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ABSTRACT

The Hellmann-Feynman theorem valid for the parameter dependence
of bound states is generalized to the case of Gamow states using an
appropriate definition of scalar products and expectation values with
such states. The one-dimensional square well potentisl is considered

a5 an illustrating example,
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1. INTRODUCTION
There is a recent interest in the Pouli-Hellmernn-Feynman
Theorem (PHFT) end i1ts aspplications within solid state theory
and guantum chemistry to (i) inhomcgeneous jellla including
spheres, volds, adsorption and forces on and between jellis
/1-€/, (ii) forces snd pressure in solide /7/, (iii} phonon
energies in semiconductors /8/, (iv) relexation of metal sur-
faces /9/, {v) point defects in metals /10/ and semiconduc-
tors /11/, (vi) the peuge treatment of the quantum Hall effect:
/12/, (vii) clusters /13/. Tt is mentioned in commection with
the stress theorem /i4/ and it has a relationship with the
foree theoren /15/. The FHET (firet found by Pauli, see e.p.
/3 or /1l4/) states the following. If & system described
by & Hamiltonian E( A}, where A is a certain parameter, has
bound states @n,En, then it is

dEn _ <onldH/dAIgn>
an PPN (1.1}

If A means e.g. the position of a nucleus (within the Born-
Oppenheimer sapproximation . of clusters or solids), then on
the r.h.s. a PHF-force: appears, driving a relexation. The
narameter may be also a coupling constant, e.g. the well-~
known "charging formula" within the many-body theory of

the electron gazs ground state ¢

E-E(0) = [ coIvIed /<oig> (1.2)

where H=H4V, V~A = ez/qva° , rests upon the PHFT (szee c.r.
/1E/ ). :

The question arises,if an appropriately genmeralized version
of the PHFT can be derived alsc for scettering states. For
the continuum . of scattering states there does not exiet

any parameter dependence E{A )}, but the complex energies

Eg of the diécrete Camow states (see Sec.2) of course depend
on A and 1t is naturally to ask for dE;/d! (see Sec.B). For
simplieity we restrict ourselves to single particle prcblems.
The result (3.3) will be illustrated by a simple example
(Sec.4).
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The whole procedure can be formulated in an gompact form as

L3
DL CALCT STATLS Go (Eh) = [E;‘;”o (e- 52 9)] £t , (244)
Gunslatntionary states were introduced in nuclear vhysics gtressing the fact that an interchange of the &-limit and the
by Orwmow lone cpo in order to describe the o- decay phe- analytic continuation would give wrong results {for example
nemeron 17/, after that o lot of snttemnts were performed incoming waves with exponentiamlly decaying amplitude instead

to introduce such resonant states in formal nuclear reaction of desired cutpgoing waves).

thecries, see e.g. /18/, as well ag in prectical Taleulations /19/. Recensly /20/ a generalised scalar product of an owbgoing

and an incomizg Gamow state were defined in an analogous

Comos =loten wre defined sg soluticnz of the stetionury way,
(1) caleulating the ocouring integrals with an energy L+i8

sehridinrer couation setisfyines the agymptotic boundery

condilions of nurely vutpoins (+ ) or puwecly incoming (=) for the outgoing and E-ié for the incoming state,
wives, Mieae conditions make T nrobdom non-relfi- adjoint. (ii) taking the § ~1imit,

llence the energy eigenvalues of the adjoint states sccording to (iii) performing the analytic continuwation to the

complex E-plane with E= Ensifa=El,

Hlgn > = Elw> an’;) SR LT (7.3 ,b) In this way it has been shown, that the Gamow staies form
a biorthogonal set

T osonmion (3‘,’1 =330, M, >0 ), vnd the Oonow clnter < @b ~ Snar (2.5

are not normeliccble cnd avtloronsi i the ususl =oncc . .
; - N and a proper ncrm has alsc been introduced. Generalized

of the diverrence of bthe wonlidaces fonm laree &io-

Nexpectation values" cr{Ale > AL 1wl> can be defined
gimilaxrly.
Bquivalently to Egs. (2.1) the problem may be formulated by ve would like to mention, that Gamow states, bound states
a honogeneous Lippmann-Schwinger equation and suitable choogen scattering states within the proposed

treatment fulfil s completencas relation /20/.

W

-
Pt E)y = Gole)vigteE)y Gtey=(e-£ s13) &30, (2.2)

, 5 i3 PHET T AN, TE
vhiere plsthe momentun operator and Gg(E) is the frec particle 3. IES PHFT I'OR GAMOW STATES .
If E =1 ()\)Jthen the Gemow states of , EI_J. depend on

Green operator, *id expreases the degired asymptotic behaviour.
The condition the parameter » , too. From

det 4~ Gis)vi=0 ¢ _ <@alHigs>
N | @39 w7 TS (3.1)

in order to get non-trivial solutionsof (2.2) cannot be ful-
filled by any resl energy E. But after calculating the matrix . J

elements of Gﬁ(E), taking the & -limit, performing an analytic iﬁf <l y + B J1<qﬁ‘¢2>

continuation to the complex I plane according to E-+E =il , !

o I - - Py = ¥ 7

Lige {243) becomes complex and yields &, end 1, the posgition < Qi“|ul¢:> oM cw"‘> + <q;1%%|qﬁ >, (3.2)
and decay widtn of the Gamow sgtate, respectivelye. Finally from A ax

{(2.2) one geta the corresponding wave functions o = @*(EL),

one easily obtains

It

Using Fas. (2.1) and the identity B} =(E7)" finally it
results

AEY  <anidH/daleds> AED <) dr/aal @ > ( )
T <qlety R ‘ 3.38,b)
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This is the extension of the PHFT to Gamow states.

Comparing (1.1) end (3.3) the theorems are quite similar,

ozly for Gamow sfates on the r.h.s. a generaslized expecta-
tion value is introduced. As mentioned in Sec. 1 the PHFT

for bound states is a useful tool {(at least as a rTigorous

surl rule). The socme statement may be true for Gamow ststes,
because they influence ag poles of the S-Matrix the scattering
nronerties for real energies.

If Eﬁ'(A } changes in such a way, that for o certain criti-

cizl value A, the Gumow state n transforms itself inte = bound
state as 1t was seen e.f. in /19,207, then alsoc (3.3) shocld
turn into (1.1).

A opecial cane of Gamow states appnears 11 single atoms, clus-
ters or sphericel Jfellia ecre considered to be in on homoge-
neous wezk external electric field. Beund states principally
do notexinst further on. They turn into Gemow states, the
energies of which have very small imaginary parts, descri-
bing the successive tunneling away of «ll initielly bound
electrong with 5 very smell probabiliiy. Yow (3.3) should
ullow to npnly the THPFT to sueh cosers (irn /5/ o jellium
rohere in nn external cleciric Tield waos considered).

N
ser of atews begouse of thelr coupling to the

mxeived

yedistion ficld should be understood principally os Gamow

atoten, fo whiech 8q. (3.3} should be zpplicable, too.

Al TLLUSTRATILG EXALPLY
In ihi« Sectlon the validity of the PHIT for Gamow stotes will

he denonrirated for the simple cxemple of g guantum well:
Vix) =~ {h¥2m)v 6(a-ixl) .

-5~

Aocording to the definition of See. 2 one gete the Gamow
states in space representaticn

ORI q’ifxik*jg)]ka K (4.1
with
R & sih Kx |x|€a
¢ (x;k)t (2.7
‘é‘l_fl sin Kg cxp(:tl'k(!xl-a)) x| >a

vhere k real, K = K{(k) with K° = k2+v, and aniisymmetric
states are considered only. The complex wave rumbers

rd = ( aTe ] o d a

kT = Rn:FrI],I (Rn,In> C) zre discrete solutions of the
trenscendent eaquation

K cos Kagik sin Ka = 0

{see /21/). The wave functions (4.1) solve the statichary
Schridinger cequation ané satisfy for thege wave numbers k;
and k£ the asymptotic boundary cendltion of purely outgoing

or incoming waves, respectively.

But if thesge complex numbers kﬁ

are immediately ingerted

in the wave functions (4.2) before taking the §-limit

the well known exponential increasing amplitude would be crez-
ted, which leads to divergent integrals when forming & norm

or scalar products. That is why the CZamow states are repre-
sented zccording to Bg. (4.1) as operators, which allow

to define & proper scalar product of two Gamow states as
follows:

+ iy _ * " , )
- + . - . . P
<‘Pn,‘Pn*>=‘[L'[,‘no S (¢69k-ig) CP(x,kuJ)] kafep)t o (40
k'— k:,
Thereby cccuring sxpressions of the following type (note,
that @ *=¢* ) give

B




o — e

- ™ N
itk fx - {..U\’Hé)()(‘ﬂ) = = ML..__
lin I fdx (&*7I02) e ierk)a
EYs) a

The complete calculation of the scolar product (4.4)
lecds to the biorthoponnlisy relation

{onlon> =~ (4- T!;ﬁf) S

In the some woy one pets (usine Bo.{4.3))

.

Lenldiidvlien >  H* ws?Kia - ikna
<‘-f).;|"{"»:> 2 A - ik,:a

Cn the other hand Ha.(4.3) yields

2 ?
(K;’)’ cot2 K;’a = - (kg')

(4.8)

and by an implicite differentotion of Da.

. . + r +
Qi dES 2.+ _ Kaa cm‘f(,,a) _.2m i=ry
('h’- dv *U(“Of Kaa sit K e He dv
with F;’:(h:/ ?rl){l-:;' Y° finslly the scme result  sp o in dgs.
L L
{4.7) follows for dE;‘/ﬂv, ne it should be becwase of the

RN (3.3),
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