ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

Mellouisme ifve - OEIPK -- 85-30 (SERP-E -- 133).

ИФВЭ 85-00 ОЭИПК **(SIRP-E**-133).

В.В.Князев, А.Г.Томарадзе, В.А.Уваров, П.В.Шляпников Институт физики высоких энергий, Серпухов, СССР

Е.А.Де Вольф Межуниверситетский институт высоких энергий, Брюссель, Бельгия

АССОЦИАТИВНОЕ ОБРАЗОВАНИЕ К^{ж+}(890) ИЛИ Р[•] С ДРУГИМИ ЧАСТИЦАМИ В ИНКЛЮЗИВНЫХ К⁺р-РЕАКЦИЯХ ПРИ **32** ГэВ/с

Серпухов 1985

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 85-90 ОЭИПК SERP-E-133

В.В.Князев, А.Г.Томарадзе^{ж)}, В.А.Уваров, П.В.Шляпников Институт физики высоких энергий, Серпухов, СССР

Е.А.Де Вольф

Межуниверситетский институт высоких энергий, Брюссень, Вельгия

АССОЦИАТИВНОЕ ОБРАЗОВАНИЕ К^{ж+}(890) ИЛИ ρ° С ДРУГИМИ ЧАСТИЦАМИ В ИНКЛЮЗИВНЫХ К⁺р-РЕАКЦИЯХ ПРИ 32 ГэВ/с

Направлено в ЯФ

*) Институт физики высоких энергий Тбилисского государственного университета

Серпухов. 1985

УДК 539.1.05.

Аннотация

Князев В.В., Томарадае А.Г., Уваров В.А., Шлялников П.В., Де Вольф Е.А. Ассоциативное образование К^{#+}(890) или ρ° с другими частицами в инклюзивных К⁺р-реакциях при 32 ГэВ/с: Преприят ИФВЭ 85-90. - Серлухов, 1985. - SERP-E-133. - 16 с.. 8 рис., 3 табл., библиогр.: 18 назв.

Представлены результаты К⁺р-эксперимента при 32 ГэВ/с на пузырьковой камере "Мирабель" по совместному инклюзивному образованию К^{*+}(890) с π[±], Кⁿ К^{#+}(890), ρ° и ρ° с Kⁿ. Получены полные инклюзивные сечения этих реакций, х-спектры частии. Проведено сравнение данных с лундской кварк-фрагментационной моделью.

Abstract

Chliapnikov P.V., Kniazev V.V., Tomaradze A.G., Uvarov V.A., De Wolf E.A. Associated Production of the $K^{\oplus+}(890)$ with Other Particles and of the ρ^{o} with Other Particles in Inclusive K⁺p Reactions at 32 GeV/c: IHEP Preprint 85-90. - Serpukhov, 1985. - SERP-E-133. - p. 16, figs. 8, tables 3, refs.: 18.

Results of 32 GeV/c K⁺p experiment with the bubble chamber Mirabelle on the inclusive K⁺⁺(890) production associated with π^{\pm} , K^{R} , K^{\pm} , (890), ρ° and on the ρ° production associated with K^{R} are presented. Total inclusive cross sections of these reactions and x-spectra of particles are obtained. The data are compared with the Land quark-fragmentation model.

M-24

введение

Вслед за недавно опубликованными результатами исследования ассоциативного образования ϕ -мезона с другими частицами^{/1}, 2/ в настоящей статье сообщается о результатах экспериментального изучения ассоциативного образования $K^{\pm+}(890)$ с другими частицами и ρ° с другими частицами в инклюзивных K^{+} р-реакциях:

$$K^{+}p \rightarrow K^{*+}(890) + \pi^{+} + X,$$
 (1)

$$\rightarrow K^{\pm +}(890) + \pi^{-} + X,$$
 (2)

$$\rightarrow K^{*+}(890) + K^{n} + X,$$
 (3)

$$\rightarrow K^{\pi^+}(890) + K^{\pi^+}(890) + X,$$
 (4)

$$\rightarrow K^{\pi^+}(890) + K^{\pi_0}(890) + X,$$
 (5)

$$\rightarrow K^{\pi\tau}(890) + \rho^{\circ} + X, \qquad (6)$$

$$\rightarrow \rho^{\circ} + K^{n} + X \tag{7}$$

при первичном импульсе 32,1 ГэВ/с*).

÷

Помимо представляемых эдесь сведений в литературе отсутствует какая-либо другая информация об этих реакциях, кроме данных о спектре $do/d\pi \cdot K^{\#+}$ в реакции (3)/3/ и некоторых данных о реакциях (1), (2) и (7), полученных в этом же эксперименте на предварительной статистике/4,5/.

Имеющиеся на сегодня экспериментальные данные о мезон-нуклонных соударениях и результаты их сравнения с различными кваркпартонными моделями оставляют мало сомнений в том, что векторные мезоны в этих столкновениях, в основном, образуются при фрагментации валентных кварков. Так, например, в реакциях

$$K^{\dagger}p \to K^{\sharp \dagger}(890) + X,$$
 (8)

$$\rightarrow \rho^{\circ} + X \tag{9}$$

 $^{^{\}mathbf{R}}$) Под сниволом $K^{\mathbf{n}}$ понимается смесь $K^{\mathbf{0}}$ и $\overline{K}^{\mathbf{0}}$.

в области фрагментации первичного K^+ -мезона $K^{*+}(890)$ доминирующим образом образуется на валентном \bar{s} -кварке K^+ -мезона/6,7/, а заметная часть ρ° - на его валентном u-кварке 7,8/. При этом детальное исследование реакции (8) и её детальное сравнение с реакцией $K^+p \rightarrow K^{*\circ}(890) + X$ показало, что процесс рекомбинации обоих валентных \bar{s} - и u-кварков K^+ -мезона в K^{*+} запрещён или, по крайней мере, сильно подавлен (см./6,7/, а также/1,2/). Поэтому изучение двухчастичных инклюзивных реакций (1)-(7), в которых одна или даже обе частицы являются резонансами, позволяет проследить за судьбой валентного u-кварка K^+ -мезона, когда его валентный \bar{s} -кварк фрагментирует в $K^{*+}(890)$ или K° . Полученная экспериментальная информация может быть использована для проверки идей, заложенных в различные кварк-партонные модели.

В настоящей статье полученные экспериментальные данные детально сопоставляются с предсказаниями лундской кварк-фрагментационной модели^{/9/}. Использованная для этого программа Лунд-Монте-Карло (ЛМК) отличается от её опубликованной версии^{/10/} только тремя следующими, уже обсуждавшимися ранее (см., например^{/3},11,12/), модификациями:

чуть меньшим, чем обычно, значением фактора подавления
 λ = 0,27 моря странных кварков;

2) запрещённостью процесса рекомбинации обоих валентных \bar{s} -и и-кварков первичного K⁺ в K^{*+}(890);

3) введением случайного поворота суммарного импульса K^+ -мезонной (протонной) струны относительно направления сталкивающихся частиц в с.ц.и. на угол, задаваемый распределением $d\sigma/d\rho_T^2 \sim \exp(-a\rho_T^2)$, где p_T - суммарный поперечный импульс струны и a = 4 (ГэВ/с)⁻².

Помимо общедоступности программы ЛМК основанием для детального сравнения полученных данных с лундской моделью послужило её хорошее согласие с целой серией результетов в данном (см., например, /1-3,66,12,13,16/) и других (см., например, обзор/14/) экспериментах.

ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Экспериментальные данные получены при обработке 1 млн. снимков с 4,7-м водородной пузырьковой камеры "Мирабель", облученной в сепарированном пучке К⁺-мезонов ускорителя ИФВЭ в Серпухове. На этой статистике, соответствующей чувствительности ~27 соб./мкб, в эксперименте зарегистрировано 31573 однозначно идентифицированных по 3С-фит-кинематике распадов К⁰-мезонов (и 1346 K^o_SK^o_S-пар), использованных для изучения реакций (1)-(7). Заряженные частицы обычно считались π^{\pm} -мезонами, кроме К[±] и р², идентифицированных как таковые в 7С- и 10С-фит эксклюзивных каналах реакций или в результате ионизационного просмотра (при котором π^{\pm} -мезоны отделялись от протонов при импульсах $p_{\Lambda AB} < 1,2 \ \Gamma \Rightarrow B/c)^{\pm}$). С подробностями обработки данных в эксперименте можно ознакомиться в работе /13/. Результаты анализа инклюзивных реакций (8), (9) и реакций

$$K^{\dagger}p \rightarrow K^{n} + X, \qquad (10)$$

$$\rightarrow \pi^{\pm} + X \tag{11}$$

приведены, соответственно, в работах/6,8,13,15/.

Полные и дифференциальные сечения реакции (7) определялись обычным способом при аппроксимации спектров эффективных масс $\pi^+\pi^-$ выражением

$$d\sigma/dM = BG(1 + \beta BW), \qquad (12)$$

в котором ВW- релятивистская р-волновая функция Брейта-Вигнера, а BG- фон, параметризованный в виде $BG_{=a_1}(M_{-M_{th}})^{a_2}\exp(-a_3M_{-a_4}M^2)$, где M_{th} - пороговое значение массы, а $a_i \bowtie \beta$ - фитируемые параметры. Мы пренебрегли влиянием отражения $K^{\pm 0}(890) \rightarrow K^+\pi^$ на спектры масс $\pi^+\pi^-$ в области ρ° -мезона в реакциях (6) и (7), так как оно заметно меньше, чем в случае реакции (9). Полный инклюзивный слектр эффективных масс $\pi^+\pi^-$, соответствующий реакщии (7), показан для иллюстрация на рис. 1a, а спектр масс $\pi^+\pi^-$ для разных интервалов значений х(K^n) и х($\pi^+\pi^-$) - на рис. 16,в вместе с результатами аппроксимации. Как видно, сигнал ρ° -мезона проявляется во всех спектрах, и они хорошо аппроксимируются выражением (12).

Сечения реакций (1)-(3) находились с помощью следующей методики, рассмотренной на примере реакции (1). Обозначим через $\sigma_1(K\pi)$ и $\sigma_2(K\pi)$ сечения $K_s^0\pi^+$ -комбинаций с массами, попадающими соответственно либо в полосу масс резонанса $K^{\text{#}}(890)$:

$$0,86 \leq M(K_{*}^{0}\pi^{+}) \leq 0,92 \; \Gamma_{2}B, \qquad (13)$$

либо (для учёта фона) в "охранные полосы" масс:

$$0,70 \leq M(K_s^0 \pi^+) \leq 0,74 \Gamma \mathfrak{B}, \quad 1,20 \leq M(K_s^0 \pi^+) \leq 1,24 \Gamma \mathfrak{B},$$
(14)

а через $\sigma_1(K\pi\pi)$ и $\sigma_2(K\pi\pi)$ сечения реакции $K^+p \to (K_s^0\pi^+) + \pi^+ + X$, соответствующие $\sigma_1(K\pi)$ и $\sigma_2(K\pi)$. Сечение реакции (1) тогда находится из значений $\sigma_1(K\pi\pi)$ и $\sigma_2(K\pi\pi)$ после перенормировки фона под $K^{\mathbf{R}^+}(890)$ и учёта хвостов в распределении Брейта-Вигнера.

ж) В ЛМК массы частиц переопределялись так же, как в эксперименте.

Рис. 1. Спектры эффективных масс $\pi^+\pi^-$. В реакции $K^+p \rightarrow (\pi^+\pi^-) + K^n + X$ для всех событий (а); при $0 < x(K^n) < 0,2$ и $0 < x(\pi^+\pi^-) < 0,2$ (б); при $0 < x(K^n) < 0,2$ и $0,2 < x(\pi^+\pi^-) < 0,4$ (в). В реакции $K^+p \rightarrow (K^0_{\mathfrak{g}}\pi^+) + (\pi^+\pi^-) + X$ при $0,84 < M(K^0_{\mathfrak{g}}\pi^+) < 0,89$ гэВ (г); при $0,99 < M(K^0_{\mathfrak{g}}\pi^+) < 1,04$ ГэВ (д). В реакции $K^+p \rightarrow (\pi^+\pi^-) + 2K^n + X$ для всех событий (е). Гладкие кривые – результат аппроксимации спектров функцией (12), нижними кривыми покасан фон.

Рис. 2. Спектр эффективных масс $K_{s}^{0}\pi^{+}$ в реакции $K^{+}p \rightarrow (K_{s}^{0}\pi^{+}) + \rho^{0} + X$ вместе с реаультатами его анпроксимации функцией (12) (гладкие кривые).

.---

ŀ

x

ī,

Для этого снектр эффективных масс $K_s^0 \pi^+$ (полный или в отдельных х-интервалах) анпроксимировался выражением (12). По результатам анпроксимации определялись: сечение $\sigma(K^{\pm+})$ резонанса $K^{\pm+}$ во всем интервале масс $K_s^0 \pi^+$, а также сечения $\sigma_1(K^{\pm+})$ и $\sigma_1(back)$ соответственно $K^{\pm+}$ и фона в полосе масс (13). Тогда искомое сечение реакции (1) составляет

÷

$$\sigma = \frac{\sigma(\mathbf{K}^{\mathbf{K}^+})}{\sigma_1(\mathbf{K}^{\mathbf{K}^+})} \left[\sigma_1(\mathbf{K}\pi\pi) - \sigma_2(\mathbf{K}\pi\pi) \frac{\sigma_1(\mathbf{back})}{\sigma_2(\mathbf{K}\pi)} \right].$$

Для проверки стабильности результатов опробовались отличные от (14) "охранные полосы" масс; полученные незначительные изменения в сечениях учтены в цитируемых ошибках.

Оценки сечений реакций (4)-(6) с ассоциированным образованием двух резонансов были получены следующим образом, рассматриваемым на гримере реакции (6). В событнях реакции $K^+p \rightarrow (K_s^0\pi^+) + (\pi^+\pi^-) + X$ область масс $K_s^0\pi^+$ от 0,64 до 1,34 ГэВ была разбита на несколько равных интервалов. Для всех $K_s^0\pi^+$ -комбинаций, массы которых попали в один из этих интервалов, вычислялись эффективные массы ассоциированных с ними систем $\pi^+\pi^-$. Для иллюстрации на рис. 1 г.д показаны спектры эффективных масс $\pi^+\pi^-$, ассоциированные с $K_s^0\pi^+$ -парами, массы которых соответственно составили 0,84 $\leq M(K_s^0\pi^+) \leq 0,89$ ГэВ и 0,99 $\leq M(K_s^0\pi^+) \leq 1,04$ ГэВ. Путём аппроксимации полученных спектров масс $\pi^+\pi^-$ выражением (12) были определены сечения реакции

$$K^{+}p \rightarrow (K^{0}_{s}\pi^{+}) + \rho^{\circ} + X \qquad (6')$$

для каждого из интервалов масс системы $K_s^0 \pi^+$. Сечение реакции (6) соответственно оценивалось по спектру эффективных масс $K^0 \pi^+$ в реакции (6') с помощью все той же процедуры аппроксимации выражением (12). Полный инклюзивный спектр эффективных масс $K_s^0 \pi^+$ в реакции (6') вместе с результатами аппроксимации показан на рис. 2.

Все приведенные ниже сечения поправлены на ненаблюдаемые моды распада К^п и К[#](890). Ошибки в сечениях приведены с учётом наших оценок систематических погрешностей.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Измеренные значения полных инклюзивных сечений реакций (1)-(7) приведены в табл. 1^{ж)}. Из грубых оценок сечений реакций (4)

^{*)}Нами также оценены сечения двух следующих реакций: $K^+ p \rightarrow \rho^0 + 2K^n + X_{H} K^+ p \rightarrow 2\rho^0 + K^n + X$, составнище, соответственно, 0,41±0,08 мб н 0,15±0,20 мб. Спектр эффективных масс $\pi^+\pi^-$, соответствующий первой из этих реакций, вместе с результатами его аппроксимации выражением (12) показан на рис. 1е.

и (5) следует, что парное образование резонансов $K^{*}(890)$ при энертии данного эксперимента подавлено и что, в частности, в реакциях (1) и (2) доля π^+ и π^- , образовавшихся при распаде $K^{*+}(890)$ и $K^{*+}(890)$, невелика. Сечения реакций (1), (2), (6) и (7) интересно сравнить с их оценками

$$\sigma_{12} = \sigma_1 \sigma_2 / \sigma_{\text{inel}}, \qquad (15)$$

Следующими из предположения о независимом образовании частиц в этих двухчастичных инклюзивных реакциях $K^+ p \rightarrow 1+2+X$ (с полными сечениями σ_{12}), где σ_1 и σ_2 - полные инклюзивные сечения реакций $K^+ p \rightarrow 1+X$ и $K^+ p \rightarrow 2+X$, а σ_{ine1} - полное неупругое сечение, равное 15,33 ±0,12 мб/15/. Соответствующие оценки, полученные при полных инклюзивных сечениях реакций (8)-(11), приведенных в табл. 2, даны во втором столбце табл. 1. Для реакций (1), (2), (6) и (7) эти оценки в пределах ошибок совпадают с измеренными значениями сечений, что означает малость динамических корреляций мажду частицами в этих реакциях. Оценки сечений реакций (3)-(5) по формуле (15), конечно, не являются достоверными. Заметное превышение оценок над измеренными значениями, очевидно, объясняется тем, что в реакциях (3)-(5), по крайней мере, одна из частиц образуется из моря, тогда как в реакциях (8) и (10) K^* и K^n , в основном, образуются при фрагментации валентного \bar{s} -кварка.

Таблица 1. Полные инклюзивные сечения двухчастичных реакций

(1)-(7) при 32 ГэВ/с: а) измеренные в эксперименте; б) оцененные по формуле (15); в) предсказанные в ЛМК.

Реакция	Сечение (мб)		
	a)	б)	в) ж)
$K^+ p \rightarrow K^{\mathbf{X}^+} + \pi^+ + X$	7,63±0,30	7,29 ±0,32	7,20
$\rightarrow K^{\mathbf{H}^+} + \pi^- + X$	5 ,21±0,2 5	4,81 ±0,16	5,07
$\rightarrow K^{\mathbf{H}+} + K^{n} + X$	0,85 <u>±</u> 0,10	1,71 <u>+</u> 0,05	0,97
$\rightarrow K^{\mathbf{H}^+} + K^{\mathbf{H}^+} + X$	0 ,2 0 <u>+</u> 0 ,2 0	0 ,74 ±0,03	0,13
→K ^{#+} + K [*] ° + X	0 ,30 ±0, 20	0 ,71 ±0,09	0,17
→K ^{*+} + ρ° + Χ	1,00 <u>+</u> 0,30	0,75 <u>+</u> 0,07	1,23
$\Rightarrow \rho^{\circ} + K^{n} + X$	2 ,03±0,1 7	1,72 ±0,1 6	2 ,2 7

*) Полное число сгенерированных по ЛМК событий отнормировано на измеренное в эксперименте полное неупругое сечение недифракционных каналов, составляющее 13,31 мб.

Реакция	Сечение (мб)	Ссылка
$K^+p \rightarrow K^{\pi^+} + X$	3,37 ±0,10	6б
$\rightarrow \rho^{\circ} + X$	3,40 ±0,3 0	8
$\rightarrow K^{n} + X$	7,76 <u>+</u>0, 18	13
$\rightarrow \pi^+ + X$	35,40 <u>+</u> 1,0 ^{*)}	15 [.]
$\rightarrow \pi^- + X$	21, 90 ±0,30	15

<u>Таблица 2.</u> Полные инклюзивные сечения реакций (8)-(11) при 32 ГэВ/с

*) При получении оценки сечения реакции (1) по формуле (15) из указанного в этой таблице полного инклюзивного сечения π^+ было вычтено сечение π^+ , образовавшихся при распаде $K^{\pm+}(890)$.

В случае реакций (4) и (5) полученная в эксперименте статистика позволяет лишь грубо оценить их полные инклюзивные сечения. Для реакции (6) некоторая дополнительная информация представлена в табл. 3, из которой видно, что подавляющая доля сечения этой реакции приходится на образование $K^{*+}(890)$ вперед в с.ц.и. Сравнение сечения реакции (6) при $x(K^{*+}) \ge 0,2$ (0,58±0,17 мб) с сечением реакции $K^+ p \rightarrow \phi + X$ при $x(\phi) \ge 0,2$ (0,308±0,019 мб)/2/) позволяет получить хорошую оценку^{*}) фактора подавления моря странных кварков:

$$\lambda = 0.5 \sigma (K^+ p \rightarrow \phi X)_{X(\phi) \ge 0.2} / \sigma (K^+ p \rightarrow K^{*+} \rho^{\circ} X)_{X(K^*) \ge 0.2} = 0.27 \pm 0.07,$$

которая неплохо согласуется с другими оценками этого фактора, в том числе и в данном эксперименте/13, 16/.

<u>Таблица 3.</u> Измеренные сечения реакции (6) при 32 ГэВ/с (мб) в указанных интервалах x(K^{*+}) и x(ρ[•]) в сопоставлении с предсказаниями ЛМК (в скобках)

х-интервал	$x(K^{\overline{n}+}) > 0$	$\mathbf{x}(\mathbf{K}^{\mathbf{H}^+}) < 0$
$\mathbf{x}(\rho^{\circ}) > 0$	0,53±0,20 (0,52)	0,04 <u>+</u> 0,15 (0,22)
x(ρ°)<0	0,38±0,16 (0,39)	0,06±0,10 (0,10)

^{*)} Имеется в виду блязость масс частиц в реакциях $K^+ p \cdot \phi + K^+/K^0 + X$ и $K^+ p \cdot K^{**} + \rho^0 + X$ и примерно одинаковая кинематика этих реакций.

В случае реакций (1)-(3) и (7) статистика эксперимента достаточна не только для восстановления их полных сечений, но и для получения х-спектров частиц. Спектры $do/dx \pi^+, \pi^- \mu K^n$, образовавшихся в реакциях (1)-(3) совместно с $K^{\pm+}$, приведены на рис. За-в, а спектр K^n в реакции (7) – на рис. 4.

Рис. S. Спектры d σ/d x n⁺(a), n⁻(6), K^a (в,г) в реакциях (1)-(3) при 32 ГэВ/с для всех значений х(K^{#+}) (а,б,в) и для х(K^{#+})<0,2 (г). Сплощные гладкие кривые (а,б,в) – предсказания ЛМК. Пунктирная кривая (г) – спектр d σ/d х Kⁿ в реакции (10) с сечением, отнормированным на сечение реакции (3).

10

÷

Спектр do/dx π^- в реакции (2) практически идентичен по форме со спектром π^- в реакции $K^+p \rightarrow \pi^- + X'^{15/}$. В то же время х-спектр π^+ в реакции (1) заметно отличается по форме от х-спектра всех положительно заряженных частии в реакции $K^+p \rightarrow c^+ + X$, особенно при х>0. Последнее прежде всего связано с существенно меньшей примесью K^+ -мезонов в реакции (1) по сравнению с реакцией $K^+p \rightarrow c^+ + X$, особенно в области больших х, так как процессы дифракционной диссоциации протона практически не дают вклада в реакцию (1). Заметим, что и вкладом процессов дифракционной диссоциации K^+ в реакциях (1)-(6) можно также пренебречь, поскольку полное сечение дифракционных процессов K^+P , $K^{\pm+}(890)X$ (0,144±0,012 мб)/66/) составляет только небольшую долю от полного инклюзивного сечения реакции (8).

Зависимость отношения сечений реакций (1) и (2) от $x(\pi^{\pm})$ (рис. 5а) в области протонной фрагментации, как и следовало ожидать, не отличается от полученной для отношения инклюзивных сечений π^+ и π^- в реакциях (11)/15/*). В области х(π^{\pm}) > 0 возрастание отношения π^+/π^- с увеличением х естественно объясняется вкладом процессов фрагментации валентного и-кварка К⁺ в образование 7⁺. В этой связи интересно проследить за поведением отношения сечений реакций (1) и (2) при к(π[±])≥0 в зависимости от x(K^{#+}). Эта зависимость показана на рис. 56. ΝαΠ x(K^{#+})≥0,2, т.е. когда К^{#+} с большей вероятностью образовался на лидирующем валентном s-кварке К⁺-мезона, отношение $\pi^+/\pi^- \approx 1$. По-видимому, это означает, что в таком случае валентный и-кварк К⁺-мезона является настолько медленным, что практически его распределение мало отличается от распределения морских кварков. При $x(K^{*+}) < 0,2$ образовавероятность ния 7⁺ на быстром валентном и-кварке К⁺ возрастает. Соответственно отношение "// становится большим единицы и увеличивается при $x(K^{\#^+}) \rightarrow -1$. Спектр $d \sigma/dx$ Кⁿ в реакции (3) (рис. 3в) характеризуется

Спектр do/dx K в реакции (3) (рис. 3 в) характеризуется существенно меньшей асимметрией, чем спектр Kⁿ в реакции (10), так как в реакции (3) только одна из частиц может образоваться на лидирующем валентном \bar{s} -кварке K⁺. Действительно, при x(K^{±+}) < 0,2, т.е. в тех случаях, когда с большой вероятностью Kⁿ, а не K^{±+} образуется при фрагментации валентного \bar{s} -кварка, х-спектр Kⁿ в реакции (3) становится близким по форме к х-спектру Kⁿ в реакции (10), как это показано на рис. 3г.

^{*)} Связь наблюдаемого поведения отношения π^{+}/π^{-} с предсказываемым в кваркнартонном подходе/17/, где $\pi^{+}/\pi^{-} \rightarrow 5$ при х $\rightarrow -1$, обсуждается в работе/15/ (в этой связи см. также/18/).

Рис, 5. Отношение сечений реакций (1) и (2) при 32 ГэВ/с в зависимости от $x(\pi^{\pm})$ (a), в зависимости от $x(K^{R+})$ при $x(\pi^{\pm}) > 0$ (6). Гладкая кривая (a) - предсказание ЛМК.

Спектр $d\sigma/dx \cdot K^n$ в реакция (7) (рис. 4) практически идентичен по форме с инклюзивным спектром K^n в реакции (10), когда из последнего удалены 2-лучевые события, не дающие вклада в реакцию (7) (пунктирная кривая на рис. 4). Спектр $d\sigma/dx \rho^o$, образованных совместно с K^n в реакции (7) (не показан), также не отличается по форме в пределах ошибок от спектра ρ^o в

÷:

реакции (9). В частности, параметр асимметрии $A = (\sigma_F - \sigma_B)/(\sigma_F + \sigma_B)$, где $\sigma_F(\sigma_B)$ – сечение образования ρ° в передней (задней) полусфере в с.ц.и., составляет 0,19±0,08 для реакции (7) и 0,17±0,07 для реакции (9)/8/.

ŧ.

Ещё более дифференцированная информация о реакциях (1), (2) и (7) представлена на рис. 6-8, где показаны спектры $d\sigma/dx \pi^+$ и π^- в реакциях (1) и (2) для разных интервалов х($K^{\kappa+}$), и спектры $d\sigma/dx$ K^n в реакции (7) для разных интервалов х(ρ°).

Рис. 6. Спектры do/dx v^+ в реакции (1) для различных интервалов значений $x(K^{R^+})$: -1,0 - (-0,6) (a); -0,6 - (-0,2) (6); -0,2 - 0 (b); 0 - 0,2 (г); 0,2 - 0,4 (д); 0,4 - 0,6 (e); 0,6 - 0,8 (ж); 0,8 - 1,0 (з). Гладжие кривые - предсказания ЛМК.

Рис. 7. То же, что и на рис. 6, но для я в реакции (2).

СРАВНЕНИЕ ДАННЫХ С ЛУНДСКОЙ ФРАГМЕНТАЦИОННОЙ МОДЕЛЬЮ

Как видно из табл. 1, модель хорощо воспроизводит измеренные значения полных инклюзивных сечений реакций (1)-(7). Она также хорошо описывает спектры $d\sigma/d\kappa \pi^{\pm}$ и Кⁿ в реакциях (1)-(3) и (7) (рис. 3,4). Только для π^{+} в реакции (1) при -0,4 $\leq x(\pi^{+}) \leq -0,3$ (рис. 3а) и для π^{-} в реакции (2) при $x(\pi^{-}) <$ < -0,4 (рис. 3б) наблюдаются некоторые отклонения предсказываемых значений сечений от измеренных. Эти отклонения более заметно проявляются при рассмотрении отношений сечений реакций (1) и (2) на рис. Ба в области $x(\pi) \leq -0.3$. ЛМК хорошо воспроизводит и дваждыдифференциальные сечения $d^2\sigma/dx(\pi^{\pm}) dx(K^{\pm})$

и $d^2 \sigma/dx(K^n) dx(\rho^o)$ реакций (1), (2) и (7) (рис. 6-8). Заметное отличие предсказаний от экспериментальных данных наблюдается только для реакций (1) и (2) при максимальных значениях $x(K^{\pm})$ (рис. 6ж, з и 7ж,з), т.е. в тех кинематических областях, где при образовании K^{\pm} существенен механизм пионного обмена. Грубые оценки сечений реакции (6) в разных интервалах значений $x(K^{\pm})$ и $x(\rho^o)$, как видно из табл. 3, также неплохо согласуются с предсказаниями ЛМК.

Рис. 8. Спектры $d\sigma/dx$ Kⁿ в реакции (7) для различаных интервалов значений $x(\rho^o)$: -1,0 - (-0,2) (a); -0,2 - 0 (6); 0 - 0,2 (b); 0,2 - 0,4 (г); 0,4 - 1,0 (д).

Таким образом, лундская кварк-фрагментационная модель после введенных модификаций в целом успешно описывает не только большую совокупность полученных в этом эксперименте данных по инклюзивному образованию частиц и резонансов (за исключением ряда специальных случаев)/1,2,3,66,12,13,16/, но и представленные в этой работе и в статьях^{/1,2/} данные по ассоциативному образованию резонансов с другими частицами или резонансами.

В заключение нам приятно поблагодарить персонал просмотрово-измерительных и вычислительных центров наших институтов и наших коллег по сотрудничеству СССР-Франция-ЦЕРН за их вклад в обработку снимков. Персоналу камеры "Мирабель" и Серпуховского ускорителя мы благодарны за успешное проведение сеансов облучения.

ЛИТЕРАТУРА

- 1. Chliapnikov P V., Tomaradze A.G., Uvarov V.A.,
- De Wolf E.A.- Phys. Lett., 1983, v. 130B, p. 432.
- 2. Ажиненко И.В. и др. ЯФ, 1984, т. 39, с. 1448.
- Ажиненко И.В. и др. ЯФ, 1985, т. 41, с. 338.
- 4. De Wolf E.A. et al. Z.Phys.C., Particles and Fields, 1982, v. 12, p. 105.
- 5. Ажиненко И.В. и др. Препринт ИФВЭ 81-158, Серпухов, 1981.
- 6. a) Ajinenko I.V. et al. Z.Phys.C., Particles and Fields, 1980, v. 5, p. 177;
 - 6) Ajinenko I.V. et al. Z.Phys.C., Particles and Fields, 1984, v. 25, p. 103.
- 7. Barth M. et al. Nucl. Phys., 1983, v. B223, p. 296.
- 8. Chliapnikov P.V. et al. Nucl. Phys., 1980, v. B176, p. 303.
- Andersson B. et al. Nucl. Phys., 1981, v. 178, p. 242;
 Phys. Rev., 1983, v. C97, p. 31 and refs. therein.
- 10. Sjöstrand T.- Comp. Phys. Comm., 1982, v. 27, p. 243.
- 11. De Wolf E.A. et al.- Nucl. Phys., 1984, v. B246, p.431.
- 12. Князев В.В. и др. ~ ЯФ, 1984, т. 40, с. 1460.
- Ajinenko I.V. et al. ~ Z.Phys.C, Particles and Fields, 1984, v. 23, p. 307.
- 14. De Wolf E.A.- Invited talk at XV Symposium on Multiparticle Dynamics, Land, 1984, University of Brussels Preprint IIHE 84-03, Brussels, Belgium, 1984.
- Ajinenko I.V. et al.- Z.Phys.C, Particles and Fields, 1980, v. 4, p. 181.
- 16. Ажиненко И.В. и др. ЯФ, 1985, т. 41, с. 925.
- 17. Ochs W. Nucl. Phys., 1977, v. B118, p. 397.
- Buschbeck B., Dibon H., Gerhold H.R. et al. Z.Phys.C, Particles and Fields, 1980, v.7, p. 73.

Рукопись поступила 4 марта 1985 года.

16

71

2

В.В.Кяязев и др.

Ассоциативное образование К^{#+}(890) или ρ° с другими частицами в инклюзивных К⁺р-реакциях при 32 ГэВ/с.

والمحالية المحالية المحالية فالمحالية والمسالية المحالية المحالية المحالية والمحالية و

Редактор В.В., Герштейн. Технический редактор Л.П. Тимкина. Корректор Л.Ф.Весильева.

Подписано к лечати 24.04.1985 г. Т-10834. Формат 60х90/16. Офсегная лечать. Печ.л. 1,06. Уч.-изд.л. 1,15. Тираж 250. Заказ 637. Индекс 3624. Цена 17 коп.

Институт физики высоких энергий, 142284, Серпухов Московской обл.

Цена 17 коп.

M

. . .

5. **La Tandan**ter

The second se

_

Индекс 3624

r

ПРЕПРИНТ 85-90, ИФВЭ, 1985

. .. **...**

-