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Gauge constructs in the theory of materials with defects are of

current interest. The earliest paper we know was published in 1978 £lj.

Almost at the sane time, hut one year later, there were some papers published

independently [2—5J. Among them, there were some works on transformations of

the field equations and the characteristic quantities of dislocations which

made them invariant. But, the symmetrical theorem and the conservation law

have not been discussed yet. Therefore, it is difficult to apply them

to practical problems such as dislocation notion, crack propagation, etc.

In this paper, the conservation law of gauge stress field of materials with

defects is derived. The field equations and a criterion of the singularity

(dislocation, crack, etc.) motion in a continuum with defects are obtained.

It may be considered as an extension of Eshelby's energy-momentum tensor

to a more general case.

II. THE GAUGE THEORY OF DISLOCATIONS AND DISCLINATIONS

As shown in Ref.5, we define the generalized spatial co-ordinates
*)

y =
1

Then the generalized Cauchy strain tensors are

(1)

(2)
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The conservation law of a gauge stress field nf materials with

defects is derived. The field equations and a criterion of the

singularity (dislocation, crack, etc. ) motion in a continuum with

dafetts are obtained.

Therefore L(C ) = L(C ), where L is the Lagrangian of classical elastic

field.

Now express the matrices of G = S0(3)QO T(3) as

4 t A / J M I
; t f c l (Va • (3,M =

.{of
Under a homogeneous gauge t ransformat ion in G^, X transforms v ia

M
(A)
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*) The generalized spatial co-ordinates, inertial co-ordinates and displacements

used in this paper take the common spatial co-ordinates, inertial co-ordinates

and displacements as their first three components. The fourth components are

K, = 1, u, = X,-a = 0, a, = 1, respectively,

-2-



So that

— 75/J. X.

(5)

i.e. L(C ) is invariant under the homogeneous gauge group GQ.

Let us now consider the local gauge invariance. The infinitesimal

generators of G are

- I, 3; (6)

which correspond to rotation and translation operations, respectively,

and in which

Id 0 o

\r> I O.l

t,-\o,
0 o

(7)

Let T, unify the generators of G , A = 1,2,...,6. T, corresponds

to the generators made by if when A = 1,2,3 and to the ones made by t.

when A = 4,5,6. It is easy to verify that the matrices T, are subject

to the commutation relation

Breaking of the homogeneity of the action of S0(3)i> T(3) is shown to give

rise to a disclination-dislocation field.

According to gauge theory [6], we introduce the gauge potential

functions A (a) under a local transformation. Then we can make the replacement

as follows:

*) In this paper, the following conventions are adopted: whenever small Greek

letters, a, (,, u, , . , are used they take values from the set {1,2,3,4} ;

capital Greek letters, A, E, f,..., take values from the set {1,2,3,4,5,6} ;

and small Latin letters, i,j,k,..,, from the set {1,2,3}.

-3-

T . (9)

The A correspond to the W a in Eef.5 when M = 1,2,3 and to ^i1 when

M = 4,5,6.

Define the intensity of the gauge field as i ,

= Dp A, -

T
and we have

Let the Lagrangian of the free gauge field be

then the total Lagrangian of the system is

L = L,

(10)

(11)

(12)

(13)

in which L Q ( C ) can be divided into the free elastic Lf and the inter-

action of elastic and gauge field L. . C = D XTD X is invariant under

the local gauge transformations [5], and so are L_ and L-,

Obviously

~ I -(A M AM )
(14)

(IS)

and therefore,

L = Lo+ U = L
is a kind of Lagrangian in a generalised continuum.

-A-



I I I . THE SYMMETRICAL THEOREM IN A GENERALIZED CONTINUUM

A continuous t r ans fo rma t ion group with a s ing le parameter i s

given by

Xa~

j u '/ T 0 (if")

-r (17)

7 (
w h e r e n i s t h e p a r a m e t e r , u - 1 , 2 , 3 , 4 , M = 1 , 2 , . . . 6 , a n d

• 7

f> - \\

(18)

I t i s obvious t h a t we can obta in some kinds of transformation groups
Mby ass igning g , p and q some spec ia l va lues .

Let t h e action functional in the general ized continuum disucssed
be

5

(19)

we have [7] Noether 's symmetrical theorem. I f S is in f i n i t e s ima l in-

v a r i a n t under the gauge group G, t h e r e must be (Appendix I ) :

(20)

in which
aL

Noether's symmetrical theorem pl a y s a n important role in modern field

theory. From i t we can obtain the field equation of materials with defects,

the dynamical conservation and the criterion of a singularity motion (a

dislocation s tar ts to move or crack starts to propagate, etc.) at: i ts

init ial stage.

- 5 -

IV. THE FIELD EQUATIONS IN A GENERALIZED CONTINUUM

Following Noether ' s theroem and (17) l e t

- O

We have

After in tegra t ion we ob ta in

v> y-

(21)

(22)

An application of the Gauss theorem yields

By the above hypothesis we have

therefore

Considering the arbitrariness of V and SX , 6An in V, we have

Ik = c

namely

~ o

(24)

(25)

(26)

(27)

(28)

Eqs.(28) are the field equations when dislocations and disclinations exist.
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If we start from the homogeneous linear elastic medium, and take

its Lagrangian as

then Hooke's law can be expressed as

After replacement (9) ue have

(29)

(30)

,0.

jr

Let displacements u = X - a, gauge potentials A and their

derivatives be infinitesimal,and we have the linear field equations as

follows (Appendix II):

(31)

Eq.(33) can be used to solve problems in plane statics under the existence

of defects (dislocations and disclinations).

Considering dislocations, we can obtain the physical implication

of the gauge potential A. From stresses of a single straight edge

dislocation [8]

(34)

in which D = ub/2iT (1-v), r = j/a, + a- , and b is a Burgers vector

along a1.

After proper manipulations and arrangement, we can obtain the

relation between gauge potential and Burgers vector (Appendix IV):

(35)

Under similar circumstances, we can also obtain the relation between

gauge potential and stress intensity factor of a small crack as dislocation

pile ups in the material (Appendix V)

< »

Here Cfe(-a.a) , where 2a is the length of a crack.

Therefore the physical meaning of the gauge potential A is specified

to be a gauge potential of dislocations.

In plane statics, the equations can be written as (Appendix III):

— 7 ̂

(33)

V. THE CRITERION OF A SINGULARITY MOTION OR THE CRACK PROPAGATION IN
A GAUGE POTENTIAL OF DISLOCATIONS

It is well known that Eshelby [10] had firstly given a formula for

the force acting on a general elastic singularity [9,10], which is called an

expression of energy momentum tensor. The J integral or Rice [ll] is equal

to the 2-D form of it. Now, we may extend them to a generalized case, a

continuum with defects.

We define

(37)

as a spatial translation group in which C. is a constant vector and £ is

an infinitesimal quantity. Therefore

-8-
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Substituting these into Noether' s theorem (20) we obtain the

conservation law (on the energy release rate of the field in certain K

direction) under this group,

- Ik V - 3L A

(38)

From the physical consideration, let X and A be extremals, then

(38) becomes

H

Integrate i t

(41)

The right-hand side of the equality is the energy release rate or

the force acting on the singularity (dislocation, crack, etc.). Here we

mainly aim at the crack propagation force, it can be expressed by

the left-hand side of the equality. Take a closed surface surrounding

the tip as Fig.l. It consists of the free surface of the crack tip IT,,

and a smooth surface ¥. The total driving force acting on the crack tip ie

(42)

-9-

Because the surface of the crack is free, the total driving force

acting on the crack can be expressed by an integral as

(43)

Therefore we obtain a dynamical criterion of crack propagation in a generalized

continuum with defects. Let the critical driving or energy release rate of a

crack in the existence of dislocations and disclinations be F
kc As

(44)

the crack starts to propagate. Ffc is a material constant. F, can also be

written as

(45)

where

and other similar symbols have the same meaning.

Because no limitation is given to the particular form of LQ(C ),

the above conclusion has a generalized significance.

If we start from the homogeneous linear elastic medium, and take

as (29), we obtain as follows;

(46)

-10-



where each field quantity is determined by its field equations and the

conditions of each particular problem. Thus after proper treatment and

simplification, it is hoped that F can be used as a criterion of the

fracture of materials with defects.

In the case of defect free materials (or pure elastic case) F,

is simplified to be

(47)

It is easy to prove that F, is a conservational integral. Rewrite it as

(48)

Compared with Eshelby's energy^momentum tensor [9,10] for the

motion of elastic singularity

(49)

F. is an integral over the curved surface of T , it expresses the force

acting on the surface I in the direction of a .

Let a1 = x, a2 = y, a3 ~ z, project Ffc onto the x-y plane, we have

(50)

Ti ~ °iknk i s t h e d e r i v l"8 force acting on T . It is the same as Rice's

J integral [11], the extension force acting on a crack tip. Therefore, the

F-integral given in (43) is the generalization of the elastic (including

non-linear elastic) J-integral in the existence of dislocations and

disclinations, and the criterion of fracture given in this paper is the

generalization of the criterion of fracture of defect free materials.
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APPENDIX I

PROOF OF NOETHER'S THEOREM

Under the infinitesinal transformation group given in (17) the total

variations of field quantities are

so that

W r'
Suppose that 6a , SA^, £X and SA are infinitesimal. In

the first order approximation there is

k^v~ d*J*'*

fiT * A

y,) rj
Consider that

and substitute it into the last formula, we have

L'f. + y So.')- L = A v

-12-



T'

By virtue of the infinitesimal invariance of S, namely

fL'Jv'= f
we have

Considering the arbitrariness of V, we finally have

SL -

-1.3-

APPENDIX II

DEDUCTION OF EQUATION (32)

We can rewrite (28) as

))
3Xc.J,»

_
; ; ^

and deduce the following under the first order approximation.

By virtue of (29) we have

and considering that

we have

/s

3eKJ _ .

therefore,

In the same way, we have

_



>.y

4

r-1"
then the f i r s t one of (32) i s

T~ -- Pa

For the second one of (32) there are

d tij

^
^ ^ * ^

^ J -

Then the second one of (32) Is

| M
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APPENDIX III

DEDUCTION OF EQUATION (33)

In plane statics the first one of (32) is

Al.lt - Altl =» o

the second one is

or written as follows:

A />>

N = 1,2,6.

"here h = 1,2; M = 1,2 6.

Considering the values of T^ we can write the last equation as

A l A l o

= «

where h = 1,2; N = 1,2,6, or

=0

-18-



APPENDIX IV

PROOF OF (35)

From the sixth one of (33) that

and {3A) we have

= o

Let a2 = 0, then

and

therefore we have

*.-*<?

!,=-•

— o

. - t>

APPENDIX V

PROOF OF (36)

The density of crack dislocations at the tip of a crack is

where A = (ib/2ii(l-v). b is a Burgers vector, k, a stress intensity

factor [9], [10] , [12].

Take a linear distribution of crack dislocation density to

represent a crack as

Therefore the total stress is a. . = a.. + a.. , where the a., represent

the elastic field,

r a.', cu, a,; ĉ a,' ,

and the 6~̂  • I s t n e stress of a single dislocation located at

(a-. ,0,0), which Burgers vector parallels to a-..

By virtue of the sixth one of (33) we have

<„-<„=
Let O,we have

As a result of the mean-value theorem, there is

-a.

f !

a.;

I

-19- -20-



= -!— arc stn ̂ LI *

where C ( - a , a ) . Mult ip ly the l a s t equation by ( a , - a ) . We have

therefore

-+}*>£(-&) KCf -

and finally we have
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Crack

Fig.l

The closed surface surrounding the crack t ip .


