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I, INTRODUCTION

Gauge constructs 1in the theory of materials with defects are of
current interest, The earliest paper we know was published in 1978 [1].
Almast at the same time, but one year later, there wete some papers published
independently D—SJ. Among them, there were some works on transformations of
the field equations and the characteristic quantities of dislocations which
made them invariant, But, the symmetrical theorem and the comservation law
have not been discussed yet. Therefore, it is difficult to apply them
to practical problems such as dislocation motien, crack propagation, etc.
In this paper, the conservation law of gauge stress field of materials with
defects is derived. The field equations and a criterion of the singularity
(dislocation, crack, etc,} motion in a continuum with defects are obtained,
It may be considered as an extension of Eshelby's energy-momentum tensor

to a mure general case.

II. THE GAUGE THEORY OF DISLOCATIONS AND DISCLINATIONS

As shown in Ref.5, we define the generalized spatial co-ordinates

as

~ X
'X‘H{I} - (1)

Then the generalized Cauchy strain tensors are

~ ~ ~ —7 .
Cur = du X Ta;x = g x aﬁ"x = C_:ra" . {2}

~
Therefore L(Cu
field.

v) = L(Cuv), where L is the Lagrangian of classical elastic

Now express the matrices of G

(A A€SOG) BETA), -
{8 1/,

Under a homogenecus gauge transformation in G., ¥ transforms via

X'=MX, MeG,

0 = so(3)o-> T(3)0 as

{4)

%) The generalized spatial co-ordinates, inertial co-ordinates and displacements
used in this paper takethe common spatial co-ordinates, inertial co-ordinates
and displacements as their first three components. The fourth components are

X,

4= 1, u, = Xb—a =0, a

P = 1, respectively,

4
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So that ~

Cur = (3uX") M1 (9, X)

pa
ITE‘y,t

]
\:ﬁ)

\tﬂ> \2(‘3

(5}

I
i.e. L(Cuv) is invariant under the homogeneous gauge group GO'

Let us now consider the local gauge invariance. The infinitesimal

generators of GO are
e = 23 ( - itj} ' 2 3"
AT 1 =1 - Caky :"l -
il’)J’ 0 \10}4‘ 0 J (6)

! J

which correspend to rotation and translation operations, respectively,

and in which

_ o0 9 o i o= 0
)i = 1o 0 - )i “lo o } )g = oo
o1 nl N o/, 1 AN
. f s O — o
t': 0 .= 1 Gl .
'
2 J t 7
4

Let TA unify the generators of GO, A=1,2,...,6. TA corresponds

to the generators made by Y4 when A = 1,2,3 and to the ones made by ¥j

when A = 4,5,6. It is easy to verify that the matrices T, are subject

to the commutation relation

~ g7 .
LTA7!F7.]:LJE;BT‘I’ ’ A BT =

.
v 8

(8)

Breaking of the homogeneity of the action of S0(3)# T(3) is shown to give

rise to a disclination-dislocation field.

According to gauge theory [6], we introduce the gauge potential
functions AE(H) under a local transformation. Then we can make the replacement

as follows:

%} In this paper, the following conventiens are adopted: whenever small Greek
letters, a, B, H,.., are used they take values from the set {1,2,3,4} ;
capital Greek letters, A, B, T,..., take values frem the set {(1,2,3,4,5,6} ;

and small Latin letters, 1i,j,k,..., from the set {1,2,3}.
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% = Dula) = ‘aﬂ'—r{? A; (a) ol . (9)

The A
M= 4,

correspond to the Ws in Ref.5 when M = 1,2,3 and to ¢: when

M
U
5,6.

Define the intensity of the gauge field as ng.
Fpr = Duhy =D, Ay
\ Mo M (10)
Fur = ~<¢ Fur T
and we have

M M M
Fov = 208y =% Aur 3, AL AL a

Let the Lagrangian of the free gauge field be

{ M o=
Le =- g ES P a2

then the total Lagrangian of the system is

=1, (E/W) + L, (13)

in which LO(E;v) can be divided into the free elastic Lf and the inter-

- A
action of elastic and gauge field L, . ¢ = b XD ﬁ is invariant under
int pv [ TR®
the local gauge transformations [3], and so are LO and LF.
Obvicusly

(14}

LF = LF (A ’ A;,p), (15)

La (C/.HV) - L'J (4,“/X ‘ X/An’; A/:)

and therefore,
[ =L, tL.=L (a%_Xﬂ,X ,y/A;:,, A/upjﬂ) (16)

is a kind of Lagrangian in a generalized continuum.
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IIT. THE SYMMETRICAL THEOREM IN A GENERALIZED CONTINUUM

A continuous transformation group with a single parameter is
giwven by

CT Cig{- {,‘L/u-r—,}ui( + O’(‘;(‘)
‘ Xu= X rpi { u(?/‘)

/ (17)
ot
/’\‘M = ,ff?M v g ){ + (’[ 4o
where n is the parameter, p = 1 2,3,4, M= 1,2,...6, and
. L, , ot ,?ci_’.
(j - 2}/«\“‘“ X}“ X.I:.A. T 1,1 = .;,(Mfr'_
{
o= PG XX ” w ?XL(
tJM_ rv. Lyl v, ;,.A, " /\ ) 5 -
A o - C,
P . ) M v ":r
= iy (C"'x”x”‘fA«, "d’) = D)/,? l:t-:c, (18)
ST, AT g, ATy

It is obvieus that we can obtaln some kinds of transformation groups

by assigning gu, PU and qu some special values.

Let the action functional in the generalized continuum disucssed

S LA, X X, AT ATy

(SRR N S

i’ i . . R (19)

we have [7] Noether's symmetrical theorem. If 5 dis infinitesimal in-

variant under the gauge group G, there must be (Appendix I)}:
SL oo w L

L =L Ty M
éX«BX .5/]':: SJ‘/“ J;J (20!

in which

A
'R 3 o

i g T,

sk b ook ) SEo_at gl

‘ o . - a M .
SNp= ST Ny v Sfl“:,ml;—/{:,sczi

/Ll
TM = .:ﬁl y ‘j‘L T + ]
. (?Xr,.,ugx" ar 4 X5 L ba )

Noether's symmetrical theorem plays an important role in modern field

theory. from it we can obtain the field equation of materials with defects,

the dynamical conservation and the criterion of a singularity meotion (a

dislocatien starts to move or crack starts to propagate, etc.) at: its
initial stage.

-5-

IV, THE FIELD EQUATTONS IN A GENERALIZED CONTINUUM
Following Noether's theroem and (17) let
— 4] —
= =4, =0 . 21
L‘}J“ i Fi "“’ fi,,u W (21)
We have
Mo
—*:axu ok 5/ (JL SX,+ }L A )
8Xu sAL Xy u ’ (22)

After integration we obtain

- \ db
Y( SX leuf'éf)ni SA f l(:j)(',/,lé R a/]},/MSA ’{V' (21)

An application of the Gauss theorem yields

I-(ik‘ t & '“A/_:')clv-—-'- ~J7 ("L SX,+ (SA”)@“»/J

$X v (24)

By the above hypothesis we have

i oM
\lo=peat =g <aMa :} -
A, =m0 sl 727, =e, (25)
therefore
\.( v v

M.
Ceonsidering the arbitrariness of V and (SXU, 6AU in V, we have
S L

—_— [ — =

‘ - “ (27)
l“t EA-#

namely

oL _ ak =0
a)(-,; e

l_%_‘t;-.(”“) _, —(za)
o/‘i,_,,;) ,

Eqs.(28) are the field equations when dislocations and disclinations exist.
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If we start from the homogenecus linear elastic medium, and take

its Lagrangian as

L,=4{~ley §V)° riue e, - AKX,

e =40 C.

%) v/

—_ 8‘, )
v (29)

then Hooke's law can be expressed as

0 = - T - e

0. .
TR YT ,u( H /“ (30
After replacement (9} we have

EAY ~

BN o~ :
L (Cur —~;‘)\(€U-§ ) 24 c:’e_-v._]-;ﬁ_ Cos

~ ] - >\ ~
g = e O e i — Ao
o AR (I At Ty K (31)
Let displacements u = ¥ - a, gauge petentials A  and their
derivatives be infinitesimal,and we have the linear field equations as
follews (Appendix TI):
~ . IS | ki = gn
=l =T AT T AL A ] =
_\(Oi_( M*TM k)JJ-Tn[,t‘(TMi/(_ +
oy Tt T ol )3 7507 e Peow
Agk.h Mo k
f—‘-JT L‘.ktfﬁ T - ?AA,L\ X L,y +7;9‘ T:\KO ¥
- — ;, Moo
- = ¢
t . ;Na t lﬂ fum i (‘)]S . ,,,- /‘!,,.-..; C ()

In plane statics, the equations can be written as (Appendix III):
.11 : /4. e

A :Jr Td! =

bl O au-Gia)t AT AL

{j([)}['{, ”d )f/?z u"/’,u"‘!
L0 ¥ = 4z

‘«? . "'A;n._/']z a4
'tjr J,11 Azu A‘f =c

-43 +A;,” ) v =

_’;3 61‘1*A1H %‘lll = ¢ (33)
o

Eq.{33) can be used to sclve problems in plane statics under the existence

of defects (dislocations and disclinations).

Considering dislocations, we can obtain the physical implication
of the gauge potential A. From stresses of a single straight edge

dislocation [8]
-D @, (Ja, +a¢) -

g = %
- a (d @ -
6. =% = -D ——m—i' 2ot = oo (34)
Gg~
u_—".D ua.(q:“aJ o—-:‘
-
in which D = ub/27 (1-v}, r = ;Jai + a% , and b is a Burgers vector
along ay
After proper manipulations and arrangement, we can obtain the
relation between gauge potential and Burgers vector (Appendix IV):
b_ 'JTC(J )))'6&‘ (AV'_ 4‘)
#? a‘—" ; At Lzt (35)

R;=0

Under similar circumstances, we can also obtain the relation between
gauge potential and stress intensity factor of a small crack as dislocaticn

pile ups in the material (Appendix V)

SRS L .
K= b&b[?f) .}-m,u',,ga&”r_,';(a,-a)//hj,‘ﬂ,;,)la‘:o . (36)

Here Cef{-a,a) , where 2a is the length of a crack.

Therefore the physical meaning of the gauge potential A 1is specified

to be a gauge petential of dislocations.

V. THE CRITERION OF A SINGULARITY MOTION OR THE CRACK PROPAGATION IN

A GAUGE POTENTIAL OF DISLOCATIONS

It is well known that Eshelby [10] had firstly given a formula for
the force acting on a general elastic singularity [9,10], which is called an
expression of energy momentum temsor. The J integral or Rice {11] is equal
to the 2-D form of it. Now, we may extend them to a generalized case, a

continuum with defects.

We define

a; = a; + (¢ ({=1,22) an

as a spatial translation group in which Ci 1s a constant vector and £ is

an infinitesimal quantity. Therefore

..8_
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$e=0  LTC e gl=v

Substituting these into Noether's theorem {20) we obtain the
conservation law (on the energy release rate of the field in certain X

direction) under this group,

' 2L ' M
(L& - 3X,w)<“' AL Ay )z

_ 2 [ sl
 ac EX;_‘« p,A )

NI TR L _/aL .
*L;xf (.ajxf.,,ﬂ,jx [3/;” Ja/;ﬂ_,),.JA:j« < (38)

i

From the physical consideration, let X and A be extremals, then

RL :25_(_3.1_— ).:C.. SL_aL /2L ) .
u\f E?)()L JX‘._r)J,, AA;J a/}/u’ ")/)/:,‘-) » (39}
(38) becomes
- B ; L 3L . o
(L‘S Mrexf’“ 94“ /-]*" {;;_"X;ex*;*;‘?»a A, S
X%, o
Integrate it
K o B oM
}(Ls Mﬂ\, s A et
= r/rj( X;u ;1“ )‘/
(41

The right-hand side of the equality is the energy telease rate or
the force acting on the singularity {dislocation, crack, etc.). Here we
mainly aim at the crack propagation force, it can be expressed by
the left-hand side of the equality. Take a closed surface surrcunding
the tip as Fig.l. It consists of the free surface of the crack tip Tis
and a smooth surface 7. The total driving force acting on the crack tip is

1 K
é{Ls‘g 2 Xpim 25 AL Deds

(42)

Because the surface of the crack 1s free, the total driving force

acting on the crack can be expressed by an integral as

Fe ZJH( L S‘Lx ax XJ‘ k Ay K ) % ds

(43)

Therefore we obtain a dynamical criterion of crack propagation in a generalized
continuum with defects. Let the critical driving or energy release rate of a

crack in the existence of dislocations and disclinations be ch. As

Fo > Fie (44)

the crack starts to propagate. ch is a materiazl constant. Fk can also be

. A M v
o= ) {0 G = A0 A AL A (A +
Mo H LTy ek 2L, &M, M ey
+y ]LHIA#A,,)J 5; ;é;{]x_,-,x(x,-, (xdp) =g Tn XAt
+(At oyt ii_?JCNT-AchZJ)A:x} N A9, "

where )
M — AM _ p™ a4 Y, ¢ ¢
A = Ayp MY, XJ', 5g) =X SF‘ +XJJF‘S\°‘ g

and other similar symbols have the same meaning.

-~
Because no limitation is givenm to the particular form of LO(Cuv)'

the above conclusion has a generalized significance.

If we start from the homogeneous linear elastic medium, and take 1,
as (29), we obtain Fi . as follows:

= [{Un( 8% 2y 87 G 5 G H Ay 8 ALK
(Ao 3 A A 8- (X, iy TN A58
+/u§hléf£5 105,80, “’”(Acm"’zjf Achi)A, }” dS

(46)

0
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where each field quantity is determined by its field equations and the
conditions of each particular problem. Thus after proper treatment and
simplification, 1t 1s hoped that ¥, can be used as a criterion of the
fracture of materials with defects.

In the case of defect free materials (or pure elastic case) F
is simplified to ba

= J(Lf ,(J Hods (47)

k

It is easy to prove that Fk is a conservational integral. Rewrite it as

[ :f(' ij}; - "T TV R Ay - (48)
b

Compared with Eshelby's energy-momentum tensor [9,10] for the
motion of elastic singularity

- —ral?c

Tu=FPe—zpu LY,
\ . / Al O
=W = 9t e m 5 U e

LSe- o5 i ¢, (49

i

Fk is an integral over the curved surface of TjE , it expresses the force
acting on the surface I in the direction of a .
Let

&) = X, a, =y, a, =z, project F

x=f', (Wdy-T: 4 xds)

(50}

T, = ¢ix"g 1s the deriving force acting on T . It is the same as Rice's

J integral [11], the extension force acting on a crack tip. Therefore, the
F-integral given in (43) is the generalization of the elastic (including
non-linear elastic)} J-integral in the existence of dislecations and
disclinations, and the c¢riterion of fracture given in this paper is the

generalization of the criterion of fracture of defect free materials.
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| ©onto the x-y plane, we have

APPENDIX I
PROOF OF NOETHER'S THEOREM

Under the infinitesimal transformation group given in (17) the total
variations of field quantities are

X=X X S8, FAR=SAL-AL, S,
so that

L M
L=L+2 3@..+3xﬂsx/u MMSA

al. .;:X

sA”
a)g.. o¥ aA”

Suppose that &a , &AE, &x, , and 6AE"J are infinitesimal. In

the first order approximation there is

’ M :
L([+3rSQ)~L=d'V(Lsa')+ /“SX’M aAMSf, BX/u,v /“/

’BL sah_‘_ aL M
ax/‘%fl 12 aA’ﬂ fl’ AM A )M

Consider that
SX/‘;*’ = —X)"f"(ga}ﬂ’ * ( Sxﬂ)’?
M L » M
SA}L,P =- A/',A(SCL)’ ¥ +( SA/H)’ »P
and substitute it into the last formula, we have

AN BL
L("* usa)-L= dw(LS‘a)-r SK/K'*»A/“ ™ X/"”uusa

2L am
?A,A Xﬂ,,(éa)y+ (g/“)

A WEL *),+ (sn J»

=d Ls + 25 §x s - 2L 4m
(V( “—) )9‘5 /ll EA aX ")(/4 L 3/1/;:;4#’»

( 29X, /" *Sa) (BX/« .) A5+

-12=



APPENDIX II

DEDUCTION OF EQUATION (32)

2k - ol
+B)( fxf' a*()(ﬂfx )' 3,\}“,) S}E" AM ),y

ZAM A
/‘ We can rewrite {(28) as
al. M
(o A
ax BX-.
= -v(!—fa)+~sxﬂ AHSA ( )ax g,q” 2Ls aL;_. aLF _
) i 22k =
_3‘[:-. - + 2,‘_-,—_ ~ M and deduce the fallmnng under the’ first order approximation.
t (3)()“”5 X/“ BA}:‘,JS A/"‘ ), Y By virtue of (29) we have
L= L = M 2-}:-3 = ?—{'q‘-’ —-—-’aé\". + ‘3'7L%‘ ——-._.._aC““
=35 gx + 55 TaH_ T 2X, e 2X. BCq, Xy

and considering that

~ _. M M K 2, M M
Gow =R Ko™ Tip A Xy X AT T XX

By virtue of the infinitesimal invariance of S, namely

S}_ﬂ 3 we have €

= 2 . . MM K

or ;‘f""'z‘}-’;{?/qtpsfng
e = -2 TOAL WS
v’ v ’

we have ~ ~ O! ~

J;[L(r+BﬂS&J~LJo{V=o 26,(?:::1“““'“ -z, A(RX ,5“?
or “ therefore, ~ A
.[( 5Ku SA“M J Jdv=a 2Le _ 2L 224

e 28y X

Considering the arbltrarlness of V¥V, we finally have In the same way, we have

QL- ’QL. K + ?—‘_'.. acm‘

sL = SL s, m M a?‘«v IR TN ey
2 SX + =2k 5 = v &4 oy
g A € st5d - g Tl A sEson')
2Xe0 .—[xf.) g« 3,} +X N 4 84 5 3TF (Ak S"é’*’f- . 5*-‘5'*‘))(
~
pleoeg . & 28y 2 oJ gk
ooy Xiw iy S 3 Sy,

-13- -1kL-



=X § 8 -2 T AN S8 X°

2L
3Xow ﬁﬁ'—"‘%%ﬁ(ﬁ:F"w)
< . M

v Al ¢ Sy 5:"?"}(7}:/4:45‘#4"’ 7:& /7‘;45‘;?4*)' /":-éF:P _?_%;"”

A 3 ,A
?Lgac —__ ‘ky_{" M M o~y MaMo¢ g - _ 1 N 'v
é?wﬁu‘ ﬂ[b(,wSA g‘f ,4?'(7-44/94 gﬁ""-]:‘zc/'}?;ﬁa)l - :}.(Ayd fnrA A, gfae Ay*S S}‘Ad)

=0
2L, AR
EECIR R TR SR Tl 5,,+7;71A NY) oy L2 (RLF
¥

(E.L_‘_" ) — 5«_ EJ-" [ukng%g (THAM M ak)] v /:
'3.X4‘,ﬂ,)1 Ky, K Ca fo f K sulley y:g ,

then the first one of (32} is

- ) AL AR, -525a52)
. o - M M [l -
54:’.‘-’-— (Os [t’(w',‘\“ﬁ &?- ( 74'\* A#.‘} + T:'K /]f",'ﬁ a’K)J =0 — A:;u-. ;:’)
For the second cne of (32) there are ' al
t t (___E‘) — A:‘ , AMVP
ole _ oke2éy , ale 2Cu | 2Amal L o
BA/: 7%y EA;:" an e Then th a £ (32) i
Qr[;egg_-_;:.lé\?i&’ﬁ en the second one o is
2¢e;: AL 24 ;AF . A
S ~ 7% "HT"?(S#X J‘Xﬁj “‘303(7-; Teh ak)gd *fe £”3T4u +~JTxTuf+a"
x by 8: So§fvglsk M ah 2 i
i (544 )(7?“ e + 28 AL (T T + TH Tihar+ T T2 a'ah)] 5
~igaz (T h) s
" - 3 4 xS + i Q’ S M _ _
?_CJE"- as oy t Aupy T A= 0
A" 3Tas X X -ZgSAT T XX

. H
o~ —.ng_-r;%gﬁb{ ‘L"—TkaTKk Sr (/L/q_ Ovh

v H N Mo p
-3 S\‘fﬂ‘f(_[:l?' _[:ru+Td« T &+ E:T;A;ak*r T,:Tzakal')/

4;?6‘.‘('(;-# + T ah)g; A [+ 7;': Mligffm‘?ﬁrgfu't a

T /u M M
P A T T T A T T [ et

15 ~16-

LA i

R T TR YRR




APPENDIX III

DEDUCTION OF EQUATION (33)

. a L ' 3 - 3 —
LC?(GE @& - a)+ Aaux /ql,;, =90
In plane statics the first one of {32) is , A ¢ u
~&4 I + A L A =0
A o o 7 L t.n
6".. — €, - [’ 2‘ N " [Ty ®
v J "”3'GTI+AIIH Ar,uh'o
the second one is

. D + +
""3’6‘:1 t+ Al.nd A;.u =d
oA M M h . M sy
26T+ T, a‘)-J-A-““A.'—-‘-OI v Lh= 12 . £ £ —
“F ‘J( cw sh J- 4, jh J ” -4 O # Aa,u - Aa—r,li-' ¢

or written as follows:

A A N=1,2,6.
gt 6. 9

A a3

o:|,| + 6:-,1 = 0

P

A~
I

. N
g6 (T + Ty ah) =g (T T Al A= o0

&

oA M M by oA M M h M o.M
4405 (T + T o) =vg 65 (Tl Tupa?)+ AL App =0
where h=1,2; M =1,2,...,6.
Considering the values of TM we can write the last equation as
M §N o ad
Ar,bh_ AA,H:"‘ o
N N —
A:,h'\_Ah.IA-" 0 ; 3
. A Fal 1 - =
(3(Ga~ G )+ A A = 0
. AT IR 3 3 —_
4-'3- (Grdza’-o_;ta')'*Al,M_ AH,IL_' 0
A
. 4 o~
"&}Gﬁ t Allf“‘l_Ah,lh =0
A 4 %
g0t AL A =0
. Q + K —
"-&Tﬂ +Aa,l\l-.“AA,;l1 =90
A N £
""3 T +/]1,“1'—A1.,:J|_0
where h =1,2; N=1,2,6, or
N N
A;,u- A= 9
4 v
Az,ll - A]‘,I.j =0

LD A k] 3
0;‘(0:q-l—o;;a-l,)+/41,:a .—Abu =0

=16~
1T



APPENDIX IV APPENDIX V

PROOF OF (35) PROOF OF (36)

From the sixth one of (33) that
The density of crack dislocations at the tip of a crack is

~ Lo
. N ¥ =
._Afg.art‘f'A; ”"'A,}._I o ’Q___ CS)‘Vz S=a.-a<<a t
7A (z?r)" ! 5
and {34) we have 21
. 2 where A = ub/2m(1-v). B is a Burgers vector, k, a stress intensity i
. ~-a
~4g (-p) Bl a) +AY - AY = factor [91, [10], [12]. H
re 2,1 Y i
Take a linear distribution of crack dislccation density to i
Let a, = 0, then represent a crack as £
-;/
t 2 i
- D,ﬁ ( 2 - ,@:i‘(n/w)(a,~a,)
?’ a, * Az ” i, zr) o, =0 = a
i or
-1
and 1 % L 2 '/
P 9 =55 (&) K (a'-aD)
._A,3D+ -@t:;» a‘!(Az,nhAm.r)! = @
@ [
0 ree Therefore the total stress is Uij = a‘;‘j + U?j , where the a?j represent

the elastic field,

D a , ,
=5I ,80‘5. (a,-ai, a,, ay) da;
[ 3

therefore we have

o .zrf(r—v) .
b =R '&/VVL Q (/Jz " “'/‘]I . ){ and the d"ij is the stress of a single dislocation located at
a

/“3( a0

v=20 (al,0.0), which Burgers vector parallels to a.
By virtue of the sixth one of (33} we have

: . A .
igont-ig[ 2 (&) k(ata) e et lar@an’] gy
-a

E(af f) a’l -]t

¢ .
-+ A:”_ AI,ZI = 0

Let a, = 0,we have

nore -1/,
: A o Lo oy s
AR L‘:, b (%) KL{a a7') e da

+ (Azn Ah’-l [ =0

G,=o

As a result of the mean-value theorem, there is

'Y =1 @ “,l d
(oo dof = s oo s
! ] + c

~1G- - -20-



s O
= - arec sin ﬁ,[
e, &l e
]
_ v L -
= I ware s =
a,-a( arc sin =)

where C(-a,a). Multiply the last equation by (a,-a).

{L;~ (a,-a) OT;A

XA

therefore

. % =
-'413‘,‘: -?'—c-(%) K(-} - are SLMK)""'

+ L (a-0) (A

and finally we have

©

&,
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We have

-4 =0
L"){at=o
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Fig.1

The closed surface surrounding the crack tip.
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