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REFERENCE

(1,2)

Recent research oun string theories is due to the fact that $50(32)

or EstB vergion of superstrings provide a unified theory of all
four forces. Especially, a realistic compactification
Mln—db M4xK in which K is a 6 dimensional Calabi-Yau manifold with SU{3)
holonomy was presentedu) and attracted much attention.

However, it is still worth doing something about constraints on com-
pactifications. On ©one hand, there exist many choices of Calabi-Yau

2,4,5,6
manifolds( rRese );

on the other hand, as pointed out in ref.{(2), it is
possible to choose Ricci flat O{6) holonomy instead of su{3) holonomy
mani folds as the internal space. Unfortunately, a fullv understood
interacting covariant formulation is not available at vresent, soc we

have to start with the first guantization formalism. On this level, we
previcusly considered 9-—structure of strings due toc the multipliecity

of conpection of space—time(3). Such O-terms introduced, in the special
case M= ”4“Td' the first level excitations are all massive and all super-
symmetries ate broken. This needs us to reguire fn‘l{ﬂ) = 0. For the above
menticoned case, we can alsp substitute l-forms as 0 -terms. This fact
amounts to that if the internal space is connected and its fundamental
group is commutative, then fn‘l(H} = Hl(M,Z).

As for additional 2-form terms, many autheors have considered them both o1
cl»ssical and gquantum levelstjl. But none of them investigated their
global properties, although these authors stressed that it is a gener-
alization of Wess-Zumino term. Besides the normal Nambu-—Goto action
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one can introduce a additional term of strings coupling to an asymm-

etric tensor
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where B}\d = -~ E,,. . Taking egs.{l)and (2) together as another action

T
. The

we can of course generalize .it . to a supersymmetric one(
authors of ref.(7) then considered its properties of perturbative
quantization.

How let us seek what global aspects are lost in the previous perturbative

investigations. If we want to keep the classical motion equations
unchanged { unchanged also in the sense of perturbative guantization,
see below), the 2-form b = BF‘J dw*h ax? must be closed for cleosed
strings. To sce this, let T denote the closed space of parameters

{ "’r-i, 3"' ), it may be a sphere 52 or a sphere with h handles Th'
Then the string configuration x{(g~), i.e.,, the world sheet, is a map
from &~ to space-time. If we make an infinitesimal variation of con-

figurationfy J((nl'("!‘) (X, -{€+?X) ) in M can be always the boundary

of a 3-d submanifold of M, say ®[3 }xI., Now

685: gb— gi- = Sjclb

x+ X AxL (31

50 YSb = 0 if and only if db =D. b must not be exact, if it is,
b = da, then gb :Sa = 0.

Gl

x o
The wbove argument shows that beﬁc'(

M,2), therefore we cannot find such

2
a term if H (M,R} = 0, i.e., the second Betti number is Zero. Thus,

2 ., 2
we assume H (M,R) # 0 and choose a basis b & H (MR}, i = 1 —x b2'

1
According to de Rham theorem, there are fundamental circles ¢ & HZ(M,R),
) i

1 =1-—% b _, such that we can normalize b  and Sb, = S .

2 i Gt i]

For a general map x: g~ —» M, #{o*)} is always closed in the sense
of chain formalism, so X{= ) & H2€M,ZJ. Note that here we deal with the
second homology group with coefficients in 2, usually Hle.R) = HZ(M,Z)XR
and MZ(M,Z) may have torsiou. Let ey and ¢, be zenerators of HE(M’Z)’
where ¢ are generators of the torsion subgroup of HZ(M,Z). For x{m} &

a
H (M,2), there are integers n, and n ( n 1= A ¢py ;: n 1 0 —> N
2 i a 1 a a

50 that

(4)

where N is a 3d chain.

Thus we introduce an action Z 8 gl";
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where £, = \b‘. Wwe shall introduce a factor i in the action, otherwise
1a 1

c“ .
when some lr““l“’ [ran) . expl - I} becomes divergent. We see that the
1
additional term is topological invariant, seo it is a G -term.

For simplicity, we assume the torsien of HZIM,Z) is zero, therefore

I| = [i®)= | ?‘;“Igi
{

{6)

Note that, in the above discussion, we have assumed x(o} may n times
bind the imagingset of T~ , hence n, may have a common divisor
i
n. For all n. integer in eqg.{6), the space of parameters B‘- must
i
b b

be U{l) 2 or T 2 .

To guantize this system, the path integral in partition function 2

must sum all (n ) classes of configuration, then
i
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where S— means suming over sphere 5 and T . Z, means suming
Loy o

over all possible classes (n_l) [ x(3~) = i nicz‘, + W), Path integral (T)
\
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is very difficult to evaluate for usually M is complicated, it is
hard even to classify map xior).

we further point ocut that term (6) only depends cn the topolegy
of manifold M, while not on geometry of M, So unlike Rambu-Gotc term
and general asymmetric term, it is more patural.

as for Calabi-Yau compacitification, because C-Y manifold is Kahler,
the Kadhler fanm o= ‘95 dzaf\d’zh is real and closed. It is not
exact, for S LOF is proportional ko the volume of internal space
X, if wv = Ea for some l-form a, SEO; = 0. Thus {9 is a nonzero
element of H (K,R}, here there arise;5£ natural &-term in Calabi-Yau
compactification.

Here we must point cut that, if Hth,R] ¥ 0, it turns out HZ(M,Z) £ 0,
so there is some fundamental 2-circle belonging to HE(M,Z) which 18 not
the boundary of a 3-d submanifold of M, such a circle can always be
chosen to be x(9~) then we cannvt have a derivation of Wess-Zumino

(7,8)
term .

In this case, the asymmetric term thus is naturally B -kerm
rather than a generalization of Wess-Zuminc term, we will mention this
problem again later.

Weturn to the discussion for a general 2-form b = %M‘dx“Adx” not

necessarily belng cloded. Action

T= 50 | G + €7 B 2k

(B8)

can be easily extended to be supersymmetric For simplicity, assume

s~ is flat { it is actually possible for O~ = Tl’ so that the Tollow-
ng ucLion(T>
- | 2 DA ; Ty T M "
R LI 0= B, 001D X 1H%)
Tg = 53 [rde [ Goooo-B,, DX
{9)

is {1,1) type supersymmetric generalization of action (8), where

Xﬁ‘= /x}’\. +“E*")'\ +T'|IZ.§9_F,M
(10

Integrate ’B and eliminate the auxziliary fields F*", eq.(9)

reads

Ts = 33 W0 [Guu ¥+ L PBYeLg, et nian
- 1o -
= 3 B Y+ B P g 15 ¥t

(11}

in above eguation, we have included torsion coming from B in curvature
v

%hdiw.. The torsion is

Toeg = 3 Bluugy

(12}

We now only quote scme resuits from refs.(7). The <ne locp ch-shell

ultraviolet counterterms are
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and the repormalization-group eguations
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