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A b s t r a c t

Henorn-.ftliEatior. of the coefficient» of the "effective range

ex.'-arjeion'* in considered for the short—range Coulomb ргоЫ'т.» I t

is chov.T- v.-;r.t the coefficient at A in th«? С -th partial

vnve contn/ns a lo^nrithraic singularity C o /л ^O/O.0 Li tf& £»

Chi» f ir/r-ilari^y lr universal, i . e . ie inc^(>m3pr.t of details of

strong interaction. The exactly eolvable P-O<3O1 of th<? Coulomb plus

short rwige potential is considered» Kxnct eolutione ere corr-firrd

vit'-i nr»pro""irr.aitions frequently used in the theory of h&cronie etome.
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I, The calculation of Coulomb corrections to low-energy

scattering parameters (scattering length d
g
 , effective range

2> etc*} ie important for applications and has numerous lite-

rature - see, e.g.
1
- * ••• The corresponding formulae for the s-

scattering length have been known long ago'--'» *J
t
 they were obtai-

ned for states with С Ф О in ref.l-'Jand for the effective range

Coulomb correction in ref. •*•

We will consider here the Coition* «normalization of an ar-

bitrary tens in the "effective range" expansion and will show

that singularity at Z
o
/a

e
-*0 is independent of details of

strong potential Vs and is explicitly calculable.

We consider also some exactly solvable models with a short-

range plus Coulomb potential • This allows ua to illustrate gene-

ral formulae for Coulomb corrections and to determine the limits

of applicability regions of approximate equations frequently used

in the theory of lightest hadronic systems, ~ •* e.^.fiP^PP
 t
Kp

 t

J\. P • A ' He etc. The results of numerical calculations

of low-energy parameters for potentials used in nuclear physics

are also presented»

^g. Consider the "effective range function"t*J f\ (*• )

in the strong potential \£

(in particular, ̂  = - */<2?'* , ̂ ej - / < / ' ). It can be

easily eeen that the dimension of the coefficients in eq.ti) is

1/tM. j = CJ. • At у ф О (i.e. in the preaen-

ce of Coulonb interaction) the wave function of continuous speet-



л а hae the for* *

t

-t

where <L
e
 * f ̂ Л * *)!! (*£'*)!!] , t\e (* )l* a meromorphie

function ot A* t2'1^which le an analog ot function (1) in the

presence of the Coulomb potential, ug * &ee f£*, £ )

and bg, «• 2rg (x ,t) are connected with regular and Irregular

(at «его) Coulomb functions f\g чад. Gg *• » see Appendix A.

Uelng the ware function mateblng method in the region
[17]

t
o
 « t « a.g (employed recently

1
" to calculate the epeetra

of wecJcly-bouad states in external fields), we extract in <%

the tens <-o €n f*t take Into account the Coulomb potential

in the internal region £? < £ « < 2 e with the help of iteration*

in the Schrodinger equation and arrlre at the relation*
f

(3)

C4)

Here 4g/t are the numerical coefficients defined from the

identity

^; - -i-l
so, ie

eo
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2 2Г - ^ «nd S0, « 2, see Table I.

Since the radios of nuclear force»enters (4) under the iege-

ritha ite «tact value (for the ease of t* « <2
4
 ) ie inessential.

The singular at JI+-+O tern ie independent of the strong poten-

tial form. BeBideSt eq.(4) eontaine also the power correetlona
cn
 J"**> t ff**>) *te., the coeffieiente at which depend on a

specific jcodel ot \£(*) and are not calculable in general form.

3. Special eaaeo* According to eq.(3), the Coulomb renoraali-

zation of the e-acattering length has the fora

^ ts s fcf • J° = J ** . co = 2 С+

+ 6т (<£te/tr)t **• smb Z* а г е * h e Coulomb and effective

ranges of the system (the formulae for calculating Zc and ts

and dlnenaionleas coeffieiente &x , Сл are giren in ref.*- 4 } .

We consider the ease when there ie a level (real, virtual o- r

quaeistationary) with the low binding energy. In this e&ee the

difference between <2X and a*, i s eepeeiallv large*

If « aegleet the correction* ~*m/cim in eq.(5) ( i . e .

put formally e+= Сл* О at Л » / ), then we arriv* at the

well known Scbviisger formula»•'•». In rets.*-'*'•» the formulae for

calculating the coefficients /*, and Cx were cbtaicsd. As

will ЬР shown below, see Sect. 6, the tTbilasg into ecccnurt of these

•fteriaa eseestially expands the applicability region of tbe Schwin-

ger formula.

Jor the states with £ / О the main Coalranb correction
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to the inverse scattering length was found in ref •*'.*•

into account eq.(4) we get

* T^J 2 *e*

Here jQ fij ie the uaVe function of the hound -С -1ете1 е*.

a point of its emergence in the potential ]/£ normalized by

condition: Ic/n t. eJgA) * 1.

Let us now turn to dimeneionless TardLebles, patting

(7)

where function &"(*] gives the for».of the potential and &

is the dimeneionlese coupling constant. Introdncing the parame-

ter &£ which is equal to the scattering length on the hard

sphere of radius £a (see eq,d3) Below) we re-write eq.C6) as

/>/A'^ - *where €?>• X and a£e *> 2£J J £{ C
x)iT J X= jr (for /-/

eee Table 2)» 1 relative change of the scattering length due-to

Coulomb interaction can aot small: \(Qe — &•* /&e |***

r~ df / ta &e / ae • Wfft* *bat only one tem In
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eqs.(6),(6») baa logarithmic singularity &t ££0-э*0 . Becaune

of the factor ( £ £ to J its contribution rapidly fella down

with the angular momentum С increase.

At n«1 eq.(4) defines the singular term is the renormalijaa:

ion of the effective range

/Jiff
Pinally, eoneider the coefficient at A in expansion

(1):

' /C -
(the couetsnt «ŝ  deptida on a specific model of

for details aee ref.*- •»)• The logaritlimic term in eq.(9) is

the main Couloiab correction to л ' . Thus, Coulomb corrections

to */&£ are especially large in the s-wave, corrections to

the effective range- - for the p~wave, to the form coefficient -

for the d-wave , etc.

At О £ 1 < С the Coulomb renormalization of J&e^. contains
4)

5̂fc C&4 /t* ) » X t but this term is no more the mair- .

If new /г > /? , then the Coulomb renormalization of

the coefficient J&&*, does not contain logarithms at all

and is analytical in the parameter J-t& ,

4. Exactly eolvable model. Putting Щ)^- %{f -

we obtain the delta-function interaction era the sphere t

It £ = О * then for this model
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where <̂. = £ + % » "2л. a n d /v««' *** * Ь е B e « e e l and Нешвапп

functions, Л** fe) ~ jf~*/s^1**' (^'^) *̂ *[- f * * ) * A*
/с-* О we find the acattering length and the effective range

Here ft s.2£+i , £tg and i£ are correnponding values for the

bard sphere of the radius to •

ia defined ia eq.(2j and *fc

The bound ^ -etate appears at ̂  ~fg "Ье**
 a
e~ °°

 a n d

effective range is equal to

Jg

«Л £ Ъ * and С--*)*?& * - ?or states with £ф О the

effective range at a point of appearance of the bound £ -



state le negatire. This holds also in the general ease* i.e. for

arbitrary potential Vs C*) » *e* ref.i18J.

If £ ф О t the formulae Ъвеоас to be more complicated:

the functions ttg , &£ are defined in Appendix A. Making

ttse cf their expansiona»- -at к -* О we find the Coulorah-modified

scattering length and the effective range "*'

(15)

The functions f;
e
(-x) * ^ f*J etc, which enter these

expreaaione and whose argument 1bJc^2^t
a
txb expressed through

the Eeeeel functions (see JLnpendix B). Vote that the functions £

a different analjtieal fora depending on the sign of Coulomb

interaction. ?or instance.
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(15')

wher» y = (fjtft.). Hence at {• -* О we get

In accordance «lth eq, (12)*

We put further elnce tb» Coulomb

effeet on the scattering length Is the aoet eignifleant If there

ia * loosely bound state in the strong potential» Her*

*?? Ate ?,-

Expanding these expressions at or-» О *е атт±те for the case of

s-wave to eq.(5)
 6
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i

At £ Ф О we have

Analogously, for the effective rangea

Here C/t are numerical coefficients,

4r -

(17)

С « 0.5772 ... ie the Euler constant. In particular, Q* • 7/4,

<f^ - 19/9 for e-wave {гЛ f-f
o
 *••/ ); & - 0.0318, <f£ »

• -857/630 for p-nave (at <?~9X = 3 )• The Coulomb renormalizstion

of the effeetiT* range ie especially large in p-wave. In thie
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case eq.dS) een be re-written as*- -*

*?>/*?>-* * $(**\s"\ +**J*£> §*+ • • • . (19}

where as- 4£/£« is a dimensiosleas parameter ( J"~f*o«I

and S> & tor the Coulomb attraction). In this model S -

=z^ft^» &J « ф-С^+йг^ъ 0.530 and А
л
 --357/175О s

s -0.490. Since the coefficients £
л
 , <г

л
 and >̂ % are of

order of unity, then provided *
o
« & - a it suffices to confine a

few first terms in expansions (5),(18) and (19).

With explicit analytical expressions for phase shifts at

hand, one can readily obtain an equation for the discrete spect-

rum. Taking into account eq.(iO') т/e find fron the condition

where ^~}/л \ * ~ •?At
9
 and M and V are the Whittaker fuact-

^
16
^. At j~*O this equation take* the form

 7
'

and define» the discrete spectrum in о -potential^ *
22
-*. Eqs.

(20),(21) can Ъе easily analysed numerically.
1
- -*

5. The Yamaguchi potential. As is well known the Schrodinger

equation permits exact solution for the ease of the separable

Y^amaguchi potentialf
23
-*. The values cf a%** and t%"

y
 for

8*0'were found In ref.^
4
ind for arbitrary 8 in refj

26
-?. For

this unique potential one can find all terms
 8
^ in eq.(5):
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Referring for ealsulatioa detail? to Appeneix C, let ue aleo give

the following

f + Z &« '$**! , £~ °, «23)

and *Xf=jy*l emd arbitrary

In еде.(24),(25) л , - «jj*jf i ^ ~ *^//Д (note that ,гГ"^

defio.ee the strong interaction radius}, «r^ « f 2€- £} f r

,
е
 . . . Рог p~ware eq.(19) takee plaee

§= a

The examples eonaidered enable one to siate the following
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conclusions. The singular terms in expansion» (17),(18) and (24),

(25) completely eorreepond to foimula »4) which ia valid for an

arbitrary short-range potential, both local or nonlocal . Here

the coefficient at tne Coulomb logarithm £n.(Qe/tm) is in-

dependent of the model of VB. With £ increasing the relative

Talue of Coulomb corrections decreases.

6. Compare now exact formulae for the model of a -potential

with approximate equations used in the theory of hedrcnie atoms

Fig.1 shows the dependence of *o /<XC* on the coupling

eonetanti i.e. on the depth of strong potential, at several valu-

es of the ratio j to = - **/с2л
{ j > О corresponds to Coulomb

attraction and J< О to Coulomb repulsio.i). Solid curves cor-

respond to exaet calculation according to eq.(i5)» dashed curves

are obtained free eq.(5) at а
л
 = *<>&/(£-•*) end at given

in eq.(i6) values of the constants ^ , C* and Cx (the tents

£ (%Zo) were neglected). In what follows we use eq.(5) wliere

three terms tn ~CO , Cx > Sj are remained. Such an approxieat-

ion has been already ueedL Jwhen extracting the strong scattering

length Qs from experimental data on the pp -atom (note

that nowadays the experiment giTes a smaller ralue of the US -

level shiftf28?}.

Fig.1 shows that the given above approximation has a high

accuracy in the wide range of values gr (but not only in the

region Q ~$o J» T^ e s-level in the potential V is not necessa-

rily shallow (in nuelear scales), see Pig.2.

Tfe studied also^ -Ithe accuracy of approximation (5) as a

function of the ratio ir, /<2O (but at fixed о •& & = У , i.e.

at a moment of emergence of th? level). The results given in



Fig.3 show that this approximation ±e applicable at \

(recall, that Ct
a
 • 57.6 Я» for p~p -atom, <2<? • 31.0Л»

for the K~*He cystes, ao that in these caeee k
e
/&.* ~ 0.0>r0.1).

On the other hand» if we neglect aleo the corrections of the or-

der г
т
/<2

л
ч i.e. put formally S

t
 = С, = О in eq.(5), it is ap-

plieable only at a significantly йоге strict condition Zf/ci^^aiev-

aee eurre 3 and curve S in Fig.1. This illustrates the irr>ortance

of taking into account the terms о-з S
t P

 c* te eq.(5)

calculated in ref.i
7
-».

An analogous picture takes place for the Coulomb correction

to effective range in the p-wave, see Pig»4*

Figs.3 and A refer to the eases when Coulomb corrections

contain £nQ*/to and are especially large. The <f -dependence

of these correction*! is clear from Fig.5» Since ^/cifg* = О

at Jf ~ 4g we go over from the Coulomb-modified scattering length

to dinensionless quantities <Z£ (2e - Zo, <2* = ?J/5, 2g-t//^~

etc. (нее eq.(i3))« The extremely large value of Coulomb correct-

ions to the a-scattering length and to effective range in the

p-wave is explicitly seen from F ig.5-

The theory of hadronic atoms frequently uses a phenomenologi-

cal approach based on the

relate* the shifts and widths of atomic £ -states with

the low-energy scattering parameters. Here X=- (-£.

£c ш *>c*/4* aad ?>(*) « r'fa/f'frJ
function. This equation meets various fields of physics

when considering Coulomb systems with short-range forces,
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•.«.Г
7
*

10
» 30]

#
 ̂  partiealar, eq.(26) gires * complete deeeript-

ion of the Seldovich phenomenon (or "atomic spectrum re-

arrangement") both at В = О £7#313and tor states with ^/^?C 3 2I.

We bar* studied the aeeuraey of eq.(26) on ac «cample of J-

potentlal* Solid curree is Pig.6 are plotted froa eg.(20) for

/ « 0 , dashed eurres - from approxiaate eq.<26) while Л ^

and ?^
Г
*' were eaiculated froa eq.<15). It is seen from

Fig.6 that the ealeulation error of the я-lerel energy from eq»

(26) is not more than 10$ if Ato < 0.3 - i.e., the binding

energy ie by the order of sagnittide smaller than the eharacteria-

tie nuclear energy /£/^*»*#.

Pig.7 obtained from eq.(21) shows the energy dependence on

the counlir>p; constant о at J *0 and different С . We иве here

the "reduced variables £ . «n&f/jpe ( *b* energy £ * -A*/*s

7* Low-energy parameters for nuclear potentials» The eiaet-

ly яо1та"'в modele are far enough from "reallatie" potentials

which describe strong interactions. Therefore one should dwell on

the question to whieh extent the results obtained are ralid for

other potentials V •

Is. the low-energy region where eqs,(5)»(19) ete. ar« need,

th« potential enters only through the paraneters C
e
 , c

x
 >

£
ж
 , ... Sxploiting formulae from refs,l-̂ *"-»we numerically cal-

eulated these parameters for different potentials of the type

<?), including for the Yukawa potential, &farj* еГ"*/$е?
 t
 th» Hul-

then potential, 2r * ((**-*) , and Gaussian, frequently used

Lv. nuclear physics.

The ealealation result»
 9 ) a r e

 &
гвп to 5 а Ъ 1 в 2

»
 L e t

 "*

«xplain the notation». The Coulomb corrections to the scattering
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:' length and to the effective range are written

(27)

where J* and Af are dimeneionless coefficients depending on

the form of the potential V < In fact, eq.(27) contains some

characteristic radius /т^. ~ / t
e
 j which ia expressed via

the eatperimental parameter t^ ** .In the case of rectangular

veil tg ie independent of the principal quentua number n

and at £ » 0 coincides with the radiae of the well r o «It

is natural to determine the parameter fig for an arbitrary

potential using the formula

( 2 8 )

(for the rectangular well /?c s io for all /г, с }, The nunericai

calculation shows that for smooth potentials at &£3 /?g dif-

fers froB the effective range zs SOT the ground state not

more than hy a few per cent (see Table 3)« Therefore, let us re-

write eq.(27) in a more illustrative form, introducing the para-

meter $fie . Ae a result
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The values of the coefficients f , £ e e e *n *abl« 2. This

Table presents also the coefficients Co » С
л
 8°^ 4*

tor the s-wave and к
ж
 tor the p-wave, see eq.d9). The numeri-

cal calculatior.a permit making some conclusions.

(i) The coefficients Co ели А
х
 weakly depend on the

form of the strong potential and on the number of the level '

(the same is true for the coefficients 4s aad /
e
 at

£$3 ). This means that calculations of the strong scattering

length £Tg and of the effective ran^e t/ using eqs,(5)t{i9)

are weakly sensitive to the used model of 4g •

(ii) On the other hand, the coefficient na significantly

varies* However, the «orrespondiag Coulomb correction (29) eon-

tains a small parameter Zs/<3-a •

(ill) The constants Co , Cx ete far the S -poten-

tial have the sane order of magnitude as for smooth potentials*

Thus, in the low-energy region the S -potential is not excep-

tional erd that Is why the seet.6 results sees to be general.

(lv) Finally, кагк a curious empirical fact: for the local

potentials V£ (*) ther» le a strict correlation between the

values of Co end of the rest coefficients*

The author* are indebted to Professor A.B.Migdal, Dra.B.M.

Karnakov and A.B.Kudryavtsev for discussions and to T.I.Llsin

for his help in the munerieal calculations.
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| Appendix A

The тгате function of continuous spectrum in the (j? -poten-

tial model is of the fora

CA.D

where г» is Sonmerfeld's parameter £/£ ^^^/^\fA^) *

/ v t 6 ^ ere regular and irregular at г - t? СоиЗ кЪ funct-

ions'- > •'which are expressed via V/hittafcer functions

(A.2)

and <% -

i s the Coulomb phase shift, <Ŝ  e- <a.y /~* f£+ 1+Г% )

. Ae is known, the Z' -potential is equivalent to the boundary

eondltion

«here <f
e
 ft) = t /?

e
 (ь) , /?^ is the. radial wave function,

from eqs.(A.1),(A.3) for the"effeetlve range function"



!! C
e
/C.\

we arrive «t the formula (11») where

«srtfw - с;?т) а*)*"
}
ъ(ь.1

Urr
Г . .

X



19

It can be shown t •'Jtha't U-g and 3j» are entire functions'of л .

At 6t«/ the expansions I
5
 J

(**f

(A. 5)

are valid where functions * {
х
) * £. С3

*)
 е
*

с
»

 are

defined in Appendix B. At f-+ О we have

(A. 6)

where
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Is seen that expression (11r) transforms into (11) when the Cou-

lomb interaction ia switched off.

At small t function t£g f£ *,t) la expanded into series

only in integer powers of t while expansion of % {%i *J

logarithms

it f f ) ^

The functions Z£^ , erg are normalized by condition

Uote that they are related to the introduced in ref. *• •* funct-

ions <Pf and &e by the following relations

(А.Ю)



;
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Appendix В

The functions V fie) t £ (x) etc whose argument

are expreesed through the Bessel functions,

<B.D

( B # 2 )

where, ae ueual, (*)& = *tf*4+j) ... (e(+/c-f) ,

Kote that eq.(B.4) 1г inapplicable at £ • 0 and 1; in

these case»

(the first two terms of expansion of these functions at JC-*O

were obtained in ref.l^-J). jfote t n a t
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While 9* a n < ^ ?? я г с entire functions of x, p - and

contain the loga^itliraa

<'
}&И£*~ <вл)

2* /> i se-*

- J- *{&1ф*С-1) + £-л
(&И+'

г
е'т)' (s.9)

As is seon from eq.(15), the Coulomb logaiv.thra in the renorraali-

zation of the strong scattering length is contained only in the

ktl

while the function JL has no singularity at x=O,

4f*J-

Hence it immediately follows eq.(17)
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Appendix С.

We present here some formulae for the separable Yamaguchi

potential
4

which in q-repreeentation corresponds to the nonlocal interaction

(CJ)

(Л » н • 1
 t
 & i* the dimeneionlese coupling constant). Unlike

the S -potential model considered in . Sect. 4, this potential

explicitly depends on с . There is exactly one bound state ifc

every partial wave which emerges at a * 1 .

Por £ m О the Sehrodinger equation for the Yamaguehl pins
Г?4]

Coulomb potential haa been solved by van Haeringcn
1
-"

 J
 wfao has

found the Cculomb modified scattering length and the effective

range in analytical form. Introducing 2 - 3 J- //3 , let us

rewrite his formulae as

(с.з)t
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where _t . „ ,

At tf * 1 the strong scattering length has a pole what corres-

ponds to appearance of a bound state (here %-$-
3
/$ * ^'- J" ̂ s )«

Proa eq.(C.3)i taking into accotmt the expansion of incomplete

gasma-function

3.4)

we arrive at еда»(22),(£3). At 0 « У the m«serical values of

the coefficients are

? - 0.8649 , 4t*£
C* = T

(C5)

SZ

These coefficients decrease with n increasing yfliich results in

a fast convergence of the corresponding expansions in tre /&e •

Recently t •», the parameters <2^ and ^T for the

Yanacucbi potential with ai'titrary £ have been calculated. Por

instance»

(c.6)
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Making us* of the identity

and the •xpanaion (C.4)» we come to eq.(24). The eoetfideate

are defined from the relation

•o that С
Л
е * С**-*) ' » '"^- r

Formula (35) ie obtained from eq.(4*13) of ref.l -*Ъу analogoue

ealeulatione«

. * • • • * :In conclusion, aark a misprint made in ref. *•• •*: the term

with the coefficient «f C^-^iff^O * f**J "**** in *q<.

(4.25) should be Multiplied by the factor 4f* * - -2V (her*

/^•s/S"* aeeordlag to the adopted in ref» *••• notation*)•
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Footnotes

1) Thus, the scattering length and the effectire range have

the length dimension only for the s-ware. In the general case

the unit of length. Furthermore, we consider the coefficient

Agm at the term *C in expansion (1). Its Dimen-

sion isf/kJ»Z at arbitrary B.

2) He employ the atomic units, £ ш
 &*• * С

 т
 I ae well aa

the notations: £• - angular moment, J « - 3?s -3* { f> О in

the cane of Couloab attraction.}, Z «• ̂  //>*£•* , CLa=£\f\ is

the Bohr radius, ' 2T« is the strong interaction radius» It

is assumed that ew « " <z.^ .

3) Index с^л» denotes the Coulomb- modified scattering

length, the effective range t£ , etc. Analogous parameters

referring to strong potential V are denoted by index (&) .

A detailed derivation of formula (3) will be published elsewhere.

4) By the order of magnitude / /3^ f <~ £a a*

/г. & I r therefore in the ratio /&е"* / /^л» *Ье eingular

ter. - {tK)*
r
*~*'e*i*. > St<£.

beeidea, the numerical coefficient &£*. decreases with the f-

increase as well {see Table 1).

5) See «loo refs.l19»20'10-*. The Coulomb problem with the

о - potential has been already considered in details in ref I
 J

t

where the scattering length and effective range were calculated,

which in fact coincide with ego. (12),(14). However, in refa.

i 3»
2

logarithmic singularity is not selected in the coeffi-

eienie /S^ for any t and approximate equations (5),{19) eaid

(26> are not discussed. So our Investigation properly complement

tht reeulta of ref»*" К Hote also that the о - potential was



applied to describe Mb* К A/ system at lov energies*
 2
4

6) She «oat Important (in the case / to « X. ) coeffici-

ents £
ж
 , с, » С

ж
 » f,

t
 and ̂  in expansions (5).(18)

and (19) are easily calculated using for«ulaei*
>7
Jwhich are valid

for arbitrary potential V
0
 . Vote that we exploit in. eq.(5) the

Talues of the radius t
a
 and of the coefficients c

o
, c, o*</ £x

referring to the point of the Mergence of a - level.

7) the condition cfa$e(&)ei defines the position of poles of

the S - matrix. Then going отег from eq.(20) to (21) le should

take into account the relations

where Г,,, (JcJ, /C^ fie) are the aodifled Beasel func-

tions. Sq. (21) can be easily obtained also from formula (10)

putting cfoSg
 3
 2 and taking account of identities

if*

8) She coefficients £t , Cm and cx can be calculated

using general formulae I'-* which are applicable both for local

and nonlocal potentials. Vote that the raluea of €t , Sx and

for the Taoaguchl potential have been calculated by Sitenko and

Drobachenkol2'Jprior to ref.*-2*-». The authors are indebted to

Л.2. Kudryavtsev who paid our attention on the paper*- 4

9) All of the constants given in Table 2 do not change at

the scaling l£ fb) -* *£*l£{«*), О<*<<*> . Therefore

they depend only on the form of the potential but not on lbs
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rsdics. The numerical calculation of these oonetaats ie most

•ieple a t t f s t , see formulae in refs.'
5f7
J

lote that local potentials are arranged in Table 2 in tbe

course of C+ raising.

10} Рог « potential of the type (7) the effective range at

the point of the emergence of nt - level is equal- to

where. $**£ *-e a numerical coefficient depending on the form

of the potential. Let as give its values for the cases when analy-

tical solution is possible. For the rectangular well

; fe*~ (**+*№ (**"**", £9-1

г Ы
tor the A - potential

кой finally, for the potential &/*•)* *?*&{*-*) ,

•nalogoue to the Yukawa potential, we have



29

where ^ is the n-positive zero of the Bessel function

n = 0,1,2 ...... These rallies of P#e have been calculated

using the formulae given in ref. L -• .

11) Here we change the normalization of the coefficients £

and A.£ comparing with

ft>

12) for instance, for ns - states in the Hulthen potential

С
а
в 0.865, 0.925, .... 1.065, respectively for n * 1,2, .... 10.

She coefficient ^ varies in this case from 1.000 (n«1) to

0.952 (ru=10) while c
1
 from 0.963 up to 1.809.

13) Here £л = (*f-£)//*ffrejf tor

and coefficients €& with Л > 2£+f are calculated fro«

recurrence relations:

- 1 *

л с*-<**-



Table 1

Coefficients § ia eq.(4)

£\
1

2

3

4

5

5

3

1

С

2

0 , 5

,56(-2)

.47C-3)

,39(-4.)

С

0

7

1

2

2,5

,778

,104

,64{-3)

2 ,

0 ,

0 ,

2

0

2

72

94S

142

3

0

0

2

2,85

1,06

4

0

0

0

2

2,93

5

0

0

0

0

2

Hote to table 1. As usual, the number ia brackets show the order

ot magnitude: 5.56(-2) « 0.0556, 3,47(-3) « 3.47 • Ю "
3
 etc.



Table 3

(<А*Г
Л

ac*&fy-x)

${t-Jc)

et/C.f)

2

3

3
2.

1.

0,

1,

1.

3.

/to

.120

.000

.541

000

435
872
000

333
000

0.

0.

0.

0.

0.

0

0

0

1

1

0

e*
С*

837

931
865

924

919
.946

.975

.985

.024

.060

.665

0.

1.

0.

1.
1.
1
1

t
1

1

1

О

с,

842

428

983

453
215
.323

.457

.500

.634

.750

.333

6

1.

0.

1.

0.

0.

0

0

0

0

0

0

3

056
962

000

905
903

.863

.814

.793

.757

.750

.667

-0.

0.

0.

0

0

1

1

0

178

-

130
-

512

.693

.936

.043

.189

1.312

.889

i

/Г
1.02
-

0.987

-

o.93«

0.906

0.870

-

0.813

0.780

о.9бо

e
с

0.

0.

« /

215
~

101

0.072

0

0

0

0

0

.223

.410

-

.813

.500

.04*

-

-

-

-

0.701

0.656

0.739

j

0.

0,

0

0

0

0

0

0

517
-
486
-

.448

.437

.412

.370

.352

.464

•

-

«к

-

1.42

1.35
1.58

Note to table 2, The parameter» C
o
 , C

M
 etc. refer, ea a rule, to

angular fflouentuai & ( for the Yukawa and the Hulthen potential a the

ami 2s levftle are given - the first end the second line, correBpom3i«l,y).

the tiret ler«l with the

for the 1e
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Table 3

(сА~У*

eX/>f-Jc'J

1.030

1.042

1.051

1.016

1.008

1.015

0.938

A* /**
г* 2

1.033

1.048

1.074

1.012

1.007

1.021

0.904

I-

1

1

1

0

A

1

0

-3

.028

.028

.088

.967

.003

.024

.882

t

1

0

1

0

0

1

0

' • *

.013

.919

.097

.806

.995

.025

.867

ffote to table 3. Here tssi^±B effective range at G*fr ,

«bile /?/ refer to the first level with the angular momentum

< /
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#00**"

~LS

Fig.1. The inverse s-scattering length for the £ - potential.

The numbers at curves give the values ft . The curve S (for

jio - AX2f) corresponds to neglecting the corrections of the

order of f tj [ i.e. ^ « £
я
 - с

л
 = C

z
 = О in eq.(5]/.



1-

Pig.2. The poeitioc of the e-level in the S -potential depen-

ding on the coupling constant a, (the energy £"* -A*/z). At

Л > О the level ie real, et Л <<7 -is rirjtuai. The daahed

curre ic the approximation (26) at f= С *



Pi«.3. The ratio **/6U
s
 ( t/ * 0) in the <э" - potential

model at 0 = &
о
 - jf

 t
 Q?he curves 1 and 2 correspond to eract

solution ( 15') and to formula (5) with the given rln (16) value-з

of the parameters C
a
 , C

4
 and S

x
 - The curve (3) corres-

ponds to formula (5) in which we put £x = <j. - О , i.e, iiê leat

corrections ~ i" i• .



C/tf*

St.

.4. She ratio of effective range* *> /*>* tor the /* -

potential model ( <f* f *£ = 3* " ̂  )• И1
* solid curve corres -

ponds to the exact formula (15), tbe dashed one i* plotted accord-

ing to *q« (19) «here the term <LS* £* la neglected.
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t'O

Kg. 5m. Ям ratios <£c/a%
potential «od«l *t a - -

for the
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«am» tor



fig.6. Th* dependence of A%
a
 on the coupling constant й, tot tha «-level in the $ -poten-

tial. At the curve• the raluee jipzle/uj are ehown. The eolid curves are plotted accor-

ding to the exact eci.(2O), the dashed - uving the approximate tq.(26).



Fig«7* Tht bound etate energies in the ^-potential model at

j; • 0 (the Coulomb interaction is owitched off).

The value of £ z: -~f\i. I la plotted on the ordlne-

te axis.
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