Flocid Dang,
N REFERENCE Crn Y5

.ﬂ-\
)
23 1C/86/136 . Introduction
;t \ .ImmmNAPREng, Many experimental results have shown that a great part of the
i W:‘ (Limited Distribution) losses in radial compressors occur in the diffuser, due to the
| L distorted unsteady flow discharged from the radial impeller
£§ / £1,2]). The classical method for calculating the flow in vaneleas
s i i di ffusers treats the flow as one dimensional using empirical
nternational Ato T )
é? mie Energy Agency values for the frictional coefficients [3].
and Owing to the great difference between the calculated values using
fiited Wagfons Fducational Sci { £ e X this method and experimental results, in case of the highly
£AE§§%EEiwp///}Af ctentific and Cultural Organization unsymmetrical flow, the lomses in vaneless diffusers would be
—— INTERNATIONAL CENTRE FOR THEORETICAL PEYSICS treated in two steps, namely 1!

(a) the unsymmetrical flow will be assumed to he equalized
suddenly, w0 that the losses can be calculated as Carnot
losses [3,4],
CALCULATICN OF TH® UNSTEADY FLOW IN VANELESS DIFIUSERS . () :zztgim::;i;::Tlt;;tion of the flow it can he treated as
BY THE PARTIALLY-PARABOLIC METHOD
Ancother development to treat the unsteady distorted flow in
vaneless diffusers was done by Dean and Senoo {11, The flow is
devided into two regions, the %o called Jet and Wake regions.
Using some assumptions and empirical walues for the frictional

M. Bassily Hapna ¥ coefficients, which vary from case to case {51, it is possible to
International Centre for Theoretical Physics, Trieste, Italy, :t;;ice the wvay of the flow equalization and the vanishing of the

In this paper a procedure to calculate the three dimensional
flow discharged in a parallel wvalled vaneless diffuser will be
presented. Such flow is regarded as unsteady flow in the absolute
system [11. The flow rotates with the angular velocity of the

ABSTRACT impeller and due to its nonuniformity the velocity at a certain
point in the absolute system varies with the time ( 3/ 9t f a3,

. . The flow will be assumed to be incompressible and turbulent from
Experimental investigations have shown that the flow dizchargsd
from a centrifugal compressor or pump impeller into the diffuser is

unsteady snd contributes for additional losses in the giftuser. The
partially parabolic method is used to caleulate this flow in the
diffuser and reveals the mechanism of amocothing the distorted flow

downstream, Calculated results are compared with messirements and

good agrecment is found.
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the beginning. To overcome the flow unsteadiness in the absolute
system, the problem will be treated in a relative system rotating
with the angular velocity of the impeller. For this purpose
the partially parabolic method will be used (6],

The Partially Paraholic Procedure

It is possible to solve the equations of motion as parabolic
equations, if the pressure field is known and the tensional
stresses will be neglected. That the elliptic effect can be given
only through the known pressure distribution. Due to this fact,
the diversion of the solution will greatly depend on the accuracy
of the starting pressure field [E]. Because it is difficult to
give the correct pressure distribution in advance, it is usual to
calculate the pressure for starting the procedure assuming

isentropical conditions. According to this assumption, the
velocity components calculated parabolic will not satisfy the
continuity equation. Therefore the pressure field must be

iteratively corrected untill the continuity equation is fulfilled
for every point of the cross-section under consideration.

The Coordinate Bystem: As the flow discharged from the impeller
into> the diffuser is unsteady, when regarded in the absolute
system, the solution will be derived using a cylindrical

coordinate system rotating with the impeller angular velocity
(Fig. 1).
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Fig.1 Rotating coordinate system

dinates shown in
Fundamental Equations: lUsing the cylindrical coor

Fig.1, ¢the fundamental equations for incompressible flow can be
expressed as follows (71

Continuity equation

aw aw (1)
3 z _
FOw g Ty =0
Momentum equations
from the
Under the assumption that the flow is turbulent
beginning and that th; tensional stresses and the shear stresses

in flow divection are negligible, the momentum equations tend to:

r—direction
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Turbul ence model

The determination of the apparent viscosity in the case of three
dimensional distorted shear flow is normally difficult, A simple
model based on Prandtl’s assumptions will be used here.

Owing to the three dimensional wvelacity distribution, two values
for the apparent viscosity can be calculated (using the velocity
gradient either in P -direction or in z-direction). As long as
the apparent viscosity determined in z—-direction is greater than
in Y ~direction, it will be considered as the effective apparent
viscosity. Otherwise a mean value of and will be regarded
as the effective apparent viscosity, rw fz

utz {vtz > ut@}
Ut =

1/2 {u < p, } ‘3

+ U
(utz Lo tz ty

Depending on  the shear flow, the apparent viscosity will be
determined in two ways as follows :

a. ball boundary layer regions

Near the walls the eddy viscosity will be calculated using
Prandti’'s mixing-length theory (71

W aw W Iw 172
2 1 2 r .2 P 1 z 2
Uy =0 1% (¢ To 1T+ ( Iz + { 3z + ¥ 3o } } (4)
where
1 = 0.41 =z (z = distance to the nearest wall)

In the outer range of the boundary layers

1 = A.b C1 <1 b}
hax max

A =o0.08 - 0.09
6 is the boundary layers thickness
b. .Free turbulent flow

The shear flow outside the wall boundary layers will be treated
as free turbulent flow (Fig. 2. The virtual kimnematic vigcosity

wrll be rcalculated wusing the simple form established by
Prandtl [8] :
Mg TP Xy P (WonayT Yomin! S
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Fig. 2 Free turbulent flow cutside the
boundary layers

The constant ¥1 in equation (5) must be determined on the _bgs:s

of measured values. Here it will be set equal to B determined

experimentally for the wake behind a cylinder E£E8J. ¢ [3=llb= O.IE)

With this wvalue a good agreement with the measurements is

reached. b in Equation (3) is the shear flow width (Fig.2). w

and w are the mpaximum and minimum radial velocities. rmax
rmin

Determination of the static pressure field

According to measur ements (e.g. £E11,£21>, the pressure
fluctuation will be damped in a short distance after a radial
impeller. As such a good starting wvalue for the pressure
distribution <can be obtained from the simple frictionless one
dimensional calculation. For parallel-walled vaneless diffusers,
the pressure can be expressed as follows (5] :

———————— D a—— L2 T e Sva—— (6)
pelrds2 r+avr
where _ -
p (r) and p (r+ Ar?_are the pressures acting at the radii
r oand r+ Ar respectively. c(r) is the mean velocity acting at r.

Preassure cofroction

Using the pressure distribution calculated out from eguation (6)
and the starting conditions, the velocity components A and
wz; can he calculated from equations (2a,b,c) with the aid of a



marching integration technique [61, This sclution will not be
completely correct, because of the unexactly calculated presaure

field and the calculated components will

continuity equation. Accordingly the pressure
corrected to give the proper velocity distribution.

satisfy the

field must be

The correct values of the pressure and veleocity components will
be expressed as the sum of the unexactly calculated values (X}

and a correction part (') [6] :

*

w = W + w'
r

e = p + p’

The difference between the values calculated

7

substituting

equation (7) in the mamentum equation (2a), where the variation
in the curvature, shear stresses and Coriolis terms as well as
the correction in the transport velocities will be neglected, and
those calculated using (%) data, yields for the momentum eguation

in the radial dirvection [7] :

aw’ w* ow’ aw’ -
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For more simplification it will be assumed that

x ¥ ¥

w >r W ' w

r z
Then tends equation (8) bto =

-

In the same way the other two momentum equations in
directions will be treated and the correction in

8)

(Gal

Y- and z-
the wvelocity

components can be given as a function of the pressure correction

as follows :

w2 - - 133
r ar [ STt
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A first step to correct the prescsure over the cross—section upder
consideratiorn can be obtained from equation (9a), that fulfills
the continuity eguation finally. Because the pressure for the

previous section is already corrected, it can be written :

1 .
P W, = ===07D . (10)
r W

Integrating equation (10) over the considered cross-section,
tends equation (10) to (71 :

sq . m_,h!
/] %.r de dz
Ar
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E'corrects the pressure level to satisfy the continuity equation
as a whole. The second pressure correction will be done to
satisfy the continuity egquation in every point of the cross~
section. Using the continulty equation together with equations
7y, the defect in the continuity (-CD) can be interpreted as
follows :

aw aw’® awt aw®
L] . @ z 2 . ] z
—— PR 4 — = - .  — — = - 12)
p { Tl 5- ' T 7z } e { rya 3 troaz } cp

The continuity defect (-CD) can be calculated from the first
solution of the momentum eguations (2). The correction for the
velos-ity components in equation (12) will be expressed as
pressure correction using equations (9)

ar W EIT] r W 17 az w* az (13a)
r r r
f p' o+ f p' + f p' + f p’ + f p' = CD (132
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Equation (13) represents the local pressure correction for every
point of the c¢ross-section. The numerical solution of this
equation is not stable. As a proposal from Moore [6]) -1% of f will
be considered, which means, that the local pressure level
correction will be varied to stabilize the numerical solution.
This wvariation will mnot affect the gradient of_ the pressure
correction in Y- and z-direction. The value of 35y used after
that will be multiplied with -0.01 to compensate the difference




in the local pressure correction level. Finally, the pressure
correction can be calculated as follows

¥ k4 -
p =p + p!
new old
and then
* —_—
p=p + p* o+ p! (143
old

(see solution procedure}

It must be mensicned that equation (14) will be used only for_the
velocity correction. For the preassure correction, the part p! "
will be added to the one-dimensionally calculated pressure [«

Boundary conditions

Because of the adhesion, the absolute velocity must be zero at
the diffuser walls. To use this boundary condition, the arid
lines at the diffuser walls must be very dense, because of the
high wvelocity gradient in this region, and the sublayer region
must be taken inte account.

As a simplification, the absolute velocity at the wall (point O
in Fig. 3) will not be set equal zero, but will be linearly
extrapolated from the neighbouring point (point 1 in Fig. 37,
assuming the same flow angle for both points. The wvelocity
components in the absolute system can be expressed as functions
of those in the rotating system as follows :

c = w
r r

[ = W + owr
P W

c = w
z z

Fig.3 Coordinate system for
determinig the velocity
components at the walls

Because point 1 is very near to the wall, the velocity component
perpendicular to the wall can be neglected.

[ = C =0 (16
zl z0Q

For determinig the friction velocity uy , the absolute velocity
at point 1 must be known. For this purpose the douwnstream
velocity distribution will be used as starting values and ‘lfter
that by the iteration the calculated values for the considered
cross—section will be used.

[ = w + (w + oy r 2 17>
1 ri 1

Using Prandtl’s velocity-distribution law {91 =

u AZ U !
1 1 i [$1=2]
= ———— +
<y Tﬂi( 1n ( < ) 2 )
By iteration procedure the friction velocity Uy can be

determined from equation (18) and then the velocity gradient in
z-direction at point 1 1

(2. Yy (19)
z ‘17 0.071 az

Assuming that the flow angle for point 1 and O is the same and
using equations (19) and (15), then for linear extrapolation
between point 1 and O (Fig. 3) it tan be written :

u

- T
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ut
¥oo = Wpp twT - ﬁTﬁT“E; Y- uwur (Z0b)
Solution procedure

The solution will be carried out on a djffuser sectaor,
representing the flow discharged from an impeller channel. A
marching integration techhnique is used, in which a two-—

dimensional field of variables is determined with the finite—
difference procedure, at #ach section of the sector considered.
The flow diagram in Fig.4 explains the steps of the solution :



lfiffuser section No. 1
1= 1

Start values ('r"g'“z'p'”’p’“L
and geometry)

Start pressure r:nld p for :roaa
section No. equation (6)

| B T ETRER N

T Me1er HzI"z;:q

L-0istribution using the turbulence
mode 1 £
ode { \:_i Mo g} ]

a,b,c

tfne!rizina and aclving equations
2

Determinatior of t
correction

he pressure level
P o(prp” e )

Determination of t
CD and the local p
p:P-Q

ne continuity defect
réessure correction p°
P +p’

Fig. 4 Flow diagram for computing the
flow in vaneless diffusers
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1. YThe initial values of the flow and the diffuser geometery will
be stored for the grid knots shown in Fig. 3.

period
—N
; _ M=2]
i) .« N
—0
0 - M

Fig. 85 &rid used for calculating the flow

2. The pressure for the next section will e calculated one-—
dimentionally with the help of equatioh (6).

3. The dynamic viscosity will be detrmined with the aid of the
velocity components either from the downstream or, when it is
iterated, from the calculated velocity components.

4, The radial velocity distribution Wy will be implicitly
calculated after linearizing equation (2a) using, at first,
the unknown variables from the previous cross-section.

5. The velocity components w and w, will be determined
similarly from equations (2h) and (2c) using the calculated Wy
and wyp respectively.

6. The pressure level will be corrected according to eqn. (11).

7. Using the corrected pressure level and the calculated velocity
components, the steps 3 till 5 will be repeated, to determine
more exact values for the velocity distribution.

B. The defect in the continuity (CD) for every point of the
cross-section considered will be determined using egqn. (12).
With this wvalues the local pressure correction p’ will be
calculated from equation (13),

9. Step 3 till 5 will be repeated using the velocity components
calculated in point 7 and the corrected pressure distribution
in point 8.

10.The wvalues obtained will be stored and will be used as
starting values for the next cross-—section.

11.5tep 2 till 9 will be repeated till the diffuser exit will be
reached.

Results

The procedure demonstrated in the previous chapters will he
applied to calculate the flow discharged in the vaneless diffuser
measured by Eckardt [2] to test the validity of this method. The
second cdase is the computation of different kinds of flow with
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varying grades of distortion, which will be given in the rotating
system in the form of a sine function with different amplitudes.
Hypothetical values for the flows will be used in this
comparision. The aim 1is, besides the investigation of the
mechanism of equalization of the unsymmetrical flow, a study of
the additional losses due to the distortion of the flow.

a. Eckardt’s diffuser

Eckardt’'s diffuser (Fig. 6 is a very important object of
investigation, because of the two-dimensional character of the
velocity field. The operating point m = 5.31 kg/s and N=14000 RPM
will be calculated assuming that, the flow is incompressible and
the wvariation of the diffuser width in the regions measured -
within radius ratio R/R2 of 1.017 and 1.151 ~ is negligible.

Thratthing -

ring e

Fig. 6 Geometry and main dimensions of
Eckardt’s di ffuser

Fig.7 shows the measured and the calculated three dimensional
radial velocity distribution along different radii of Eckardt's
di ffuser. It must be noticed, that Eckardt’'s measurements are not
given in a certain sector representing a period, but always
represented between the pressure— and the suction—- side, In the
calculation, for a constant sector having the same angle as the
impeller channel, the pressure and the suction side will be
shifted from radius to radius. This shifting, which occurs due to
the swirl in flow, <¢an be seen in Fig., 7. The agreement between
the calculated and the measured w, —distributions is good. It can
be noticed, that the heavily distorted flow is egualized in =&
relatively short radial distance.
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Fig.7 Measured and calculated radial

velocity distribution

13

A
Jgpﬁ&g;&

i
itk

R 0"‘ \\
R R
A

(7

LY

\

%
<SR

Qb/




Fig. 8 shows the measured values of the total pressure, compared
with those calculated using the present procedure and the Dean
and Senco method. The slope of the curve detrmined here is almost
the same as that of the measured points B (instantaneously
measured points ([(21). This is not achieved by Dean and Senco
method in both cases of considering the flow as compressible or
incompressible. The difference occured in the level is due to the
assumption of incompressibility of the flow. The total pressure p
in case of incompressible flow is determined according to t
equation (21)

2

p =p +8c /2 (21>
t

In the case of compressible flow, we must start with the total

enthalpy hy, which equals to the sum of the static enthalpy h and
the kinetic energy :

2
h =h+c rs2 (22Zad

Using the principal eguations of the thermaodynamics assumwing
isentropic stagnation process, eguation (22a) tends to @

P = p L1 + —cm s e 7 -1 <223

It is clear that the total pressure determined using equation
(21) differs from that calculated with the help of equation (22)
for the same static pressure and the same kinetic energy. This
causes the difference in the level between the curves in Fig.8.

? ,
Iy 531 kg/s o Ei‘ﬁﬁﬁ},”“‘l (2
10, [ 14000 RPM o unsteady
\ Iheorsetigel (23
Fig. 8 o e, compressible
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Amansi o e o Ihsorstical
Fobal i (present work?

o atne e s 21._ < —.— incompressible
FO P e iy e s N

20 ' e
10 12 14 16
Q/P-——¢,
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For the incompressible flow the difference in the total pressure
is proportional to the losses in the diffuser. This is shown in
Fig. 9, where a better agreement is reached with the present
procedure than that of Dean and Senoo., (Point 2' represents the
location of the first diffuser section measured by Eckardt [21)

yooo T . |

p.-p.. 008+ & Experimental 2] -~
t "t ‘
p Theoretical i

1o 0,064 — tpresent work)

0044 == Theoretical |2] —
0,021 _—— T
e T =
! @ 104 108 112 16

Fig. 9 Total pressure difference
at different radii

b. Effect of the unsymmetry upon the losses

The geometry of the vaneless diffuser will be taken the same as
that of the radial compressor at the "Institut fur Strahlantriebe
und Turboarbeltamaschinen RWTH Aachen, west Germany" (see Fig.l10O>.

m=075 kgl
N=8000 RFPM
z =16 blades

3159

—_—

/

Fig. 10 Geometry and main dimensions af the
RWTH radial compressor




Thr ee cases with different grades of distortion will be
calculated. The radial valocity distribution in the
circumferential direction will be given according to the
following equation (Fig. 11)

w (P = w L1+ ksin ¢z 9> 1 (23>
r rm

where k is a distortion parameter and z is the number of blades.

k0.5
nsr
w_fw k=0, 25
T’ Trm
k=0.0
1.0
0.5
] [l - 1 1
0 0,25 05 8,75 H
— Epflpo

Fig. 11 Radial velocity distribution chosen
along a diffuser sector corresponding
to a rotor channel angle

k will be set 0.0, 0.25 and 0.5 for the three cases respectively.
For all these casses the velocity in the z-direction will be
considered to be constant, which means, that there are no
boundary layers at the entrance of the diffuser. The flow angle
for the three casses will be assumed to be the same for the whole
cross-section of the diffuser inlet ¢ B,=108% ).

Figs.1Z show the radial velocity development for k=0.5 along
different radii and the vanishing of the velocity fluctuation,
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Fig.

12a

Radial velocity development for
different radii
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Fig. 12c Radial velocity development for
di fferent radii

Fig. 12b Radial velocity development for
different radii
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The calculated diffuser efficiency n:)for the three casses (k =0,
0.25% and 0.5 ) is ploted in Fig. 13.

The major part of the losses (drop in the efficiency) occurse in
the mixing zone at the entrance of the diffuser. After that the
gradient of all curves are almost the same. The digtorted flow
causes more losses tham that caused by the uniform flow (k = O3,
The decay of the wakes occur in relatively short radius ratio
there R/R; = 1.2) after the impeller. Even small distortion in
the flow can produce fairly high losses at the entrance of the
diffuser. The drop in the diffuser efficiency is found to be
nonlinear with the distortion parameter k but almost hyperbolic.

nD ,' N — ! T 1 ’.I 1
LY .
29T\ 1 05 y
N
L N I :
07T — 5‘ TTmme——— g7t
O 4 o6t
05 4 ] —— 05—
1 12 13 14 1S 0 02505
—=R/R, —k

Fig. 13 Diffuser efficiency for different
distortion parameter k

Conclusion

In this paper a procedure is presented to calculate the unsteady
flow discharging from a radial compressor vrotor in a vaneless
di ffuser. The parially parabolic method used in the calculation
can be reguarded here as pure parabolic method, because the
pressure field, which normally gives the elliptic effect, is
estimated here parabolically assuming one dimensional flow
conditions. For determinig the apparent viscosity all over the
flow sections, a simple model based on Prandtl's assumptions 1is
used.

The accuracy of the presented procedure is examined and a good
agreement has been gained between the calculated and the measured
values.:

Toe study the effect of the unsymmetrical flow on the losses,
hypothetical flow conditions having di fferent distortien grades
are calculated. It is stated that, even small flow distortion can
produce fairiy high losses in the zone of the diffuser entrance
{mixing zone). The drop in diffuser efficiency is found to be
hyperbolic with the distortion parameter k.
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Nomenculature

cD

DS

M

o F =S 2

bridth of shear flow outside the boundary layers
di ffuser width

absolute velocity

continuity defect

pressure side

distortion parameter

mixing length

mass rate of flow

revalution number

static pressure

total pressure

atmospheric pressure

radius

radius

suction side

blade period

circumferential velocity

friction velocity

relative velocity

length in circumferential direction
axial direction

number of blades

relative flow angle at impeller outlet
di ffuser efficiency

dynamic viscosity

density

0 = circumferential angle

= channel angle
[=]

= angular velocity

Subscripts

2 impeller exit (diffuser inlet)

1 laminar

max maximum

min minimum

i 4 radial component

t turbulent

z axial component

") circumferential component

Superscripts

* not exactly calculated value

’ correction part

- mean value
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