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Renoxmalization of the coefficients of the "offective range

ex~aneion” im corsidered for the short-range Counlork prodlem, it
2 8
s shovw: 4lnt 4re coefficient et k in the ~th partial

vave contn‘ne a logarithnic sinzularity < ﬂ‘z z../a, ez [.

o

Tnis elrmilarity 1e universal, l.,e. is incderendent of details of
atreng interaction, The exactly solvadle model of the Coulomb plus

mge potential is conridered, Exact golutionsx ere comared

vith anprovimations frecuently used in the theory of hedronic etows.
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I. The ca'.lculation of Coulomb corrections to low-enexrgy

scattering paramcters {scattering length &, , effective range

%p etc.) im important for applications and kas numerous lite-
rature ~ see, e.g.[1'2]. The corresponding formulae for the s-
scattering length have been known long ago[3’ "], they were obtai-~
ned for states with £# O in ref.l5)and for the effective range

(],

¥Ye will consider here the Coulomd renormalization of an ar-

Coulomb corrcction in ref.

bitraxy term Iin the "effeciive range" expanzion and will show
thet singularity st 2, /a,—»O is irdependent of details of
strong potential V_.,- and is expliciily calculsble.

We considexr eclso some exactly =clvable modcels with a short-
range plus Coulomb potential . This allows us to 1llustrate gene~
ral formulae for Coulomd corrections and to determine ike limits
of applieability regions of approximate eguations frequently used
in the theory of llg,hte"b hadronic systems, [6 "’] 9-870/7:/5/0,/(;'-

Z ID ’ /( ‘/-/e etec, The resulis of numeriesl esiculations
of low-energy perameters for potentials used in wtuclear physics

are also presented,

_2_ Conaider the "effective range function"[4] /( ('(’,J

in the strong potential V

s} ¥l 3 Gl‘)
K =k s Z /gf" (0

4

6-) . Cﬂ .
(4n particular, 4, = - 7 /é;,, ) It can be

easily seen that tre dimension of the coerficienta in eq.{1) is
) 2in-€) o
[/g; ] 4 + At f #0 (i.e. in the presen—

ce of Coulonb interaction) the wave function of cont:lnuoua speet-
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Tum has the form 2)

(cs)
- Lot
3}(1@,1):2 3, + < Ke t ,, t>tr,, (2

where £, = [ =+ 1)”(15’0”1 K ﬂ):la a meromorphie
function o A° [2'15}wh1ch is en analog of function (1) in the
Presence of the Coulomb potentisl, <, =&, (4%, 2 )

and &, = 3, ( %% ) are connected with regular and irregular
(at zerc) Coulomd functions f; and C-?! [16], see Appendix A.

Using the wave funciion matching method in the rezion

t, << 2 << Q4 (employed recently DT]ta caleulate the spectira
of weckly-tound states in external fielde), we ex‘ract in s;(é,z}
the term <> &2 {2, take into account the Coulomb potential

in the internal regiomn O < << Q4 with the help of iterationa

in the Sehrodinger equation and arrive at the relations 3

“®, . . ), 2 'y
K, (F)= K, //r)ufj_UA ?;._)éa/f!?.*... -

j(et) ﬁ § 2(l-n)ex

ea 7 Zn 2,
Here 4 n are the numerieal coefficients defined from .the
identity

& 4
T(e+%) = £2 8,

mzyr

Se, - 2/(.9/) g, = Fet+F)b1) 4, , ...



. A
= 7
5:,:-, = 2 .%: ;‘,?,_ and 4‘ = 2, see Table I.

Since the radius of nuelear forcesentere (4) unfer the Logsa-
rithn ite exact value (for the case of &, << &, ) is inessertiisl.
The singuler st (&> O term is independent of the sirong poten~
tial form. Bemides, eq.(4) contains aiso the power correctiona
o fty , (F 2.)° ete., the coefficients at which depend on a
specific model of Zﬁ) and are not calculsble in general fomm,

3. Special eases. According to eg.(3), the Coulomb renormali-

zation of the s-scattering length has the form

= - —j—[z +2(4f+é;f‘+---)]—

a
* (5)

-2 enlplrarapraps]

Herea,iaff e = zf” s = fCs Co = 2C *
v ln (2tc/%s)s & mnd & are the Coulomb and effective
»anges of the system {the formulae for calculating 2. and 2,
and dimenaionless coefficients &, ., C, ave given in rer.h]}.
Ye consider the case when there is a level (real, virtual o= .
guasistationary} with the low binding energy. In thia czse the
difference between 42, mand ., 15 especially large.
. ' If we negleet the corrections ~2../C, in eq.(5) {1.64
put formally f, = CaxC at /231 ), then we arrive =% the
well Xnown Schuinger :l'omulabl. In re!ﬂ.[5'7} the forpulse for
esiculating the ecefficlents f, and <, wex»e chtained, L.e
will be shown below, mee Sect.d, the'. sezing irio account of ‘tkese
terms essextially expands the applicablliiy region of the Schwin-
ger formuls.
For the states with £ # O  ihe main Coulomb correetion
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to the inverse scattering length was found in ref.[53. Taking

‘into account eq.(4) we get

Jas - 1fal -

: - (6)
zt)! - o 2 ates

=Zf[~“2’!', ] f};/t}-t—- +----—(£‘—-—/}‘f al}’&-". -

Here .{j /2/ 1is the wave function of the bound ¢ -level o+
a point of its emergence in the potentiaml M norralized by
condition: 34.‘;”-1 VIR S

Let us now turn to dimensionless variables, putting

O -;-f:r a(t/t) (1

where funetion & (- J!] gives the form of the potential and Z
is the dimensionless ecoupling conatent, Introducing the parame-
ter 4, “which 1s equal to the scattering length on the hard
sphere of radivs 2, (see eq.(13) below) we re-write eq.(6) as
) _ 4/ o _
J'/ d? 1/ae” -

Lot

1 (2f&) . f .
= .-a;;— 2{4"8‘0 * ey, - mfﬂ/‘lz’o v (6)
e y

, o .
where f" Z and J, z:u f:( (‘) = s X= t (for =1
gee Table 2), A relative change o:r the seattering length due -to
)
Coulomdb interaction can aot smaell: l(d: - d,)/ 2p "‘"
7
~¢{‘, _(t., a(/a, « Note that only one term in
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) : 5 .
o eqs.(6),(6') has logarithmic singularity st {2, > O . Beceune
Picy4
of the tactor (2§ %o ) itz contribution rapidly fells down

with the angular momentum f increase.
At nel eq.{4) defines the singular term in the renormaliza: -

ion of the effective range

. 2l¢s) 0
zt(a;_ z;’z-_—f— f(?;tllg ’ )S‘ fa(/}f&a)*“' ‘(a)

22
Finally, consider the coefficient at /f in expanxion
(1): ’

4«;«)_ /’;;sj _ 2}‘ [ Ca(lsfes) + s + Oﬂ"—"')J (9

; . (the constant <p depends on & speclfic model of %/Z),

for dstails see ref.[sl). The logarithmic term in eg.(9) ia

the main Coulomb correction to /eé:’

fi to 1/ dg‘) are especially lerge 1ln the s-wave, correcctions to

« Thus, Coulomb eorrections

.the effective range - for the p~wave, to the form coefficienlt‘cr-

for the 4-wave , ete.

j At 0 </t < € the Coulomb renormalization of /6‘;:,_) containa

& (624 Ste)>> L , but this term is no more the mair 4.
It now 2> & s then the Coulomb renormalization of

the coeffielent _&5,  does not eontain logarithms st all
end is analytiesl in the 'parameter .fta .

i, £ T b

A, Exactly solvable model, Putting ag}= S (7- X)
we obitain the delta-function interaetion on the aphere &= ¢, .

It }- =& , then for this model
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5()[ - Zz e ’
% & (%) zg . (k) 7, (k) (e

(1)

@) ooz 28+t A Két,}
A (5 - —-! LA, e - /\/,ﬁéz

where . = £+ 5 ./7," and A//«, ar; the Bessel and Neumann
tuncticna, /;“ [2)_.: ‘,ﬂ[;u-.{)(z/?) ‘,’Z,,_ (&) . At

A O we £ind the scatiering length and the effective range

- d (1- ___g) £ . 7 (1- :z}t-_j.) (12}

Here ¢ =2¢+1, &, and £, are corresponding values for the
bard sphere of the radius &5

o~ 28+1

~ d—l!
a( = de ta R 't( = - d’ ta > (13)
' Lz [28r71)
. &p 13 defined in eq.(2) and (-

T (e-1)(2E+37) ¢
The bound ¢ -state appears at f = jz nhere da)-ab and the
effective range i= equal to

&) 1-20 -

L= s = -2 fleees) =% (2003) Ctr ) EE-3)Y

at £ 2 1 and (L)1 « For states with €£# C the

effective range at & point of appesrance of the bound ¢ -
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state 1e negstive. This holds also in tbe general ecase, i.e. for

arbitrary potential V / z } s See ref, {18
It § # O , the formulae become to be more compiieated:

G, (#t=,7)

(«') _ .
50 ff" /A‘ R ACYS) e
&) 28+7 &t(//é:,ta)

Ao (6% )] (éfza)f o

the funetions Z, , &e are defined in Appendix &, Mak:ng

use cf their expanaionafs{at k>0 we find the Coulomb-modified

scattering length and the effective range 5

-z
@s) ~ l Ee Z£+1]

s = & - P
L7 g2

(15)

t;“’— F{::_j & ?4_%;& ~ .Q'_{_:Q_Z‘E.]
= *1 22 % 2%

The functions ft (x) , Ze {z) ete. which enter theme
expressions and whose argument ia .r=2_f? tre expressed throngh

- the Eessel funetions (mee Appendix B), Note that the funetions ST:
have a different analytieal form dersnding on the aign of Couloamd

intersetion. Por instance,



-z /%-1 é’) _ !‘ , £>0
Trers df’/ ; ‘Z(fz/ﬂ

(15*)
A:’(f.{ V.
» §<0

|, a5 _
\" Tl L&

% .
where ,:ﬂf’/f/r.) o Hence at > O ‘we get é;/d:-“!.-j-,gﬁ
irn accordance with eg, {(12).
We put further /: /e = 2+ L since the Coulombd

effect on the aeatteiing length is the most signifieant if there
is & loosely bound state in the strong potentisl, Here

aea-.r): 3, 7:/(5?2_!) y

e £ (En-2)FT
£/ = ;‘i[@‘*")—i‘- - (@-1) === : =

Expanding these expressicns at ar-» (¢ we arrive for the case of

s~wave to €q.(5) where 6) % =4/zo/3’



8% . b= tfse,

(16)
L £ 57
szc*ﬁf-fdj-oé‘a) q‘;": 4—6—;
st £ #O we have
~ f[*jf E 4 .
d{/ﬂf’)= S fte + = [_(z.)+...
- L(lr2) @rL) (zl-r)(2f43)

(17
Tery :
§ ke (8% (i)« -

| Analogously, for the effeective ranges

0/ G _ g[f-f{_j(.Zé’-!)(-ZZ*‘-’J 2§%, l!‘.!g zo )+
& =1 - 3 [C2e) 7] (25%)  £n(lfl2)

~ 2 {i8)
+¢'-;ft, + Oy (on)-f-...

Here C'i are numerical coefficjents,

(2e-1) 3+ %)
o~ ) 2TEL)EF2)
C =

L#1
L(Z-20-tn2) =7
I \zq _ )

C' = 0,5772 «so is the Euler constent, In particular, c"; = T/4,

C: = 19/9 for s-wave (at f:f,-—--! ); c:: = 0,0318, c"; -

a «~857/630 for p~wave {at f:ﬁ=3)' The Coulomb rerormalizstion
of the effective range is especially large in p-wave. In this
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case €q.{138) esn be re-written ast®

- . 2
2 = £+ 5\/[”[5‘,!,,4‘.)4,4,,51‘..., (19}

where J = - 4}‘/ 2}@) iz a dimenslonless parameter ( Fn flo<<t
and 5> & for the Coulomb attractiorn). In this model J =
=3{jto. A .}’.ci",u&zg'co.sm and Aéz =-357 /1750 =
= -0.490. Since the coefficients &, , ¢, end A, are of
order of unity, then provided 2Z,<< @y it suffices to confine =&
few first terms in expansions (5),(18) and (19),

With explieit analyiical expressions for phase shifts at
hand, one ean readily obtain an equation for the discrete apect-

rum, Psking into. aecount eq.(10') we find from the condition
oty 55(iA) = 7

S L -V) Moren &)%i‘{/‘ &j:;“" (20)

(2err}f 2

where . H:J“A y #=2A% end ¥ and W are the Whittaker fuuct-
[15] ¥
iona o At {2 O this equation takes the form

L, , (%) Kpuyy () = 777 @

and defines the discrete spectrum in J —pctentialfec"zz]. Egs.

. I
{20),(21) can be easily analysed mmxerir;a.ll;,‘.‘-1aJ

5. The Yamaguchl potential., As ies well known the Schrodinger

equation permits exmct molution for the ease of theA geparable

Y_amaguchi potentiu[zﬂ. The values ¢t df’) and Z’;“J for

£= 0 wexre found In ref.[24;nd'1’0r arbitrary £ in rer.[%]. For
this unique potential one can find 211 terms 8} in eq.(5):



L=z (R“
- 2 i N 2 _ 2z)
s o 4/(7’*2‘?"/2)

Referring for ecaloulatiox detells to Appendlx €, let us aleo give
the foilowirg expapajiorns:

Ve e
zq/z: = 7 + Z é‘;z (.‘f“’%} R E= C’, (23}
L
| were 2, = (2~ 22 /5)F0, & = ?éﬂ*’/»/&@*%}
'
_ and at g7=¢-= J end arbitrary 2 & —.z”‘fz.f -pm-2)] or1) 13 3%
! (e:) 280
' Vs 2 g Feos - &5+ 0) f ers
Wiy (q")
; €0 /. 03 Rl-t){(71E+23) _
! >, /¥, = - .. -
K ¢ /€ o & (l-1)i28+3) 27
_ " f/f*!_)/ff f}(:£° 5 £7
; - SYI YIRS Laf8f+- s (25)
In eqs.(24),{25) ?.—_dq,‘,j . S= ‘!”f/p‘ {note that &7

- defines the strong intevaciion radius}, <., = /2€-7)7,
Cre-g L //zt’-:ﬂ Cre s - . « For p-wave eq.(19) takes place
where

»

(\'f}_____f ':.-—'.?-_. . - g L
= oo/é')’(; < 01“&"(,3:—6 3.9 i-"-j—-ﬁ_

The examplem considered ensble one to mmke the following
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eonclusions. The aingular terms in expanszions (17),(18) and (24),

(25) eompletely eorrespond to formula (4) vhieh is valid for am
arbitrary short-range votential, both loeal or nonlocal . Here

the coefficient at the Coulomb lozarithm &2 (Qg /t.) is in-
dependent of the model of V’. with £ :Lnereaaing the relative

value of Coulo-i: eo:jrections deereases. '

__6_.___ Conpare now exaet formulae for the modcl of g -potential
with approximate equations used in the theory of hedrcnie atoms
[7-14]

¥i2.1 shows the dependence of %o / ey on the coupling
eonctant, i.,e, on the depth of sirong potential, at several valu-
es of the ratio (o= t. /a,( § > O eorresponds to Coulomd
attraction and §{< O to Coulomb repulsica). Solid curves eor-
respond to exeet ecalculation secerding to eq.{15), deshed curves
are obtained from eq.(5) at o, = z,f/(y—l) and at given
in eq.(16) values of the constants &, , C, snd C, (the terms

L/ fz,)zwere negleeted). In what follows we use eq.(5) wiere
three termscn ¢y C, , &, are remained. Such an approximat-
>ion has been elready used[ﬂ when extrazgt:lng the strong scattering
length @ from experimental datg :m the O -atom (note
that nowadeys the experiment gives a smaller value of the 7§ -
rever snirel28]),

Fig.1 shows that the given above approximaticn has a high
accuracy in the wide renge of valunes F4 {but not only in the
region g= j, }. The s-level in the potential V, 1s not necessa-
rilyshallow (in nuelear sales), see Fig,2.

Fe studied alsc:['o} the accuracy of approximation (5) as a
function of the ratio %, /2, (but at fixed g=g =1 , i.e.

at a moment of emergence of th: “zvel)., The results given in
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Fig.3 show that this approximation ir applicabtle at [¢{2, <03
(recall, that Q, » 57.6 F» for PP -atem, Qg 31.CFm
for the K~4de oystem, 20 that ip these cases &, 24 ~ 0.034C.1).
On the other hand, 1f we negleect mleo the corrections of the or-
der z,/a,, i.e. put formally !, = ¢, = O 1in eq.(5), it is ap-
plicable only at a significantly more strict eondition ./, £ocs-
see curve 3 and curve S in Fig.1. Thie illustrastes the {iortance
of teking into aecount the termscnr» €, , & in eq;iS)
ealculated in ref. [71.

An anelogous picture takes plaece for the Coulomt correctior
to effective range in the p-wave, smece Fig.4.

Figs.3 and 4 refer to the cases vhen Coulomb correctiona
eontain 5204/:. and are especianlly large. The A4 ~dependerice
of these corrections 1is clear from Fig.5., Since iﬁzg" = O
at dq-.-: i’ we go over from the Coulomb-modified seattering length
to dimensionless quantities &2, (3, = 2,, &, = Zo/3, Gp= T a5
ete. (mee eq.(13)). The exircmely large value of Coulomb eorreet-
ions to the s-acattering length and to effective range in the
p-wave is explicitly seen from F ig.5.

The theory of hadronic atoms frequently uses s phenomenolicgi-
ecal approach based oi: the equationf7'15'29}
((A;Zﬂfﬂﬁ--‘-)*fﬂ J’Hﬁ(-’f* X): e 2878 e

A {51 ey 1702 @, 2
which relates the shifts end widths of atomic & -states with
the low-energy scettering paramecters. Here A= (-2£/F. )’.2
L, =me?/K* ana 9(2) = /U2)/7(2)  is digenm
funetion., This equetion meets various fields of physics
when eonsidering Coulomb systems with short-range forces,
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o.g.[7"1°’ 30] o In particular, eq.(26) gives s complete deseript-
ion of the &5¢ldovich phenomenon (or ®atomic spectrum re-
arrangement®) both at =0 [7'3’]a:nd for states with £ #0{321 .

We have studied the accuracy of eq.{26) on ar exmmple of -
potential, Solid eurves in Pig.6 are plotted from eq.(20) for
f=0 , dashed eurves - from epproximate eq.{26) mpile o™
and Zf‘ g were caiculated Zrom eq.{15). It 4s seen from
Fig.6 that the ealeulation error of the s-level enerzy from eq.
(26) 1s not more tham 10% 1f AZo < 9.3 - i.e., the binding
enerzy ies by the order of magnitude smaller than the characteris-
tie nuclear energy A /22,

Pig.T obtained from eq.{(21) shows *the energy dependence on
the counling conﬁtantdg at § =0 &nd Qifferent £ . We uee nere
she "peduccd variables & andjﬂl ( tke energy £ = —A‘/«t=
= £/257 ). '

7e Low-energy parsmeters for nuelear pot-entials. The exaet-
1y solva“ls models are far enough from "realistie™ potentials
wileh dezcribe strong intersctions. Therefore one should dwell on
the quesition to whieh extent the results odtained are valid for
other pbtentiala V' .

In the low-energy Tegion where eqs.(5),(19) ete. are used,
the poteutial enters only through the parameters Co v Cx o>
é; s see Fxploiting formulae from refs.[5’7]we mmerically cal-
eulated these parsmeters for different potentials of the type
{7), including for the Yukaws potential, 2(x)= € s%, the Hul-
then poteatial, & = (@ *-1 )d » and Gaussian, ﬁ-equently used

ir nueiear phvsies.
The ealeulation results J° 2F® &lven in Table 2. Let us

axplain the nctations. The Coulomb corrections to the seattering
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length end to the effective range are written as

2L/28-5
@ 7

f/“”-f/a =4l ..

(27
#“
|

te(cs)/z‘cf)= L+ ,‘ f‘

where f and /t/ are dimensionless coefficients depending on
the form of the potential V « In tact, eg.(27) contains some

T e i
characteristic radfus /?f ~ 12 [ which ia expressed vis
the experimentel parsmeier tt « In the case of xectangular
well tf) 12 independent of the principal quentum number =n
end at & = O coincides with the radius of the well 2z, . It

is natural to determine the parameter As for an arvitrary

poteniial using the formula 10)
t‘ 2 e = 0
s s (28)
[(aed)”/lf'i)”//? l} £z £

{for the rectanzular well /?c £ 2o for all 7z, )}, The numerica:
zalculetion shows that for smooth potentiale at £<J KRy iz~
terg from the effective range 2, for the ground state not
more than by a few per cent (see Table 3), Therefore, let us re-
 write eq.(27) in a more illustrative farm, introducing the para-
meter A, . As a result )

5 g = i [ F 4R O((6R))] 240

EE D = L Ay $ R ., LFL (29)
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The values of the coefficlienis {' . é: see in Table 2, This
Table presents also the coefficients & » Oy and ‘,
for the s-wave and A‘, for the p-wuve, see eq.{19)., The numeri-
cal e¢alculations permit making esome conclusions. ‘

(1) The coefficients ' Co and é, neakly depend on the
form of the strong potential and on the number of the level 12)
(the same 1s true for the coefficients &, and /£ et
253 ), This means that ealculations of the strong scattering
length af) and of the effeetive range zf" neing eqs.(5),(19)
are weakly sensitive to the used model of V s

(11) On the other hand, the coefficient 4‘, signifizently
varies. However, the corresponding Coulombd correction (29) eon-
tains a smell parameter 2,/2s .

(141) The constants &, , C: ete for the Jd -poten-
tial have the same order of magnitude as for smooth potentials,
Thus, in the low-energy region the J -potential is not excep-
tional ard that 1= vhy the sect.6 results seem to be general,

{(iv) Pinally, mark a curious empiriecal fact: for the loeal
potentials U{ (%) thers 1s a strict eorrelation between the

velues of Co and of the rest coefficients,

The authors are indebted to Profeasor A.B.NMigdal, Drs.B.M.
Karnakov and A E.Kudryavtsev for discussions and to VI.Lisin
for his help in the numerieal calculations.
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Appendix A

The w.-.:re' funetion of continuous spectrum in the J‘ -poten-

_tial model 1a of the form

comf-f;ﬁ(z,?) L O0<E< %,

e (%)= - y (A.1)
’ G,@t.f)*“cge{»( )1[,7(/?,?), e>2,

%
where 7 1s Sommerteld's parameter 7:-3‘/4 =B%ez/fj-ﬁw/z£) f
f’t + &» are reguler and irregular at Z = ¢ Coul mb funet-
ions[1§]vlhich are expressed via Whittaker functions

6./4!)?)__: /’/ff_f—re7) —‘?,&% (—Zz'ie)v‘

z[@en)] |
(A.2)
/"»?J t(“{?) = W poyy (2K,
= ex,b{ x/2 fz—t((-r!)]—zo"e} and o) -

is the Coulomb phase shift, 6’, = aty Vs (Z+ 1 +~p )
Am is known, the 5 -potential 1s equivaleni to the boundary

eondition
% (6 0) - S (20-2)* 37 /z,) o, (4.3)
where 9’8 /é:) = & ﬁe (/t) a R( is the radial wave funetion.

From eqs.(A.1),(A.3) for the"effective range function" {15]
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K - [eenti G /0]
x 4 ”"{C ‘G & 4 p[Wlreig) ¥l-ig)- o 7‘]}
we arrive at the formula (11¢) where
wlkie) = ) (] K ey

% (E2) = @) C, ) () x

x (6, (key)- 7/7,'5(& 2l )
,/7} m = - exp (- z?/z)f/'%’q”p}l
/%) =; (e £-1) %

X [P/{fef}r 5/’[1-1‘?) - &.2‘]
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[15] : "ot K*
It can be shown that &, and 3, are entire functions of K .

At Az<< [ the expansionafs]

£

. , |
&, (#i¢) = prz)—z((zz}d) 7:/2_(:)4» L,

{A.5)
Ge). 2
| 2.0 Al 2f& )+ ...
IR VDR -=eD
!
{
i
are valid where funciions 7{,/.2:) s fe (x) etc, are
f‘ defined in Appendix B. At f-» O we have
g
' (A.6) )
:? ’ &:(t‘,t} — /‘._/{,%) (’ézj ’,
E where
A e o)
x - Q,* c*o:[c’-ﬁl"!}z‘],

2> o=
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A B -t f’//"‘fj .Hence 1%

is seen that expression (11) transforms into (11) when the Cou-

@ = [#(ars)] "+ @:= 2

lomb interaction is switched off.
At small & function Zp / s i 4 ) is expanded into series
only in integer powers of ¥ vwhile expansion of Bgﬂf t} contains

logarithms
' ¥}
5z 2f5_ (res)f 4 ‘
szt (Cafsle +2C+ G2-1)+.. . , £=0
&l = . Fr2Y ’
2 ¢ 252
I ..jj.f .i:{_.._t-{-’f— 2‘4 .....—._//_.-—-f-—z——-—,fh/flz+...(f.8)
£ " zzize-1) e)/(2t). 2>s.
The functions 24, , 4p are normalized by eondition
2, (£%,0) = 2 (R20)= 1 (1.9

Note that they are related to the introduced in ref, [151 funet-
ions QD, and 9{ by the following relations

DB (#ie)= e 2 (#, %)
| , . ' (A.10)
@ﬂf&) '—'(?E;—;‘)' 3 &!(léft)
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;""\\ . Appendix B

The functions ?‘ (x) + ft (x) etc whese argument 1= x=2{%

are expressed through the Bessel funetione,

‘Be1)

* r—r (B.2)
V¥ - /z ) x<O 2

1 e

; Z /’/= /)" /euj((fz) G ss ﬁ) (B.3)
. f,/-t)'-‘ 3(';_, /—t) 2‘;7?—;—,—' ge (B.4)
{

where, as usual, (d)‘ = a(/df!) (,(,,,é-/) , [a(),-_-j
‘Note that eq.(B.4) i: inapplicable at ¢ = 0 and 1; in

-

" these cases

Ele)o(e-2). 5558y + 57 @

{(the first two torms of expansion of these functions at x-»O

were obtained in ref.[5]). Note tnat
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Zﬁj: £, (o) = ?:/9)=§':/0)=! (».6)

Ay
Whi P 4 iy i f d
While ?{ and Z are ontire functions of x, ?t’ an >

73)

contain the logarithnms

= & >4 =
"'""""""'"—'_- -+ % of .
? / )= @!}’(2{*1)/ 7!‘/3() * lx‘ bo ¥ ’ (B.7)
4 2E-1 3e-2 .
s () i+3¢’(-?é”2) T EO etz (28-3) x* (.8)

L ndnd / ... =22
Ferzegiza)l Cofxl+ -

€ (x)=1- 2 (Gfzf+2C 1)+ E(Gufe|»2C-£ ) z.0)
-2 (lu[x|+2C - 1% )+ . .

As le seen from eq,(15), the Coulomb logarithm in the rerormali-

zation of the strong scatteringl length -ig contained only in the

torn ?e/?e

: ge(-’-) PR iet .
T bufx[+2C )+ f5(x) (B.1C)
7 (x) el z2trz)! (n‘/ / ) 7@/

while the function /Z has no sirigularity at x=0,
2 £ _=z zy 4
1*ET "o F T ., £=0
AIE |
I > ‘z,(__,*_t_____.—x L R > f%[
28 lrr)

Hence it immediately follows eq.{17).
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Appendix €.
We present here some formulae for the separable Yamaguchi
[23]
potential

oy _ ‘2’? {2,/ /g&én?/ ‘)
<)5’“4’/° F Tl 7 f22)7 {00 /jﬂa"/)] /’o{}j)‘: D

which in g-representation corresponds to the nonloeal interaction

(c.2)
s g 2 o) e aeed [ Y, (D)

(Af =m=1, ﬁ is the dimensionless coupling corstunt}, TUnlike
the & -potential model considered in . Sect. 4, thie potential
explicitly depends on . ‘There is exactly one bound state ih
every partial wave which emerges at - 5 4 .

Por ¢ = O the Schrodinger equation for the Yemaguehi plus
Coulomb potential has been =olved by van Haeringcn[24] vho has
found the Coulomb modified scattering length and the effestive
range in analytieal form. Intreducing o = 3§ /4 . let us
rewrite his formulae as

= - Z:e.z,aff.f)+2fRer(0 J-J)

Pes (Ca3)

s 2(! )] # 1[1_(1.;;.)8;:]



AR

where o 4

4 4 = 2 =2
aﬁ-;;fl‘;‘J , fs';ﬂ*;
At Jz x 1 the strong scattering lzngth has m pcle what corres-
ponds to appearance of & bound siate (here t:’%%&o ¢r=_f s ).
From €q.(C.3), taking into account the expansion of incomplete

gamma~-function
y 2 4

5 ey

¢ o e

Re(Vo, 2= Eel) s~ alz] - Cr Z ™™ L (e

we arrive at ege.(22),(03). At é? = £ the numericsl values of

“the eoefficicnts are

Z
Co * C .4' &.; = 0.8549 , g!::z-—q= }.2..,

6 . 72

42‘2:1, J= — £ = 2 e
J PL Z2¥3 (€.5)

-~ _ L N (.14 L. A
C{“ ’ Cz-"z?"‘""‘ Cj"zi,g.’

Sly

These coetficients decremse with n increasing vhich results in
& faai eonvergence of the corresponding expansions in t;‘/fzc ‘.
l26] @s) @s) :
Recentlyi“"4, the parameters 2, and qf for the
Yanmaguchi potential with acbitrary Z have been calculated. For
instance,
1 ge‘fu( 4 _.e_ﬂ..-'-’———-/g””)
] ) z -
CZ: ¢2; ‘Z’?nQéZj
_ {C.6)
F2er 1)_/ 2841

- 2 -?Z;j-;—-f Rcf‘(—ze-z: %V)



$ . z22)! :ea' P
o F et (7).

Making use of the identity

(c.'n

. (t) “(=2)!
fmn)= L ro2)- € Z 5 |

and the expansion (C.4), we come to eq.(24), The coefficients C,
are defined from the relation '

2¢e-¢ - l'[} z( -/ -
HIHET s s 0u), 20,
Avo

anyt

: / 2
80 that Chp = (28-2).) 5 “2e-+ = ;o7 €**»

C:e—z 22-2 Cer Cte.

'.Pornmla {25) 1s obtained 2rom eq.(4.13) of ref. [26]1!: analogous

ealculationl.

In conclusion, mark a misprint made in ref, [261 the term
with the coeffieient & (2Z-z}/f(e7} *(9R) abiad "in eq.
(4.25) should be multiplied by the faector ¥#FAR =-24  (here

R =4"* eecording to the adopted in ref, (28] rotatione).
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Pootnotes

1) Thus, toe scattering length and the effective range have
the length dimension only for the s-wave. In the general case
their dimensions are [ 2, ] = Z,:‘“, [ t,] = Z,’-‘e » L being
the unit of 1length. Furthermore, we consider the coefficient

Bee at the temm »é” in expansion (1‘). Its Dimen-
sion 1s[fp] «l™ ot arvitrary & . '

2) ¥%e employ the atomic units, K=rexe =t a8 well aa
the notations: ¢ - engular moment, f=-2 % ( 20 1n
the cane of Coulomb attrection), &4 = 4 /ﬂ)e . a.,=£f fr’i.a
the Bohr rsdius, To ig the strong interaction radius., It
18 assumed thet 2o << 24 .

" 3) Index (¢sJ) dGenotes the Coulomb- modified scutiering
length, the effective range tf ud s etc. Anglogous parameters
referring to strong potential V  are denoted by inderx (&) .

A deteiled derivation of formula (3) will be published elsewhere.
Lfrn-&)-2

4) By tbe order of megnitude 15”‘ ~ 2, at
2 2f , therefore in the raiio ,l‘“’ / /l(;) the singular
tera ~ 20 ) 7 uste , <.
Eesides, the numerical coefficient K£p, decresses with the &2

increases as well {see Table 1).
5) See &lso re:u_[19.20.10}. The Coulomb problem with the
S - potential hac been already considered in details in ref!zo;!

where the scattering length and effective range were calculated,
which in fact colncide with ega. (12),(14). However, in refa.
£12,20] 416 10gart thmic singularity is not sclected in the coeffi-
edente a,a for any & and sprroximate cquations (5),{19) and
(«_6; are not discuased. So our investigation properly compiement

the reguita cof ref{"oj Note alao that the 4 - potential was



e

reg
aprlied to describe the K // system at low energiesiZ
6) The most important (in the cese (2,<< [ ) coetfici~
ents £ , G, s 2, and #, 1in expensions (5),(18)
and (19) are easily calculated using formulael>T which are varta
for arbitrary potential V_ . Note that we exploit in eq.(5) the
values of the redius ¢, and of the coefficients C,, ¢, ars' d,

referring to the roint of thc emergence of & - level,
7) The condition cfy &, (%)= £ defines the position of poles of
the S - matrix. When going over from #q.(20) to (21) 1e should

take inio account the relations
o4
24 % & /2
My )= 2T (e L (8) W, @=(E) K (2,

where L,' [z), /;.,, /=) ere the modified Bessel func-
tions. Bg. (21) can be casily obtained also from formula (10)

. ) .

putting cgéf 22  eand taking account of identities

LT

g lix)=e” [,(=),

Mﬁ‘z)- . 2z Yy ¢ 4 A";/x}
s TFE T

8) The coefficients &, , Co and (C, can be calculated
using general !o::-nmlao[?j which are applicable both for local
and nonlocal potentials. Notethat the values of &, , &, ardc,
for the Yamaguchi potential have been calculated by Sitenko and
Drobachenkofzs] prior to rof.[z"'] + The amthors are indebted ¢o
AE. xud.iyavtaev who paid our attention on the paperrzsz.

9) 411 of the constents given in Table 2 do not change ai

the scaling L /:) — -t'V.,/«’t}, 0 < « < oo . Therefore
they depend only ?n the Zform of the poltential tut not om iz



radius. The mmeri;al calculation of these oonstamts is most
simple at y:;’ » _see formulee in refs.[5'7]

Note that locel potentials are arranged in Table 2 in the
course of £, ralsing.

10} Por & potential of the type (7) the effective range at
the point of the emergence of & - level is equal to

where (O,, is8 & nmmerical coefficient depending on the form
of the potential, Let us give its values for the cases when analy-
tical solution is possidle. For the rectangular well

fo" L ; ‘fe e ~ (Zl*l}.’.’(Zl—.—JJ.{,, 2zt ' )

{5]

2or ithe 5 - potential

R S £ /. W 20-2)7, 831
ﬁ.. T / ff— ——2—2;}-—(3!*1)../{ )— 2 .

And finally, for the potentiel &/x)= X &(Z-x), x=t/re
" analogous to the Yukewa potential, we have ‘

[ #-), ¢n0

Feeajpae- g (ee-50 14 -{?"Zfi" , 821

2,

.fo:'



where )‘—y’; ig the n-positive zero of the Bessel function .7;/:/:.
n=0,1,2 soev.. These values of jp,,( have been calculated
using the formulae given in ref, L8
11) Here we change the normalization of the coefficients f:
and :4[ comparing with mf.[sjz

. v T o
B e 20+1 )" -3 71
sl Ll h

- —
Par,

~ =S
Lok, 4" [ (22+0) (2-3)" | “he, 22
0 0 )

and Cz2)/7=1.
12) For instance, for ns - stetes in the Aulthén potential
Co= 0.865, 0.925, .... 1.065, respectively for n = 1,2, ... 10,
The coefficlent &% varies in this case frow 1.000 (n=1) to
0.952 (n=10) while ¢, from 0.983 up to 1.809.

13) Here 4=/2{—,éj_//k‘/ﬁe/./ tor O< <28 ,
. S— 1 7
é(”‘(!t)!{zzf///[z*rf""*zzf! ZC],

and coefficients £g with £ > 2L+Zf are calculated from

Tecurrence relations:

A £
4 - C4J (2C-e. ),

# ! (- 2t-1)! (28)
Catry = FLRE+2 )~ f(2) = L+ f£r-. . +1-;‘E—; ,

2(E-L)-t | prztez

Ce = Cpy +
y 4 (’.f—ll -z} °
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Table 1
Coefficients 4" in eq.(4)

2

C 1 2 3 4 5

c .

1 2 2 0 0 v} 0
2 0,5 2,5 2 (o} 0 [¢]
5 §1,39(-%) 7,64(-3) } 0,142 1,06 2,93 2

Hote to table 1. As usual, the number in brackets show {the order

of magritude: 5.56(-2) « 0.0556, 3,47(~3) = 3.47 - 10™> etc.




Table 2

- 0 = =
rix) ¢ - ¢ 7 f £ rw
L/ @ | o é, A, 7 & | 4A | £ | 4
e™/x |22 | 0.637 |o.842 1,056 | -0.178 | 1.0z {o.215 | - lo.517
0. 931 1,428 0,962 - - - - - -
@=1)"|3.000 | o.865 lo.983 | 1.000 | o.138 | o.987 fo.r0r | - Jo.ass | -
0.924 1.453 0.905 - - - - - -
e (—x)] 3,541 0919 1.215 0.903 0.512 0936 |o.aT2 - 0.448 -
(Aa)? |2.000 0.946 1.323 0.863 0.693 0.906 |0.223 - 0.437 -
exncx®)1.435 0.975 14457 0.814 | 0.936 | 0.870 |v.410 - fo.42 -
X8 (-x )10.872 0.985 | 1.500 0.793 1.043 - - - - -
S (/-x)}1.000 1.024 1.634 0.757 1.189 0.813}0.813 | 0,701 | 0.370 1.42
S(7-x)|1.333 1.060 1.750 0.750 1.312 | 0.780 (0,500 | 0.856 | 0.352 1.35
e‘,(o,j} 3.000 0.865 1.333 0.667 0.889 0.960 {0,042 | 0.739 | 0.464 1.58

Nate to table 2,
engular momentum [4

The paramsters €, , %

ete, refer, as a rule, to
( for the Yukews and the Hulthdn poteniisls the Juraseters for the

sud 2a levels are given - the first and the second line, corxespondimly).

the tiret level with the

18

L
d
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Zable 3
#(x) Re /2

l=1 =2 =3 =9

e /x 1.030 1.033 1.028 1.013
e=-1)" 1.042 1.048 1.028 0.919
x* & (=) 1.051 1.074 1.088 1.097
exp (~x) 1.016 1.012 0.967 0.806
Chax)t 1.008 1.007 1.003 0.995
exp (~xt) 1,015 1.021 1.024 1.025
S(r-x) 0.938 0.504 0.882 0.867

Hote to table 3. Here 4=4is effective Tange at g=4, ,
while Ap refer to the first level with the angular momentum

£ (g=2).
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10

Fig.1. The inverse s~scattering length foxr the J - potential.

The numbers at curves give the values (¢ o ° The curve S (for
f& = O.Z25) corresponds to neglecting the corrections of the
order of ¢ 2 (i.e. é, =68 =c,=¢,=0C 1in eq.(5,]).
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Piz.2. The position of the e-level in the J -potentincl depen-
ding on the coupling constent & {the energy &r-A/2). at

A>0 the level i{s real, at A <O -is viriual. The dashed
curve  ic the approximation {(26) at f=0O .
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-

.-0. 1

£ =0

&

Pig.3. The ratio &, /dc_g ( ¢ =0)1in the J - poctential

(%)
[a)

model at ; z;., = Z « The curves 1 and 2 correspond tc exac
solution ( 15’) and to formula {5) with the given in (16) valuzs
of the parameters ¢» , ¢, and &£, . The curve {3} corres-
ponds to formula (5) in which we .p‘utv f, =G =0 , i.e. nezlast

corrections ~ 5 z -
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Pig.4. The ratio of effective ranges gﬁk‘)//tfﬁj
potential model ( £ = L, 7%= 3

for the J -
)o The s0lid curve corres -

ponds to the exact formula (‘!5), the dashed one is piotted accord-

ing to eg. (19) where the texm <7 J°  1s meglected.



-

Al

STy
e
: It

t-a2
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s}, (st
S
;
< lso
£=2
21 -
£=3
+
of . S

Q6 $

Mg.-5b.The same for (2"”/2{;’ -
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Fig.6. The dependence of .Azo on the coupling constant ¢- four the s-level in the ¢ =poten.
tial. At ths curves the valuass j'hp= Zp/a, ars shown. The z0lid curves ure plotted sccor-
ding to the exact eq.(20), the dawhed ~ using the approximate sq.(26).
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Fig.7. The bound state energles in the dr;pofén%ial model at
§ = 0 (the Coulomd interaction is nit:hed of?).
The velue of E = -;-ﬂ za} 18 plotted on the ordins-

te axis,
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