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ABSTRACT

Possible topological invariant terms in the first quantisation of

strings associated with nonzero elements of the second cohomology group

oi" space-time are investigated. The direct result of such terms is

C-violation.
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Recent research on string theories ' is due to the fact that SO<32) .

or E
8*E g version of superstrings provide a unified theory of all

four forces. Especially, a realistic coqpactlfication

H —£»H xK in which K is a 6 dimensional Calabi-Yau manifold with SUI3)
1 0 * (21

holonomy was presented and attracted much attention.

However, it is still worth doing something about constraints on com-

pact if icat ions. On One hand, there exist many choices of Calabi-Yau

manifolds ' 1 on the other hand, as pointed out in ref.(2), it is

possible to choose Ricci flat 0(6) holonomy instead of SU(3) hclonomy

manifolds as the internal space. Unfortunately, a £ullv understood

interacting covariant formulation is not avaiiable at Dresent, so we

have to start with the first quantization formalism. On this level, we

previously considered (J-structure of strings due to the multiplicity

of connection of space-time . Such O-terms introduced, in the special
d

case M= M xT , the Eirst level excitations are all massive and all super-
4

symmetries are broken. This needs us to requite TTi' H' = "" F o r *'1e above

mentioned case, we can also substitute 1-Eorms as fj-terms. This fact

amounts to that if the internal space is connected and its fundamental

group is commutative, then /T̂ 1 (M} = H (M,Z).

As for additional 2-form terms, many authors have considered r.hen* both 01

classical and quantum levels , But none of them investigated their

global properties, although these authors stressed that it is a gener-

alization of Wess-Zunino term. Besides the normal Nambu--Goto action
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one can introduce a additional term of strings couplinq to an asymm-

etric tensor
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where B j - - B^ . Taking eqs.(l)and (2) together as another action

we can of course generalize .it _ to a supersymmetric one . The

authors oE ref.(7) then considered its properties of perturbative

quantization.

Now let us seek what global aspects 3 r e i o s t l n the previous perturbative

investigations. If we want to keep the classical motion equations

unchanged ( unchanged also in the sense of perturbative quantization,

see below), the 2-form b = B^,J dx'A dx" must be closed for closed

strings. To see this, let T- denote the closed space of parameters

( •>'. 3~ ), it may be a sphere S or a sphere with h handles T .
h

Then the string configuration x(rj- ) , i.e., the world sheet, is a map

from rj- to space-time. If we make an infinitesimal variation o£ con-

f igurationfltH •̂ 'tlK'j - ( X , - < * x ?*) > in H can be always the boundary

of a 3-d aubmanifold of «, say xl-T- )xl. Now

so *> \ b = 0 if and only if db =D. b must not be exact, if it is,

b = da, then ^ b = ̂ a = 0.

* 3 * 2
m e tinove argument shovs that b fcli (H,R) , therefore we cannot find such

2
a term if H (M,R) = 0, i.e., the second Betti number is zero. Thus,

we assume H (M,R| t 0 and choose a basis b fc- H (M,R), i = 1 V
According to de Rham theorem, there are fundamental circles c.t" H (M,R)j

, such that we can normalize b and \ b = \
2 i t

J. 1 Ci]

is always closed in the sense

I = 1

Foe a general map x: M,

o£ chain formalism, so X{T ) £• H (M,z). Note that here we deal with the

second homology group with coefficients in Z, usually H (M,R) - H (M,Z)xB

and H2(H,zl may have torjiuu. Let c1 -and c & be generators of H (M,Z),

where c are generators of the torsion subgroup of H (M,Z). For xi'T*}^-
a 2

H (H,Z), there are inteqers n and n C n :-CT0-^*oo ; n : 0 —^* N )
2 i a i a a

so that

2.

where N is a 3d chain.

Thus we introduce an action 2. i ° i

(4)

,- +
(5,

where f = \b . We shall introduce a factor i in the action, otherwise
ia t| i

when some \ u., -> c»D r exp( - It becomes divergent. We see that the

additional term is topological invariant, so it is a tf -term.

For simplicity, we assume the torsion of H^IM,!) is zero, therefore

^ l i e ) - t ^ ; ^ i

(6)

Mote that, in the above discussion, we have assumed x(cr) may n times

bind the imagii^Set of I" , hence n^ may have a common divisor

n. For all n. integer in eq.(6l, the space of parameters g; must

b b
be U(l) 2 or T 2

quantize this system, the path integral in partition function I

must sum all (n ) classes of configuration, then
i

2.

T 2

where means suming over sphere S and T
la) h

o v e r a l l p o s s i b l e c l a s s e s ( n . ) I ) = n . c

(7)

means suming

[). Path integral (7)
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is very difficult to evaluate for usually H is complicated, it is

hard even to classify map x(o~).

We further point out that term (6) only depends on the topology

of manifold M, while not on geometry of M. So unlike Nambu-Goto term

and general asymmetric term, it is more natural.

As for Calabi-Yau compacitification, because C-Y nanifold is Kahler,

a ~b
the Kahler form i© = ig •- dz f\ dz is real and closed. It is not

exact, for ) W is proportional to the volume of internal space

0 »
a, \ ̂

0 »
K, if —J da for some 1-form a, \ ̂  = 0 . Thus OO is a nonzero

2 J

element of H (K,R>, here there arises a natural 9-terra in Calabi-Yau

compact ification.

Here we must point out that, if H (M,R) ^ 0, it turns out H (M,Z) f 0,

so there is some fundamental 2-circle belonging to H2(M,") which is not

trio boundary of a 3-d submanifold of M, such a circle can always be

chosen to be x(C> ) then we cannot have a derivation of Wess-Zumino

(7,8) „

term - In this case, the asymmetric term thus is naturally pr-term

rather than a generalization of WesE-Zuraino term, we will mention this

problem again later.

We turn to the discussion for a general 2-torm b = B ^.dx^dx^ not

necessarily Ijein^ closed. Action

1= V*
( 8 )

can be easily extended to be supersymmetric For simplicity, assume

rr- is flat ( it is actually passible for Q- - T ) so that the follow-

ii" a;Uori '

(9)

i s (1,1) type supersymmetric genera l i za t ion of action (8 ) , where

(10)

In tegra te

reads

I s =

and el iminate the a u x i l i a r y f ie lds FA%, e q . O I

in above equation, we have included torsion coming from B in curvature

R^.jj.r- • The torsion is

(12)

We now only quote some results from refs.(T). The one loop on-shell

ultraviolet counterterms are

F.
(13)

and the renormalization-group equations

(14)
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