.
В качестве начала отсчёта выберем момент произвольного деления. Тогда вероятность того, что следующее деление произойдет в указанном интервале

 $1 - p(0,t) = 1 - e^{-Jt}$

Вероятность того, что деление произойдёт в интервале (t,t+At) в момент t при At t, можно подучить вычитанием вероятностей деления в интервале (Dit+At) в (0 t)

-13-

$$1 - e^{-J(l \cdot ht)} - (1 - e^{-Jt}) = e^{-Jt}(1 - e^{-Jht})$$

Таким образом, в предположении малого вклада многократных наложений делений в интервале измерений фон нейтронов от делений, несовпадающих с регистрируемыми по каналу "стоп", имеет экспоненциальный характер во времени с постоянной спада, определяемой скоростью делений в камере. Поскольку временной интервал регистрации процесса составляет ~0,01 от среднего интервала между делениями в камере. указанный фон должен быть практически постоянным в исследуемом временном интервале. Для его количественного определения были проведены измерения спектров регистрируемых нейтронов в указанном энергетическом диалазоне до времени t = 180 нс. где практически все регистрируемые нейтроны обусловлены фоном. Как и ожидалось, фон в каждой энергетической группе оказался постоянным в пределах экспериментальных погремностей. Значения фона, усредненные для каждой группы по соответствующим временным интервалам, экстраполировались на начало процесса и вычитались из получаемых в эксперимен те распределений $\Psi(E, t)$ для каждой группы.

МЕТОДИКА ПРОБЕДЕНИЯ РАСЧЕТОВ

Расчет временного рэспределения поля излучения от импульсного источника проводился по программе РОЗ-В. I [II]

Кратко, реализованный в РОЗ-В.І алгорити, применительно к случаю нестационарного уравнения переноса в сферической геометрии:

$$\frac{\chi^{2}}{\upsilon_{7}} \frac{\partial \Psi}{\partial t} + M \frac{\partial}{\partial z} (\chi^{2} \Psi^{9}(\chi, M, t)] + \chi^{2}_{\partial M} [(1 - M^{2}) \Psi^{9}(\chi, M, t)] + (1)$$

$$+ \delta^{9}_{t} \chi^{2} \Psi^{9}(\chi, M, t) = \chi^{2} S^{9}(\chi, M, t) \qquad (1)$$

$$M = \cos \theta = (\bar{\chi} \bar{n}_{\tau}) \in [-1, +1], \quad 0 \in \chi_{0} < \chi < \chi_{n}, t > 0, \quad g = 1, ..., 0$$

$$rge \quad U_{g} - rpynnoban cropoctb нейтронов, \quad S^{9}(\chi_{1,M}, t) -$$
интеграл расселния сводится к следующему. Для разностной аппроксимеции (1) используется адаптивная DS_{n} - схема. Опуская целые индексы и используя стандартные обозначения (см., например, [12]), запишем её для внутренних ячеек в виде:

$$\frac{V}{\Delta t v} (\Psi_{s+v_2} - \Psi_{s-v_2}) + [M] (A^{\dagger} \Psi^{\dagger} - A \overline{\Psi}) + \frac{C}{\omega} (d_{m+v_2} \Psi_{m+v_2}) - d_{m-v_2} \Psi_{m-v_2} + \delta V \Psi = VS$$
(2)

$$d_{m+1/2} - d_{m-1/2} = -w_m M_m, \quad d_{1/2} = d_{M+1/2} = 0$$

$$\begin{split} \Psi_{m+1/2} &= (1+P_1)\Psi - P_1\Psi_{m-1/2} \\ \Psi^* &= (1+\overline{P}_2)\Psi - P_2\Psi^- \qquad 0 \leq P_1, P_2, P_3 \leq 1 \quad (3) \\ \Psi_{s+1/2} &= (1+P_3)\Psi - P_3\Psi_{s-1/2} \end{split}$$

Здесь

٠

· · ·

$$\Psi^{\pm} = \begin{cases} \Psi_{i\pm 1/2}, M > 0 \\ \Psi_{i\pm 1/2}, M < 0 \end{cases}; \qquad A^{\pm} = \begin{cases} Z_{i\pm 1/2}^{2}, M > 0 \\ Z_{i\pm 1/2}^{2}, M < 0 \end{cases}$$

$$\Psi = \Psi_{i,m,s} = \frac{1}{V_{i}\Delta t_{s}} \int_{x_{i}-y_{2}}^{x_{i}+y_{2}} \int_{t_{s}-y_{2}}^{t_{s}+y_{2}} \int_{Mm-y_{2}}^{Mm+y_{2}} \Psi(z,M,t)$$

$$S_{i,M,S} = \frac{1}{V_{i}\Delta t_{s}} \int_{z_{i}-y_{2}}^{z_{i}+y_{2}} \int_{t_{s}-y_{2}}^{t_{s}+y_{2}} \int_{M_{m}-y_{2}}^{y_{m}+y_{2}} S(z, M, t)$$

Выбор весов Рів (3) в адаптивной) S_н – схеме производится следующим образом. Вначале ячейка расчитывается по алмазной схеме. Затем последовательно проверяется малость величин

$$\mathcal{T}_{t} = \left| \frac{\Psi_{s-1/2} - \Psi}{\Psi} \right|$$
$$\mathcal{T}_{z} = \left| \frac{\Psi^{-} - \Psi}{\Psi} \right|, \quad \mathcal{T}_{fM} = \left| \frac{\Psi_{m-1/2} - \Psi}{\Psi} \right| \quad (4)$$

Если оказалось, что какая-либо из этих величин больше $\mathcal{V}_0 = I/2$, (например, \mathcal{V}_1) ячейка пересчитывается по взвешенной схеме с весом $\mathcal{P}_3 = \mathcal{P}(\mathcal{V}_1) = \frac{1}{2\mathcal{V}_1}$. Затем производится новая проверка малости \mathcal{V}_1 , \mathcal{V}_M Коррекция по 7 и \mathcal{M} производитсь энаястично, но в качестве функции \mathcal{P} используется

$$\widetilde{P}(\mathcal{V},\delta) = \frac{(1-\delta)\mathcal{V}}{\mathcal{V}^2 - \delta\mathcal{V} + 1/4} \subset \widetilde{\mathcal{H}}_{z} = \frac{A^+}{A^+ + A^-}, \ \widetilde{\mathcal{H}}_{y} = \frac{d_{y} + 1/2}{d_{y} + d_{y} + d_{y} + d_{y}}$$
(5)

Данный выбор функций P(U), $\tilde{P}(V,\tilde{b})$ приводит к положительной схеме с улучшенными свойствами монотонности по переменным \mathcal{Z} и \mathcal{M} и с повышенной монотонизацией по переменной t. Расчет нерассеянной компоненты излучения $\Psi_0^{a}(\mathcal{T}_{i}, \mathcal{M}_{m}, t_{s})$ от импульсного точечного изотропного источника

 $\frac{F^{9}}{4\pi\tau^{2}}\delta(\tau)\delta(t)$

в РОЗ-В.І производится по явной формуле:

1

$$\begin{split} \Psi_{0}^{g}(z_{i},\mu_{m},t_{s}) &\cong \frac{F^{g}\varrho^{-\int_{0}^{z_{i}} \int_{t}^{g}(z) dz}{4\pi z_{i}^{2}} \delta(1-\mu) \frac{1}{\Delta E_{g}}. \\ \cdot \int_{E_{g}}^{E_{g}-1} dE \frac{1}{V_{i}} \int_{z_{i}-y_{2}}^{z_{i}+y_{2}} dz \frac{1}{\Delta t_{s}} \int_{z_{s}-y_{2}}^{z_{s}+y_{2}} dt \delta[t-\frac{z}{v(E)}] \end{split}$$
(6)

Для нейтронов

$$\mathcal{U}(E) = I.38227 \sqrt{E (M_BB)}, (CM/Hc)$$

ДЛЯ Гемма - Квантов

U(E) = 29.97925 cm/Hc = Const

В РОЗ-В.І реализована согласованная с DS_n - методом схема ускорения внутренних итераций, использующая две мультипликативные поправки. При этом в качестве начального приближения для S -ого временного шага используется решение, полученное на предылущем S - I-ом временном шаге.

На фронте излучения в РОЗ-В.І используется движущееся граничное условие, которое состоит в следующем. Перед фроктом излучения экстраполированный поток по пространственной переменной (с сохранением баланса частиц) полагается равным нулю $\Psi^+ = 0$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспериментальные и расчётные результаты исследования временной эволюции спектров нейтронов утечки с поверхности молибденовой сферы представлены на рис.4,5. Групповые плотности потока нейтронов в энергетическом диапазоне 0,4+10,5 Мав приведены для временного интервала 0 + 130 нс.

Показанные экспериментальные погрешности для плотности потока нейтронов в группах включают сильно изменяющурся в зависимости от энергии нейтрона статистическую погрешность (2 + 60%), погрешность калибровочных характеристик спектрометра (< 6%), погрешность определения временной длительности отдельной плоскости анализатора Δt ($\leq 1.5\%$). погрешность в определении расстояния 2 между источником и детектором (< 1,3%). Приводимые значения погрешностей, равные одному стандартному отклонению 🖒 . получены в предположении независимости результатов в соседних плоскостях анализатора. Реально значения $\Psi(E, t)$ в соседних плоскостях имеют некоторую взаимную корреляцию вследствие конечного временного разрешения системы, что может приводить к уменьшению взаимного разброса значений Ф(E.t). наблюдаемого в единичном измерении. О повторяемости результатов восстановления плотности потока нейтронов в отцельных измерениях можно косвенно судить по разбросу получаесых абсолютных значений $\Phi(E, t)$ в различных измерентах, отличающихся энергетической растяжкой шкалы анализатора ("жесткал" и "мягкал"), шириной временной плоскости At и N пин (рис.5, группа 4). Погрен-Х - пика положением ность временной привлзки к моченту деления в отдельном измерении не превышает I+ 1,5 нс.

Из сравнения приведенных на рис.4,5 результатов эксперимента и расчёта можно видеть, в целом, удовлетворительное описание в расчёте характера временной эволюции спектров нейтронов утечки. Результаты эксперимента и расчёта для 1+3 групп (2,5 \leq E \leq IO,5 МэВ) совпадают в пределах экспериментальных погрешностей практически во всём исследованном диапазоне времени. При этом нужно отметить, что плотность потока нейтронов изменяется в широких пределах (на три порядка). В то же время значения Ф(E, L) для 5-ой и особенно 4-ой групп (0,8 $\leq E \leq 2,5$ МэВ) в расчёте спадают заметно быстрее во времени по сравнению с экспериментом. Такой факт, по -видимому, обусловлен недостаточно верным представлением соотношения сечений неупругого и упругого рассеяния в данной области энергий в использованной библиотеке нейтронных констант Мо. Интегральные по времени значения расчётной и экспериментальной плотности потока нейтронов для указанных групп совпадают в пределах нескольких процентов, что, по-вадимому, свидетельствует о большей чувствительности рассматриваемого метода к нейтронным констр: кам исследуемой среды по сравнению с измерением стационарного спектра нейтронов утечки.

Расчётные и экспериментальные значения $\Psi(E, t)$ для шестой энергетической группы (C,4 \leq E \leq 0,8 M3B) в интервале времени 40 \leq t \leq I30 нс совпадают в пределах погрешности эксперимента. При этом происходит изменение плотности потока нейтронов данной группы на три порядка. Однако, начальный участок регистрации 30 \leq t \leq 40 нс нейтронов рассматриваемой группы в расчёте характеризуется заметно большим, по сравнению с экспериментом, значением плотности потока нейтронов и большей скоростьв её изменения. При этом скорость изменения величины $\Psi(E,t)$ в расчёте для данной группы на начальном участке заметно больше скорости изменения $\Psi(E,t)$ в остальном временном интервале и близка к скорости спада $\Psi(E,t)$ в предыдущих группах. Начальный временной интервал регистрации нейтронов данной группы жарактеризуется значительным

вкладом в величину $\mathcal{P}(E,t)$ нейтронов, замедлившихся в результате неупругого рассеяния на ядрах Но из области энергий вышележащих групп. Плотность вероятности регистрации нейтронов. образующихся в результате таких взаимодействий. очевидно, смещена к начальному временному интервалу регистрации нейтронов с энергией, соответствующей шестой прупие, поскольку до акта неупругого рассеяния данные нейтроны инсли большую скорость и, следовательно, меньшее среднее время до вылета из сферы. Таким образом, можно предположить, что указанное различие расчёта и эксперимента в 6-ой группе обусловлено недостаточно точным описанием процесса замедления нейтронов при неупрутом рассеянии на япрах Мо в использованной библиотеке констант для области энергий Е п 🜫 0.8 МэВ. Интегральные по времени плотности потока нейтронов для данной группы в расчёте и эксперименте отянчаются незначительно (< 10%), что, по-видимому, также свидетельствует о большей чувствительности рассматриваемого метода к нейтронным сечениям среды по сравнению с исследованием стационарных спектров.

На основании экспериментельно - расчётных исследований стационарных спектров нейтронов утечки с поверхности, молибденовых призм [13] и, позднее, молибденовой сферы

[14] авторами названных работ показан факт недостоверности нейтронных констант Мо в библиотеках БНАБ и соответственно для определения трансформации нейтронного спектра источника при распространении нейтронов в молибдене.

В работе [I3] показано, что расчетная плотность потока утекающих с поверхности больших молибденовых призм нейтронов, полученная с использованием группового транспортного приближения и библиотеки констант БНАБ, завыкается по

-21-

сраьжению с экспериментом для области энергий нейтронов 0.2 5 En S I.2 Мав. Аналогичный факт отмечен авторами работы [14] при использовании библиотеки ENDF/B-TV B расчете плотности потока нейтронов, утекающих с поверхности большой молибденовой сферы в сравнении с экспериментом для диалазона энергий 0,2 5 En = I,5 МэВ и особенно для $E_n > 0.5$ MaB. B to ke BDEMR B [14] обращается внимание на достаточно хорожее совпадение эксперимента с JENDL-1 расчётом, использующим библиотеку констант Авторы [14] предполагают, что указанный факт объясняется тем, что матрица неупругого рассеяния нейтронов в библиотеке JENDL - I для Мо составлена на основе учёта 99 дискретных уровней отдельных изотопов Мо в отличие от непрерывного распределения в аналогичной матрице библиотеки и, следовательно, в расчётах с использованием ENDF/R-IV библиотеки JENDL - I более достоверно описывается процесс неупругого рассеяния нейтронов на ядрах Мо.

Полученные в настоящей работе результаты с использованиом значительно меньшего количества исследуемого материала по сравнению с [I3] и [I4] согласуются с результатами, приведенными в [I3] и [I4], а анализ причин различия расчёта и эксперимента по определению временной эколюции групповых плотностей потока нейтронов позволяет проводить более детальную проверку используемых в расчёте нейтронных констант исследуемого материала.

вывод.

1. Разработана методика исследования временной эволюции нейтронных спектров в наносекундной области при введении короткого нейтронного импульса в изучаемую среду. Предложена экспериментальная схема с использованием калифорниевой камеры в качестве статистического импульсного источника нейтронов и многоканального анализатора в режиме многомерного анализа.

2: Проведены исследования временной эволюции групповых опектров нейтронов утечки с поверхности молибденовой сферы в диапазоне энергий нейтронов 0,4 \leq En \leq 10,5 МэВ и временном интервале 0 $< t \leq$ 130 нс после введения в центральную область сферы короткого импульса нейтронов.

3. Сравнение результатов эксперимента и расчёта по кинетической программе РОЗ.ВІ с использованием библиотеки нейтронных констант ЕНАЕ показывает, в целом, согласие в пределах погрешности эксперимента за исключением области энергии нейтронов 2,5 > E > 0,4 МэВ на отдельных временных интервалах, где различие расчёта и эксперимента достигает 40 + 60% (3 + 5 6). Наблюдаемые различия расчёта и эксперимента в определении временной эволюции групповых плотностей потока нейтронов, по – видимому, объясняются недостаточно точным представлением констант неупругого рассеяния нейтронов молибденом и, в частности, матрицы переходов при неупругих рассеяниях в указанной библиотеке.

4. Предложенная экспериментальная методика может быть использована как для проверки различных программ расчетов нестационарных процессов в конечных средах при введении нейтронного импульса, так и для корректировки нейтронных констант материалов, причём высокая чувствитель-ность метода к варьироваь... нейтронных констант позволяет проводить проверку констант с использованием меньшего количества материала в сравнении с методом исследования стационарных нейтронных спектров, а анализ результатов позволяет получать более детальную информацию о достовер-ности констант, используемых в расчёте.

В заключение авторы, пользуясь случаем, выражают благодарность В.И.Регушевскому и А.Ф.Баландину за большую помощь в проведении экспериментов, А.М.Цибуле и В.И.Голубеву за пол_зные обсуждения.

ЛИТЕРАТУРА

- I. Y. Gotoh. Analysis of Dieaway Experiments in a Uranium-238 Sphere. J. Nucl. Sci. Technol., IO(10), pp. 619+625 (1973).
- В.Е.Колесов, О.И.Макаров. Методы численного решения одномерных и двумерных нестационарных уравнений диффузии нейтронов в применения к расчёту импульсных экспериментов. Препринт ФЭИ - 822, 1976.
- 3. O. Aizawa. Dieaway Measurements of Fast Neutrons in Iron assembly using Californium-252. J. Nucl. Sci. Technol., 12 (8).pp. 4614465 (1975).
- 4. В.М.Романов, Е.С.Матусевич, О.И.Макаров и др. Исследование нейтронной кинетики в наносекундной области в сфере из обедненного урана. Препринт ФЭИ - 1282, 1982.
- 5. T. Gozani, Experimental Neutron Kinetic Studies in a ²³⁸U Sphere, Nucl. Sci. Eng. 36, pp. 143+156 (1969).
- 6. E. Takeda. Bull. Tokyo Ist. of Technol. # 116, 1, pp. 1+10 (1973).
- В.Н. Кононов, А.А.Метлев, Е.Д.Полетаев, D.С.Прокопец. Быстродействующая ионизационная камера деления. ПТЭ, №6, стр. 51, 1969.

8. В.А.Григорьев,В.А.Каплин, Е.Ф.Макянев, D.В.Сплавник. Формирователь временной отметки. ПТЭ №1, стр.93, 1981.

-25-

- 9. T. D. Brooks. a Scintillation Counter with Neutron and Gamma-Ray Discriminators. Nucl. Instrum and Methods. 4, pp.151+163 (1959).
- Групповые константы для расчета ядерных реакторов.
 М., Атомиздат, 1964. Авт. Л.П.Абагян, Н.О.Базазянц,
 И.И.Бондаренко, М.Н. Николаев.
- II. А.М.Волоценко. РОЗ В.І программа для решения нестационарного уравнения переноса нейтронов и гамма-квантов методом дискретнъх ординат в одномерных геометриях. Инструкция ИПМ АН СССР, М., 1983.
- 12. А.М.Волощенко. О решении уравнения переноса) S_n методом в гетерогенных средах. Часть 2. Одномерные сферическая и цилиндрическая геометрии. В сб. "Численное решение уравнения переноса в одномерных задачах". Под редакцией Т.А.Гермогеновой, ИТМ АН СССР, М., 1981, стр. 64+91.
- IЗ. Г.М.Бежунов, В.С.Волков, А.К.Кременецкий. Исследование спектров утечки нейтронов и гамма-квантов с поверхности модибденовых призм. Препринт ФЭИ - I3I4, 1982.
- 14. T. Mori, H. Nishinara et al. Measurements and Analysis of Neutron Spectrum in a Molybdenum Pile. J. Nucl. Sci. Technol. 18, 6, pp. 427+437, (1982).

Рис.І. Геометрия эксперименть.

- ()- камера деления со слоем ²⁵² (f (2)- сфера из порошка молибдена в
 - аламиниевой оболочке внешний дивистром 31,3см
- Э- сцинтилляционный детектор.

Размеры в им.

тида"; 1- усилитель инпульсов; 7- кристили стильбена; 8- фотоэлектронный умножитель; 9- схема компен-I- камерь деления со слоем ²⁵²Сf ; 2- оыстрый токовый предусилитель; 3- дискриминатор-формирователь тация тамил-квантов; 10- дискриминатор; II- тенератор импульсов; I2, I5- преобразователь вмпаитуды в -NEUMA-RNDIA цифровск кол; 13- спектромстрический усидитель: 14- динейные ворота; 16- многоканальный анализатор. 5- npeoopasobarenb с висичном признакой к постоянной доле фронта; 4- линия задержки;

Рис. 3. Распределение во времени регистрируемых импульсов от гамма-квантов и нейтронов деления калифорния-252.

-28-

- 30 -

· Технический редактор Н.П.Герасимова.

Подписано	кп	ечати	21.04.	1984	г.	TC98	£6 Io	phar	60x90 1/1/	,
Ојсетная	печа	ть Ус	л.п.л.	2	Уч . -	лзд.л.	I,3	Тарэж	TI3 SES.	
-		Цена	1 20 RC	п.	4 JI-]	1554	індекс	3624	700	

Отпечатано на ротзпринте 10И, г.Осниноч.

20 коп.

Индекс 3624

.

•

- 241

Исследование временной эволюции спектров нейтронов утечки с поверхности молябденовой сферы в наносекундной области. ФЭИ-1554, 1984, 1-30.