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Abstract:

The interaction cross sections of medium and high

energy nucleus-nucleus scattering are studied with the

Glauber Model and Hartree-Fock type variational calculation.

The interaction cross sections so obtained nicely satisfy

the additivity relationship, which in turn suggests the

existence of a nuclear interaction radius in nucleus-nucleus

scattering. With the calculated interaction cross sections,

the nuclear interaction mean free path of high energy

nucleus in emulsion is studied, and the results agree very

well with experimental data. It is found that the

interaction radius of the projectile nucleus can also be

determined from emulsion experiment.
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I. Introduction

The determination of nuclear size is one of the most

important problems in nuclear physics. Thus far various

experimental methods ( Coulomb displacement energy, high

energy electron scattering, X-rays from muonic atoms and

pion, proton and alpha scatterings ) have been employed to

determine the nuclear size. The radii of proton and neutron

together with their distributions have been determined with

these experiments and compared with available theoretical

nuclear structure calculations. However, due to experimen-

tal restriction on the choice of the target, these measure-

ments have thus far been limited to the case of stable

nuclei. Recently, Tanihata et al ( INS-LBL Collaborations )

have succeeded in determining the interaction cross sections

for scattering of light stable and unstable nuclei from

stable target nucleus with the use of the secondary isotope

beams produced by the Bevalac heavy ion beam . In a pre-

vious paper , we have studied the interaction cross sections

by performing a Glauber model calculation using density

dependent Hartree Fock ( DDHF ) type variational calculation

of the nuclear density distribution, and we found nice

agreement between the theoretical and experimental interac-

tion cross sections. However, it is not entirely clear

which part of the nuclear radial distribution is responsible

for the interaction cross sections measured. Therefore, in

this paper, it is our aim to study the relationship between

the interaction cross sections and nuclear matter distribu-
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t.ion, and, examine the additivity relationship of the

interaction cross sections . We find that the additivity

relationship is numerically well satisfied for almost all

the combinations of nuclei considered. The validity of the

additivity relationship suggests the existence of an inter-

action radius which can be considered to be an energy inde-

pendent characteristic nuclear radius in nucleus-nucleus

scattering ( analogous to the charge radius as determined

from electron scattering ). As an application of our anal-

ysis we study the nuclear interaction mean free path in

emulsion, and show that the interaction radius can also be

determined with the emulsion experiment.

In section II we show the method of calculation of the

cross sections. Then we present the numerical results and

study the additivity relationship between the interaction

cross sections in section III. In section IV we study the

nuclear interaction mean free path as an application. We

discuss and summarize the work in section V.

II. Calculation of the cross sections

II-l. Calculation of nuclear matter distribution

To derive the nuclear density distribution of both

closed shell and middle of shell nuclei, we employ the

Hartree-Fock type variational method, which has been used by

Yazaki in the study of the systematics of the core and

single particle properties of sd shell nuclei and Ca

isotopes . By minimizing the core plus average shell model
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energies as a functional of single particle wave function,

the Hartree-Fock like equations for the single particle wave

functions of the core (p) and valence U ) nucleon states are
4)obtained as follow

where h is the kinetic energy operator. The non-local po-

tentials Uc and Uv for the core and valence nucleons respec

tively are given by the two-body interactin

C* f r 7
U c ( v ) ( x ' x I ) = \ d x

1
d x

2 7 ' ^
X ' X l t X ' 'x2)~^-lXrXltx2'x')jr

with the density matrices P and P defined by

4,

and P{X,X')^%x)%W) . (3)

Here (D denotes the number of valence single particle states

and n is the number of valence nucleons. For the two-body

effective interaction we employ the Skyrme ( SK )

interactions . The root mean square ( rms ) proton, neu-

tron and matter radii for nuclei are calculated using the

single particle wave functions obtained in such a way that

r r m s =/<r
2;> - |b2/A 6'7) . We find that the single particle

energies and the rms radii obtained are quite similar to

those obtained by just plugging in the proton and mass num-



R \

bers in the DDHF program . Since it is an interesting

question to ask whether the bound He exists, we study the

systeraatics of He-isotopes by performing the calculations

with various Skyrme interactions. It was found that the

interactions which have rather weak three-body term ( for

instance SKIV, SKV interactions5' and also DME7' ) predict
bound He nucleus and produce a smaller neutron ( or matter

8 6

) radius for He than for He.

II-2. Calculation of total and interaction cross sections

To calculate the cross sections for the nucleus-nucleus
9)

scatterings, we perform a Glauber model calculation,

taking into account the Pauli principle, center of mass (CM)

corrections and effects of higher order collisions .

The scattering amplitude for collision between nucleus A.

and nucleus A, can be written as

F(q) = i|= \d2b elqb( 1 - eVopt"3' ), (4)

where X,Dt(b) is the CM corrected optical phase-shift func-

tion and it is relat

function / o p t<2> by

opt

tion and it is related to the CM uncorrected phase-shift

Here, the CM correction K(q) is given by the function

f 2 2 2 1K(q) = exp|q'£(R,/4A1 + R,/4A,)K (6)



where the parameter R. is related to the calculated rms

matter radius r r m s<
Ai) as follows

The optical phase-shift function X ^(b) is given by

,8,

where2»i *s t n e ground state wave function of the nucleus

A., s. and s'. are the projections of nucleon coordinates on

the impact parameter plane, and [7. are the nucleon-nncleon

( NN ) profile functions. Both phase-shift functions

^ t(S) and 3^ .(b) are obtainable by expanding eqs.(5,9) in

powers of Y- . such that ,

In this work, we retain terms up to second order which are

evaluated with the Slater determinant of the single particle

wave functions generated with the Hatree-Fock like equation

(1). The NN profile function Tib) is related o the experi-

mentally measured NN scattering amplitude f(kN;cf) as follows

"1\d2q e ' ^(2'5:ikN)"
1\d2q e'^ftk^-f), (11)
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which can then be readily evaluated by using the usual high

energy parameterization for the NN scattering amplitude

(12)

where the parameters are taken from reference 12).

We note that while it is adequate to use the usual

method ' for the CM correction in the calculation of the

rms radii and the total binding energy, we need much more

consistent and accurate treatment of the CM correction in

the nuclear structure calculation because the CM correction

plays a very important role in the Glauber model calcula-

tion.

III. Numerical results and additivity relationship

The total and interaction cross sections for the

proton-nucleus and nucleus-nucleus scatterings at the

incident energy of 0.79 GeV/N are calculated with the SKV

interaction. The calculated results corresponding to the

first order (,£.) and second order {JC, ) collision terms are

tabulated in Table 1. The corrections due to the second

order collision terms are negative for nucleus-nucleus scat-

terings, and amount to 6~10 % for the total cross sections

and 4~7 % for the interaction cross sections. On the other

hand, the corrections are positive for proton-nucleus scat-

terings amounting to 1̂ 3 % for the total cross sections and

0~2 % for the interaction ones. The correction becomes pro-
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gressively smaller as the nucleus involved becomes heavier.

The total and interaction cross sections for proton-

nucleus scatterings at 1.00 GeV are calculated with the

SKIII and SKV interactions and are compared with experimen-

tal data13' in Table 2. Both SKIII and SKV interactions

give almost equivalent total and interaction cross sections,

and reproduce the experimental cross sections quite nicely.

The interaction cross sections for Fe-nucleus scatterings

at 1.88 GeV/N are also calculated and compared with experi-

14)
mental data is. Table 3. The experimental interaction

cross sections are reproduced within 5 % error for light to

heavy target nuclei except S, Ta and U nuclei. The discrep-

ancy, which becomes larger when heavier nuclei are involved,

may be caused by the neglect of higher order collision

terms. The interaction cross sections for nucleus-nucleus

scatterings at 0.79 GeV/N are also calculated with the SKIII

and SKV interactions and the results together with experi-

mental values ' are tabulated in Table 4. For the case of

C target the results are also summarized in Fig.l. The

experimental interaction cross sections are generally well

reproduced. In all the cases studied the SKV interaction

reproduces the experimental results as observed by Tanihata

et al1'2' better than the SKIII interaction. The

overestimation of the cross sections for He- He, He- C

and 4He- Al scatterings can be attributed to the fact that

the DDHF calculations usually predict larger rras radii for

the He than the experimental value. Therefore, for the
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special case of the He nucleus we need a much more accurate

nuclear structure calculation. On the other hand, the

underestimation of the cross section for Li- C scattering

seems harder to understand within the framework of this kind

of calculations, nonetheless, nuclear deformation effects

may play a role here and this is discussed in section V".

Assuming a simple parameterised formula, TLR , for the

cross section, we can compare the cross sections with the

overlapping of the two radial distributions of the two

colliding nuclear matter densities. Then, we find that the

total cross sections in general correspond to a position at

equivalent to 10% of the central value of nuclear matter

A

distributions except for He nucleus where the cross sec-

tions are determined by the position at about twice the

central values of the corresponding matter density. The

situation is similar for the interaction cross section where

it corresponds to a position at about .0% of the central
A

matter density for He nucleus and at about 25~30% for other

nuclei. Therefore, these positions and hence cross sections

may be considered to be given by a combination of proper

invariant nuclear size of each nucleus. This is the reason

why the additivity relationship of the cross sections works

so well. The additivity relationship of the interaction

cross sections is expressed as

07nt<p,t) -TCI R + Rfc ) 2 , (13)
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where R and Rfc are the interaction radii of the projectile

and target nuclei respectively. These interaction radii are

defined by the interaction cross sections of identical

nuclei in such a way that

Rp 7 < 7int ( p' p > / 4 7 !- and Rt =iCint(t't)/4'rt-

The right hand side ( RHS ) and the left hand side

< LHS ) of eq.(13) for interaction cross sections are calcu-

lated respectively with the SKV interaction for Fe-nucleus

and He-nucleus scatterings at 1.88 GeWN, and the results

are tabulated in Table 5. The discrepancy between the two

treatments is much smaller than the corrections due to high-

er order collision terms. For Fe-nucleus scatterings we

find good agreement between the two treatments, especially

for medium and heavy target nuclei. However, the discrepan-

cy becomes larger for lighter target nuclei ( A<.12 ). On

the other hand, for He-nucleus scatterings, we find an

almost constant ( 3 % ) discrepancy between the two treat-

ments for medium and heavy target nuclei though a decreasing

trend may be discerned as target nuclei become smaller. ( In

fact the discrepancy becomes zero for He target. ) To ex-

amine the extreme case of light nucleus, we also study the

proton interaction radius for proton-nucleus scatterings.

Here we find that the situation is similar to that of the

He-nucleus case though a much larger discrepancy is observ-

ed. The proton interaction radius is found to be given by
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A

0.37 fm for p- He, 0.20 fm for . p-lp shell nucleus,

0.15 fm for p-2sld shell nucleus, 0.10 fm for p-nucleus

with A = 50 ~ 150 and 0.05 fm for p-nucleus with A>150 re-

spectively.

Thus we can conclude that the cross sections for nucle-

us-nucleus scattering are generally well reproduced by the

realistic Glauber modej. calculation using realistic nuclear

wave functions. The additivity relationship of inetraction

cross sections for nucleus-nucleus scatterings works quite

well provided extremely light nuclei are not involved.

Therefore it seems not unrealistic to introduce the idea of

the interaction radius. The rms matter radii and the

interaction radii at 1.88 GeV/n are calculated for various

nuclei with the SKV interaction, and the results are tabu-

lated in columns 2, 3, 7 and 8 of Table 6.

IV. Nuclear interaction mean free path in the emulsion

The nuclear emulsion is one of the most useful and

powerful nuclear detectors, and it has played a very impor-

tant role in finding various elementary particle. However,

even though the electro-magnetic behaviour of an energetic

charged particle in the emulsion is well known theoretically

and experimentally , the nuclear interaction mean free

path ( IMFP ) of a projectile nucleus in the emulsion is not

well known. Thus far no reliable quantitative study on the

IMFP exists, and only the empirical formula (/\_=/̂  Z~b ) is

known . This peculiar fact stems mainly from the diffi-
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culty in the calculation of the interaction cross section

between the projectile and the target nuclei ( nuclear

components of the emulsion ). Since we have now a reliable

method to calculate the interaction cross sections of nucle-

us-nucleus scattering, we shall study the IMFP here.

The IMFP 'X of the projectile nucleus in the emulsion

is given by

where n. is the composition of the nuclear component i in

the emulsion and OTnt-'P'*' ^
s t n e interaction cross section

between the projectile nucleus and the target nucleus i.

With eq.(13), we can express eq.(15) by

A = ARp + BR + C, (16)

with

A ="K-£n. , B = ZK^iR± , and C = xTi^R? . (17)

The coefficients A, B and C at 1.88 GeV/N are calculated for

typical emulsions Ilford G5 and Fuji ET7B and are tabu-

lated in Table 7. To examine the energy dependence of A, B

and C, we perform the calculation at several incident ener-

gies ( 0.79 -v 2.1 GeV/N ). We find that the energy depend-

ence is very small ( typically 1% less for B and 2% less for
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C at 0.87 GeV/N ). The IMFPs calculated for various nuclei

are tabulated in columns 4,5,9 and 10 of Table 6. Proton

IMFP 1 = 32.7cm and ̂  = 32.6cm for the Ilford G5 and Fuji

ET7B respectively are also obtained. In Fig. 2 we compare

the calculated IMFPs in the Ilfcrd G5 for l.B GeV/N projec-

tiles with the experimental IMFPs obtained with Ar

18)

beam . There is good agreement.

We note here the important implication of the isotope-

dependence of the interaction radius of the projectile (R )
19)as indicated in Table 6 . Since the IMFP is given by a

simple quadratic function of R , the isotope-dependence of

the IMFP may be correspondingly observed in the emulsion,

especially for the light nuclei. Therefore, in view of the

isotope-dependence it is quite inadequate to analyze the ex-

perimental IMFP in terms of the Z=l converted phenomena (/[ )

with the formula /\ =^,Z , and this formula may sometimes

lead to misunderstanding.

The nice agreement between calculated and experimental

IMFPs suggests the possibility for the determination of the

interaction radius from the emulsion experiment. Using the

values of A, B and C given in Table 7 we calculate the in-
* 18)

teraction radii ( R ) from the experimental IMFPs and

the results are given together with IMFPs in Table 8. While

the ambiguity due to the experimental error is large, we

obtain reasonable agreement between calculated R and de-

rived R .
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VI. Discussion and summary

First of all, let us consider the effect of nuclear

deformation in nucleus-nucleus scattering, especially for

Li- C scattering. We expect the following three possible

deformation effects on the size of the Li nucleus in a

cylindrically symmetric deformed harmonic oscillator well

with a positive quadratic deformation f. The harmonic os-

cillator constants are given by m = CO = (J ( 1+= £ ) ,

tt* -0J*( 1-ff ) while Wsph/Wo - [i-^-Jfj
3] 1/6 from the

requirement of volume conservation .

(a). The ratio of the effective area of the equi-potential

surface of the deformed nucleus ( S,_ ) to that of the

spherical nucleus ( S . ) is given by

Ra " Sdf/SsPh

(18)

where jf= \j3-iS) I (3+2(f)J1/6, and Xf= (1- Jf3) / (1+*3) .

This expression is similar to eq.(3.3 ) of reference 21).

(b). If the ground state of Li nucleus is given by the

(Is) dp) configuration of deformed single particle

wave-functions, the ratio of its mean square ( ms ) matter

radius to the spherical one can be expressed by

Rb
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where the subscripts dsm and ssm stand for the deformed and

spherical shell models respectively.

(c). The third possibility is that the ground state of Li

may be expressed by the coexistence of the spherical shell

model state ( (Is) dp) ) and deformed 3p-2h state ( (Is)4

(lp)5(2sld)2 ), such that

J l - B 2 | ( l s ) 4 ( l p ) 7 : s s m ^ + B|3p-2h:dsnT> , (20)

where B is the amplitude of the deformed 3p-2h s ta te . Then,

the ratio of the IDS radii between the coexistence model

( cm ) and spherical shell model can be shown to be

Rc " <r2>cn/<r2>ssm = * + **' W+ VT

A similar expression has been employed in the study of the

isotope dependence of the rms charge radii of Ca

The dependence of the ratios of the effective areas R

on the deformation parametr 6 for the cases (a), (b) and (c)

for mixing probabilities B =0.1, 0.2 and 0.3 are calculat-

ed and the results are shown in Fig. 3. For small values of

(f the ratios for all the three cases appear to be approxi-

mately constant, very significant changes occur only for

<f> 0.6. Indeed, to account for the 17 % increment of the

interaction cross section for Li- C scattering we find

that (Ts' must be taken to be 0.74 for case (a) and 0.69 for

case (b) , while for case (c) (T= 0.75, 0.74 and 0.72 for
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mixing of B =0.1, 0.2 and 0.3 respectively. On the other

hand, if C is assumed to have a same deformation parameter

as that for Li, we need the <Ts to take values of 0.715,

0.615, 0.745, 0.705 and 0.655 for case (a), case (b) and the

three different cases of (c) with B = 0.1, 0.2 and 0.3 re-

spectively. In all cases we need a large deformation param-

eter to explain the interaction cross section, and more in-

formation and study on the Li nucleus are required in

order to improve our understanding on the effects of defor-

mation on the interaction cross section. Part of the under-

estimation in the interaction cross sections for S, Ta and U

target nuclei as shown in Table 3 may be analogously ex-

plained by invoking the effects of nuclear deformation.

Next, we consider the mass number dependence of the

interaction radii. Thus far the interaction cross section

has been studied with the semiempirical formula

(Tint<P,t) -*r£( A p
/ 3
 + A*

/3 - 4 ) 2 , (22,

where rQ = 1.29 fm and

= 1.0 -0.028Amin fm with A m i n = Min(Ap,At)

= 0 fm for A m i n > 30. (23)

Here, the "overlap parameter" ̂  is meant to represent the

diffuseness and partial transparency of the nuclear sur-

faces. Thus, comparing eqs.(13) and (22), we obtain the
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semiempirical formula for the interaction radius

Rp = rQA
1/3 -4/2. (24)

We plot the interaction radii ( from Table 6 ) as a function

of A in Fig. 3, and compare those with the semiempirical

formula given by eq.(24). Reasonable agreement is obtained

between and with a least square fitting program SALS24' we

obtain the expression

R - 1.355A1/3 - 0.365 fin. (25)

Here, we wish stress the important implication of the

interaction radius R given by eqs.(24,25). While the semi-

empirical formula eq.(22) for the interaction cross section

is known, the values of rQ and 4
 a r e no't uniquely deter-

mined, because these parameters are coupled in eq.(22). On

the other hand, the additivity relationship, eq.(13), indi-

cates that the parameters rQ and 4 should be defined for

both the projectile nucleus A and the target nucleus Afc.

Therefore, the values of r and 4< °r equivalently R ,

should be considered as characteristic quantities of the

nucleus. Furthermore, since the interaction cross sections

of nuclei are essentially independent of energy from 0.1 to

30 GeV/N , the interaction radius R can thus be consid-

ered as an energy independent characteristic nuclear radius

in nucleus-nucleus scattering ( like the charge radius in
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electron scattering ). Since we do not yet know at what

(low) energy the idea of interaction radius breaks down, it

would be quite interesting to study low energy nucleus-

nucleus scattering in terms of the interaction radius, in

particular the energy dependence of r ( and 4 ) which

changes from 1.355 fm in high energy scattering to 1.17 fm

in the low energy optical potential '.

In summary, we conclude that the experimental interac-

tion cross sections and the IMFP of the projectile nucleus

in the emulsion are generally well reproduced by the realis-

tic Glauber model calculation using realistic nuclear wave

functions. The nice agreement between experiment and theory

can provide us with simple but quite powerful methods to

determine the interaction radii of all nuclei. It may thus

provide a means to investigate the consistency between

nuclear physics for stable nuclei and that for nuclei far

from stability. Furthermore, this kind of analysis may

provide us a significant reference in the study of the

anomously short IMFP phenomena '
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Figure Captions.

Fig.l. The interaction cross sections for the nucleus (A ) -
P

C scatterings at 0.79 GeV/N calculated with the

SKIII and SKV interactions and the experimental

values by INS-LBL Collaboration1'2'. The solid line

with open circles is for the experimental values, the

dotted line with solid squares is for the SKIII

interaction, and the dash-dotted with solid circles

is for the SKV interaction.

Fig.2. The IMFPs in Ilford G5 at 1.8 GeV/N calculated with

the SKV interaction (solid circlet and the experimen-

tal IMFPs obtained with 40Ar beam18'(cross).

Fig.3. The deformation parameter dependence of the ratio of

the effective areas between deformed nucleus and

spherical nucleus calculated with eqs.(18), (19) and

(21).

Fig.4. The mass number dependence of the interaction radii

calculated at 1.8 GeV/N with the SKV interaction.

The solid line shows the least square fitting (25)

and dashed line corresponds to the semiempirical

formula (24).
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Table 1. The total and interaction cross sections (in mb) for

nucleus-nucleus scattering at 0.79 GeV/N calculated with the SKV

Interaction.

Nuclei

p-4He
AHe-4He

p-«C
4He-12C
12C-12C

p-56Fe

*He-56Fe
l2C-56Fe

56Fe-56Fe

p-2O8Pb
4He-2O8Pb
12c_208pb

56Fe-2°8pb

208pb_208pb

<^ot

*i

132

418

343

876

1545

1162

2180

3211

5524

3094

4738

6235

9377

14288

upto

Xz

136

377

353

785

1394

1185

1959

2914

5027

3136

4356

5777

8688

13429

Oint

Xi
107

302

256

571

940

751

1289

1835

3054

1819

2655

3432

5063

7601

upto

109

280

260

529

875

757

1199

1717

2859

1828

2509

3254

4795

7262



Table 2. The total and Interaction cross section? (in mb) for

proton-nucleus scattering at 1.00 GeV calculated uith the SKIII

and SKV interactions In comparison with experimental data.

Target

4He
6Li

C

0
208pb

TeXp
a)

152+ 8

199+ 11

370+ 9

475+ 44

3155+450

Otot

139

200

356

457

3199

051°

139

203

361

454

3184

o- a)
Vexp

111+10

258+17

296+50

(Tint

*calb)

111

157

257

322

1838

<r- c a l
c )

in
169

263

319

1836

a). Ref. 13).

b). With the SKIII interaction.

c). With the SKV interaction.



Table 3. The interaction cross sections (In b) for Fe-nucleus

scattering at 1.88 GeV/N calculated with the SKIII and SKV

Interactions In comparison with experimental data.

Target

H

Li

Be

C

S

Cu

Ag

Ta

Pb

U

(

0

1

1

1

2

2

3

4

5

5

re*P
a

.75+0

.43+0

.67+0

.66+0

.22+0

. 94+0

.71+0

.97+0

.10+0

.92+0

)

.05

.04

.05

.06

.09

.10

.14

.20

.27

.29

(Tint

<?calb)

0.765

1.483

1.592

1.725

2.437

3.055
3.704
4.544

4.857

5.119

<rca l
c>

0.768

1.544

1.651

1.758

2.448

3.087

3.723
4.587

4.884

5.179

a). Ref. 14).

b). With the SKIII interaction.

c). With the SKV interaction.



Table 4. The Interaction cross sections (in mb) for nucleus-nucleus

scattering at 0.79 GeV/N calculated with the SKIII and SKV

interactions in comparison with experimental data.

\

Bea
4He

6He

8He

10He

6L1

7Li

8Li

9Li

"Li

9Be

:0Be

Target

n —

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

{ SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

(SKIII)

( SKV )

•He

Theor. Exp.a^

282

2B0 2 6 2 ± 1 9

9

Theor.

453

473

592

624

704

713

825

567

622

609

666

652

703

695

737

823

829

673

731

709

760

Be

Exp.

485+

672+

757+

651+

686+

727+

739+

756+

766+

a)

4

7

4

8

4

6

5

6

8

12

Theor.

521

529

672

689

790

781

899

645

688

690

735

735

773

780

807

916

902

758

802

796

831

C

Exp.a>

503+ 5

722+ 6

817+ 6

688+12

736+ 6

768+ 9

796+ 6

1056+30

807+ 9

825+10

27A1

Theor. Exp.a)

801

809 7 8 O ± 1 3

984

1004 1 0 6 3± 8

1136

1123 1 1 9 7± 9

1266

952

1001 1 0 1 0 ± "

1008

1059 1 0 7 1± 7

1065
iino 1144+ 6

1123

1153 " 3 5 ± 8

1289

1269

1093

1144 1 1 7 6 ± 1 1

1141

1181 1 1 8 0 ± 1 6

a). Ret. 1) and Ref. 2).



Table 5. The additivity relationship for 56Fe-nucleus and

He-nucleus interaction cross sections (in b) at 1.88 GeV/M

calculated by RHS and LHS of eq.(13) with the SKV interaction.

Target

7Li
9Be

12C
32S
65Cu

109Ag
184W

208pb

238,,

56

1.548

1.651

1.758

2.448

3.094

3.744

4.610

4.8B4

5.179

Fe-A

TLCRp+R,.)2

1.562

1.662

1.766

2.448

3.107

3.747

4.619

4.894

5.191

Pint ""

0.435

0.488

0.545

0.933

1.337

1.770

2.371

2.560

2.777

.-A

:<RP+At>
2

0.440

0.494

0.552

0.957

1.384

1.821

2.443

2.644

2.863



and interaction (R ) radii andTable 6. The rms matter (

IKFPs (Xp) of projectile nuclei in the emulsion at 1.88 GeV/N

calculated with SKV interaction.

ProJ. **> Proj. b)

He
6He
8He

6Li
7Li
8Li

'Be

l°Be
1°B
»B
i2C

13C

14N
15N

160

I80

19F
2°He
2 2Ne

2 3Ha

2 4Kg
2 5Mg
2 6Mg
2 7A1
2 8Si
2 9Si
3 0Si

1.76

2.47

2.43

2.48

2.45

2.44

2.44

2.43

2.44

2.44

2.44

2.49

2.54

2.56

2.58

2.72

2.78

2.83

2.89

2.9?

2.94

2.96

2.98

3.00

3.02

3.06

3.09

1.52

2.07

2.38

2.07

2.23

2.35

2.45

2.54

2.54

2.61

2.67

2.77

2.85

2.92

2.98

3.17

3.25

3.33

3.44

3.50

3.55

3.60

3.64

3.68

3.72

3.79

3.86

18.8

15.5

14.0

15.6

14.7

14.1

13.6

13.2

13.3

13.0

12.7

12.3

12.0

11.7

11.5

10.9

10.6

10.4

10.0

9.9

9.7

9.6

9.5

9.4

9.3

9.1

8.9

18.4

15.2

13.6

15.2

14.3

13.7

13.3

12.9

12.9

12.6

12.3

11.9

11.6

11.4

11.1

10.5

10.2

10.0

9.7

9.5

9.4

9.2

9.1

9.0

8.9

8.7

8.6

31 p

32 C

34S

Cl

Ar
38

40
Ar

'Ar
39K

40,

44
Ca

Ca
4 8 Ca

58

63,

65

79

81

107

109

120

Ni

'Cu

Cu

Br

Br

Ag

'Ag

'Sn

184M

208
pb

3.14

3.18

3.23

3.26

3.29

3.28

3.31

3.37

3.33

3.38

3.34

3.44

3.51

3.69

3.72

3.84

3.88

4.11

4.14

4.51

4.54

4.67

4.77

5.36

5.39

5.56

5.87

3.93

4.00

4.08

4.12

4.18

4.16

4.21

4.30

4.24

4.32

4.26

4.41

4.53

4.82

4.86

5.08

5.12

5.48

5.52

6.04

6.10

6.29

6.40

7.27

7.30

7.66

8.03

8.7

8.6

8.4

8.3

8.2

8.2

8.1

7.9

8.0

7.9

8.0

7.7
7.5

6.9

6.9

6.5

6.4

5.9

5.9

5.2

5.1

4.9

4.8

4.1

4.0

3.8

3.5

8

8

8

8

7

7

7

7

7

7

7
7

7

6

6

6

6

5

5

5

4

4.

4.

3,

3,

3,

3.

.4

.2

.0

.0

.8

.9

.8

.6

.7

.5

.7

.4

.1

.6

.6

.2

.2

.6

.6

.0

.9

.7

.6

,9

.8

.6

.3

Units: rrmg in fm, R in fm
.

in cm.

Emulsions: a) Ilford G5 and b) Fuji ET7B.



Table 7. The coefficients A, B and C of eq.(16) for the IMFP in

the emulsions at 1.88 GeV/N calculated with the SKV interaction.

Emulsion

Ilford G5

Fuji ET7B

2

2

A

.47

.65

(a)
1.28

(a)
1.33

(b)
1.24

(b)
1.29

B

(c)
1.23

(c)
1.28

(d)
1.22

(d)
1.27

(e)
1.21

(e)
1.26

(a)
2.81

(a)
2.80

C

(b,c,
2.80

(b.c)

2.79

d.e)

(d,e)
2.78

Units: A in lO"3/cmfm2, B in 10~2/cmfm and C in 10"2/cm for the IMFP in

cm and the R in fm.

Projectiles: (a) 4He, (b) lp shall nucleus, (c) 2sld shell nucleus,

(d) A - 50^150 nucleus and (*) heavier nucleus.



Table 8. The experimental IMFPs in Ilford G5 with 1.8 GeV/N
lot

beam ' and the derived interaction radii.

Projectile. Xp R
p

He

Li

Be

B

C

N

0

F

Na

Mg

Al

SI

P

S

cl

Ar
40Ara)

Units: the DiFP A_ in cm and the JL in fm.

a). The primary beam.

19.52
14.67

13.15
14.79

11.73

10.29

13.43

11.31

13.06

11.68

11.19

8.36

8.93

8.99

9.72

8.07

10.50

8.97

+ 0.65
+ 1.39

+ 1.46

+ 1.71

+ 1.20

+ 1.21

+ 1.65

+ 1.33

+ 1.71

+ 1.44

+ 1.46
+ 1.04

+ 1.12

+ 1.02

+ 1.07

+ 0.99

+ 0.87

+ 0.16

1.42
2.24

2.56
2.21

2.92

3.34

2.50

3.04

2.59

2.94

3.08

4.09

3.85

3.82

3.55
4.22

3.29

3.83

+ 0.09
+ 0.28

+ 0.34

+ 0.34

+ 0.33

+ 0.40

+ 0.37

+ 0.38

+ 0.40

+ 0.40

+ 0.43

+ 0.46

+ 0.45

+ 0.41

+ 0.38

+ 0.46

+ 0.28

+ 0.06
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